

Modeling and Analysis of Hybrid Systems - SS 2015

Series 5

Exercise 1

Consider the TCTL formula $\Phi = A\mathcal{F}p$ and the following timed automaton \mathcal{T} :

- (a) Does $\mathcal{T} \models \Phi$ hold, i.e., does \mathcal{T} satisfy the TCTL formula Φ in its initial state?
- (b) Please determine $RTS(\mathcal{T}, \Phi)$. It is sufficient to present the reachable fragment. Note that the TCTL formula Φ has no time bounds, therefore you do not need to introduce any auxiliary clock z.
- (c) Does \mathcal{T} have a path leading to a time-lock? If so, how can we recognize it on $RTS(\mathcal{T}, \Phi)$?
- (d) Please apply the CTL model checking algorithm presented in the lecture to determine whether $RTS(\mathcal{T}, \Phi) \models \hat{\Phi}$, i.e., whether $RTS(\mathcal{T}, \Phi)$ satisfies $\hat{\Phi} = A\mathcal{F}p$ in its initial state. Does it hold that

$$\mathcal{T} \models \Phi$$
 iff $RTS(\mathcal{T}, \Phi) \models \hat{\Phi}$?

If not, why?

Exercise 2

Consider the following initialized rectangular automaton \mathcal{A} :

- (a) Transform \mathcal{A} into an initialized singular automaton \mathcal{A}_1 and specify a function f_1 mapping \mathcal{A} -states to \mathcal{A}_1 -states, such that a state s is reachable in \mathcal{A} iff $f_1(s)$ is reachable in \mathcal{A}_1 .
- (b) Transform \mathcal{A}_1 into an initialized stopwatch automaton \mathcal{A}_2 and specify a function f_2 mapping \mathcal{A}_1 -states to \mathcal{A}_2 -states, such that a state s is reachable in \mathcal{A}_1 iff $f_2(s)$ is reachable in \mathcal{A}_2 . You are allowed to set stopwatch values to any constants.
- (c) Transform \mathcal{A}_2 into a timed automaton \mathcal{A}_3 and specify a function f_3 mapping \mathcal{A}_2 states to \mathcal{A}_3 -states, such that a state s is reachable in \mathcal{A}_2 iff $f_3(s)$ is reachable in \mathcal{A}_3 . You are allowed to set clock values to any constants.
- (d) Transform the timed automaton \mathcal{A}_3 such that clocks are reset to the value 0, only.