

Modeling and Analysis of Hybrid Systems - SS 2015

Series 2

Exercise 1

Please match each following LTL formulae φ_i to one of the given execution paths π_j , such that $\pi_j \models \varphi_i$ for all $i \leq i, j \leq 6$ and such that each φ_i is assigned a different path. (*Note: You can assume that the paths continue infinitely in the pattern of the last 2 nodes.*)

- φ_1 : true $\mathcal{UX}a$
- $\varphi_2: \mathcal{GX}a$
- φ_3 : *a* $\mathcal{U}b$
- $\varphi_4: a \wedge \mathcal{X}b$
- $\varphi_5: \mathcal{FG}a$
- φ_6 : $(\mathcal{X}b)\mathcal{U}a$

Solution:

 $\varphi_{1} \models \pi_{1}, \dots, \pi_{6}$ $\varphi_{2} \models \pi_{2}$ $\varphi_{3} \models \pi_{3}, \pi_{4}$ $\varphi_{4} \models \pi_{4}$ $\varphi_{5} \models \pi_{2}, \pi_{3}, \pi_{5}, \pi_{6}$ $\varphi_{6} \models \pi_{3}, \pi_{4}, \pi_{6}$ $\Rightarrow \varphi_{i} \models \pi_{i}, i \in \{1, \dots, 6\}.$

Exercise 2

The LTL formulae $\mathcal{XF}p$ and $\mathcal{FX}p$ are equivalent, since we have the following formal proof: For any path $\pi : s_0 s_1 \cdots$ of an \mathcal{LSTSA} ,

$$\mathcal{A}, \pi \models \mathcal{XFp}$$

$$\Leftrightarrow \pi^{1} = s_{1}s_{2} \cdots \models \mathcal{Fp}$$

$$\Leftrightarrow \exists i \geq 1.s_{i} \models p$$

$$\Leftrightarrow \exists i \geq 1.s_{i-1} \models \mathcal{Xp}$$

$$\Leftrightarrow \exists i \geq 0.s_{i} \models \mathcal{Xp}$$

$$\Leftrightarrow \pi \models \mathcal{FXp}$$

Is it also the case for the CTL formulae AXAFp and AFAXp? If so, please give a formal proof. Otherwise please present a counterexample.

Solution: The CTL formulae $A\mathcal{X}A\mathcal{F}p$ and $A\mathcal{F}A\mathcal{X}p$ are not equivalent. We give the following counterexample. All of the paths start from s_0 have the second state which is either s_1 or s_2 , and any path from these two states satisfies $A\mathcal{F}p$. Hence $TS \models A\mathcal{X}A\mathcal{F}p$. On the other hand, there is a path $\pi : s_0s_1s_1s_1\cdots$ which does not satisfy $A\mathcal{X}p$, therefore $TS \nvDash A\mathcal{F}A\mathcal{X}p$.

Exercise 3

We only consider \mathcal{LSTS} with infinite runs. assume $p, q \in AP$. Are the CTL formula $\varphi_{CTL} : A\mathcal{G}(p \to A\mathcal{F}q)$ and the LTL formula $\varphi_{LTL} : \mathcal{G}(p \to \mathcal{F}q)$ equivalent (i.e., $\mathcal{LSTS}, \sigma \models \varphi_{CTL} \Leftrightarrow \sigma \models \varphi_{LTL}$ for all states σ of \mathcal{LSTS})? (Note: LTL formulae can also be used to describe the properties of states.)

Figure 1: The transition system TS

Solution: Let $\pi(s)$ contain those infinite paths of \mathcal{LSTS} that start in s and $\pi(s, s')$ contain those finite paths starting in s and ending in s'.

The CTL formula $A\mathcal{G}(p \to A\mathcal{F}q)$ is equivalent to the LTL formula $\mathcal{G}(p \to \mathcal{F}q)$, since

$$\mathcal{LSTS}, s_0 \models_{LTL} \mathcal{G}(p \to \mathcal{F}q)$$

$$\Leftrightarrow \forall \pi \in \pi(s_0).\mathcal{LSTS}, \pi \models_{LTL} \mathcal{G}(p \to \mathcal{F}q)$$

$$\Leftrightarrow \forall \pi \in \pi(s_0).\forall i \ge 0.\mathcal{LSTS}, \pi(i) \models p \Rightarrow \exists j \ge i.\mathcal{LSTS}, \pi(j) \models q$$

$$\Leftrightarrow \forall \pi \in \pi(s_0, s).\mathcal{LSTS}, s \models p \Rightarrow \forall \pi' \in \pi(s) \exists j \ge 0.\mathcal{LSTS}, \pi'(j) \models q$$

$$\Leftrightarrow \mathcal{LSTS}, s_0 \models AG(p \to AFq).$$

Exercise 4

A transition system TS is given in Figure ??. Decide whether $TS \models \Phi$ where $\Phi = E\mathcal{F}A\mathcal{G}c$. Please sketch the main steps of the CTL model-checking algorithm.

Figure 2: The transition system TS

Solution: In the lecture, we only taught the model-checking algorithm for the operators \neg , \land , $E(\cdot \mathcal{U} \cdot)$ and $A(\cdot \mathcal{U} \cdot)$. Therefore, we need to rewrite the formula Φ as follows:

$$\Phi = E\mathcal{F} A\mathcal{G} c = E(true \ \mathcal{U} (A\mathcal{G} c)) = E(true \ \mathcal{U} (\neg E\mathcal{F} \neg c)) = E(true \ \mathcal{U} (\neg E(true \ \mathcal{U} \neg c)))$$

We present the main steps of checking $TS \models \Phi$.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 7