

Modeling and Analysis of Hybrid Systems - SS 2015

Series 10

Exercise 1

Below we have given an incomplete graphical representation of a hybrid automaton \mathcal{H} :

- a) Please complete \mathcal{H} by filling in the missing information according to the following specification:
 - Both variables x, t are initialized with 0.
 - \bullet t is used as a clock to measure the time spent in each location.
 - In location l_1 x evolves twice as fast as in location l_0 .
 - Due to inertia the system rests in location l_1 for exactly 1 time unit.
 - Whenever x has reached at least value c, c > 0, the system may switch from l_0 to l_1 .
 - Upon each switch, x is set to $d, d \ge 0$.
- b) Please give a formal specification of \mathcal{H} .

Solution:

a) By the specification we obtain:

- b) We can specify \mathcal{H} as follows:
 - $Loc = \{l_0, l_1\}$
 - $Var = \{x, t\}$
 - $Lab = \{\}$
 - $Edge = \{(l_0, x \ge c, x = d \land t = 0, l_1), (l_1, x = 1, x = d \land t = 0, l_0)\}$
 - $Act = \{(l_0, \{(x,t)|\exists x'.\exists t'. \ x = x' + 2\tau \land t = t' + \tau\}), (l_1, \{(x,t)|\exists x'.\exists t'. \ x = x' + 4\tau \land x \le 1 \land t = t' + \tau\})\}$
 - $Inv = \{(l_0, true), (l_1, x \le 1)\}$
 - $Init = \{(l_0, x = 0 \land t = 0)\}$

Exercise 2

A transition system TS is given below. Decide whether $TS \models \Phi$ where $\Phi = EFAG(p \lor q)$. Please sketch the main steps of the CTL model-checking algorithm.

Solution:

Obtain $\hat{\Phi}$ by removing syntactic sugar:

$$\begin{split} \hat{\Phi} = & EFAG(p \lor q) \\ = & EF(\neg A \neg F \neg (p \lor q)) \\ = & EF(\neg A \neg (true \ U \neg (p \lor q)) \\ = & EF(\neg E \neg \neg (true \ U \neg (p \lor q)) \\ = & EF(\neg E(true \ U \neg (p \lor q)) \\ = & E(true \ U(\neg E(true \ U \neg (p \lor q)))) \end{split}$$

Exercise 3

Consider the following timed automaton \mathcal{T} and the TCTL formula $\varphi = AF^{\geq 2}a$:

- a) Construct $\hat{\varphi}$ by eliminating timing parameters from φ . Use the name y for the auxiliary clock.
- b) Construct a $RTS \mathcal{R}$, such that $\mathcal{T} \models_{TCTL} \varphi$ iff $\mathcal{R} \models_{CTL} \hat{\varphi}$. As \mathcal{R} will become big, use the prepared grid below to sketch the RTS (by adding the required transitions) as follows:
 - \bigcirc represents a state, where the location is l_0 .
 - \square represents a state, where the location is l_1 .
 - The position of a state in the grid remarks, which clock region the state represents.
 - Please draw only the reachable fragment of \mathcal{R} .

Solution:

a)
$$\hat{\varphi} = \neg E \neg (true\ U(y \ge 2 \land a))$$

b) We can construct \mathcal{R} as follows:

Exercise 4

Consider the following initialized singular automaton \mathcal{S} :

Please reduce S to a timed automaton T.

Solution: Step 1: Scale clock constraints and clocks:

Step 2: Add locations to cope with reset functions:

Exercise 5

Consider the following linear hybrid automaton \mathcal{H} :

Please use the forward reachability algorithm presented in the lecture to compute the set of reachable states **after taking one transition** in the model.

Solution:

$$\begin{split} &P = T^{+}(\text{Init} \bigcap \text{Inv}) \\ &= T^{+}(\{(l_{0}, x = 0 \land y = 0 \land x \leq 20 \land y \leq 20)\}) \\ &= T^{+}(\{(l_{0}, x = 0 \land y = 0)\}) \\ &= \{(l_{0}, T_{l_{0}}^{+}(x = 0 \land y = 0))\} \\ &= \{(l_{0}, T_{l_{0}}^{+}(x = 0 \land y = 0))\} \\ &= \{(l_{0}, \exists t. \exists x^{pre}. \exists y^{pre}. t \geq 0 \land x^{pre} = 0 \land y^{pre} = 0 \land x \geq x^{pre} + 2t \land x \leq x^{pre} + 2t \land x \leq x^{pre} + 2t \land x \leq 20 \land y \leq 20)\} \\ &= \{(l_{0}, \exists t. t \geq 0 \land x \leq 2t \land x \leq 4t \land y \geq t \land y \leq 2t \land x \leq 2t \land x \leq 4t \land y \geq t \land y \leq 2t \land x \leq 20 \land y \leq 20)\} \\ &= \{(l_{0}, x \geq 0 \land y \geq 20)\} \\ &= \{(l_{0}, x \geq 0 \land y \geq 0 \land x/4 \leq y \land y \leq x \land x \leq 20 \land y \leq 20)\} \\ &R' := D_{e}^{+}(\varphi^{R}) \\ &= (l_{1}, D_{e}^{+}(\varphi^{R})) \\ &= (\exists y^{pre}. x^{pre} \geq 0 \land x^{pre}/4 \leq y^{pre} \land y^{pre} \leq x^{pre} \land x^{pre} \leq 20 \land x^{pre} \geq 20 \land x = 1 \land y = 1) \\ &= (l_{1}, \exists y^{pre}. y^{pre} \geq 5 \land y^{pre} \leq 20 \land x = 1 \land y = 1) \\ &= (l_{1}, x = 1 \land y = 1) \end{split}$$