

Modeling and Analysis of Hybrid Systems - SS 2015

Series 2

Exercise 1

Please match each following LTL formulae φ_i to one of the given execution paths π_j , such that $\pi_j \models \varphi_i$ for all $i \leq i, j \leq 6$ and such that each φ_i is assigned a different path. (*Note: You can assume that the paths continue infinitely in the pattern of the last 2 nodes.*)

- φ_1 : true $\mathcal{UX}a$
- $\varphi_2: \mathcal{GX}a$
- φ_3 : *a* $\mathcal{U}b$
- $\varphi_4: a \wedge \mathcal{X}b$
- $\varphi_5: \mathcal{FG}a$
- φ_6 : $(\mathcal{X}b)\mathcal{U}a$

Exercise 2

The LTL formulae $\mathcal{XF}p$ and $\mathcal{FX}p$ are equivalent, since we have the following formal proof: For any path $\pi : s_0 s_1 \cdots$ of an \mathcal{LSTSA} ,

$$\mathcal{A}, \pi \models \mathcal{XFp}$$

$$\Leftrightarrow \pi^{1} = s_{1}s_{2} \cdots \models \mathcal{Fp}$$

$$\Leftrightarrow \exists i \geq 1.s_{i} \models p$$

$$\Leftrightarrow \exists i \geq 1.s_{i-1} \models \mathcal{Xp}$$

$$\Leftrightarrow \exists i \geq 0.s_{i} \models \mathcal{Xp}$$

$$\Leftrightarrow \pi \models \mathcal{FXp}$$

Is it also the case for the CTL formulae AXAFp and AFAXp? If so, please give a formal proof. Otherwise please present a counterexample.

Exercise 3

We only consider \mathcal{LSTS} with infinite runs. assume $p, q \in AP$. Are the CTL formula $\varphi_{CTL} : A\mathcal{G}(p \to A\mathcal{F}q)$ and the LTL formula $\varphi_{LTL} : \mathcal{G}(p \to \mathcal{F}q)$ equivalent (i.e., $\mathcal{LSTS}, \sigma \models \varphi_{CTL} \Leftrightarrow \sigma \models \varphi_{LTL}$ for all states σ of \mathcal{LSTS})? (Note: LTL formulae can also be used to describe the properties of states.)

Exercise 4

A transition system TS is given in Figure 1. Decide whether $TS \models \Phi$ where $\Phi = E\mathcal{F}A\mathcal{G}c$. Please sketch the main steps of the CTL model-checking algorithm.

Figure 1: The transition system $\,TS$