
Modeling and Analysis of Hybrid Systems
Linear hybrid automata II: Approximation of reachable state sets

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015

Ábrahám - Hybrid Systems 1 / 25



We had a look at state set approximations by
convex polyhedra,

and at the basic operations
testing for membership,
intersection, and
union

on these.
Thus we can

approximate state sets and
compute with them.

How is all this used in the reachability analysis procedure?

Ábrahám - Hybrid Systems 2 / 25



General reachability procedure

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪Rnew;

Rnew := Reach (Rnew)\R;
}

What is “Reach”?

Ábrahám - Hybrid Systems 3 / 25



What is “Reach”?

For hybrid systems, independently of the exact definition of “Reach”, it will
involve the following computations:

Given a state set R, compute
the set of states reachable from R by a flow (i.e., time transisiton),
and
the set of states reachable from R by a jump (i.e., discrete transition).

Computing the jump successors of a set can be done with the operations
we already introduced.

The harder part is computing the flow successors. So let’s have a look at
that...

Ábrahám - Hybrid Systems 4 / 25



Approximating a flow pipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . . ].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 5 / 25



Approximating a flow pipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . . ].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 5 / 25



Approximating a flow pipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . . ].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 5 / 25



Approximating a flow pipe

Consider a dynamical system with state equation

ẋ = f(x(t)).

We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [. . . ].”.

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x0 there is a unique
solution x(t, x0) to the state equation.

Ábrahám - Hybrid Systems 5 / 25



Approximating a flow pipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flow pipe, from X0 in the time interval
[0, tf ] is defined as

R[0,tf ](X0) = ∪t∈[0,tf ]Rt(X0).

We describe a solution which approximates the flow pipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 6 / 25



Approximating a flow pipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flow pipe, from X0 in the time interval
[0, tf ] is defined as

R[0,tf ](X0) = ∪t∈[0,tf ]Rt(X0).

We describe a solution which approximates the flow pipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 6 / 25



Approximating a flow pipe

The set of reachable states at time t from a set of initial states X0 is
defined as

Rt(X0) = {xt | ∃x0 ∈ X0. xt = x(t, x0)}.

The set of reachable states, the flow pipe, from X0 in the time interval
[0, tf ] is defined as

R[0,tf ](X0) = ∪t∈[0,tf ]Rt(X0).

We describe a solution which approximates the flow pipe by a sequence of
convex polytopes.

Ábrahám - Hybrid Systems 6 / 25



Problem statement for polyhedral approximation of flow pipes

Given
a set X0 of initial states which is a polytope, and
a final time tf ,

compute a polyhedral approximation R̂[0,tf ](X0) to the flow pipe
R[0,tf ](X0) such that

R[0,tf ](X0) ⊆ R̂[0,tf ](X0).

Ábrahám - Hybrid Systems 7 / 25



Flow pipe segmentation

Since a single convex polyhedron would strongly overapproximate the flow
pipe, we compute a sequence of convex polyhedra, each approximating a
flow pipe segment.

Ábrahám - Hybrid Systems 8 / 25



Segmented flow pipe approximation

Let the time interval [0, tf ] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, tf ]

with ti = i · tfN .

We generate an approximation R̂[t1,t2](X0) for each flow pipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flow pipe approximation is the union of the approximation of
all N pipe segments:

R[0,tf ](X0) ⊆ R̂[0,tf ](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 9 / 25



Segmented flow pipe approximation

Let the time interval [0, tf ] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, tf ]

with ti = i · tfN .

We generate an approximation R̂[t1,t2](X0) for each flow pipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flow pipe approximation is the union of the approximation of
all N pipe segments:

R[0,tf ](X0) ⊆ R̂[0,tf ](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 9 / 25



Segmented flow pipe approximation

Let the time interval [0, tf ] be divided into 0 < N ∈ N time segments

[0, t1], [t1, t2], . . . , [tN−1, tf ]

with ti = i · tfN .

We generate an approximation R̂[t1,t2](X0) for each flow pipe segment:

R[t1,t2](X0) ⊆ R̂[t1,t2](X0).

The complete flow pipe approximation is the union of the approximation of
all N pipe segments:

R[0,tf ](X0) ⊆ R̂[0,tf ](X0) =
⋃

k=1,...,N

R̂[tk−1,tk](X0)

Ábrahám - Hybrid Systems 9 / 25



Approaches

Next we discuss two possible approaches for flow pipe approximation, but
there are different other techniques, too.

Ábrahám - Hybrid Systems 10 / 25



The first approach

Ábrahám - Hybrid Systems 11 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:
The remaining ones:

R[0,δ]

R[δ,2δ]

R[2δ,3δ]

Ω0

Ω1

Ω2

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Time evolution

Assume ẋ = Ax+Bu

Compute Ω0,Ω1, . . . such that R[iδ,(i+1)δ] ⊆ Ωi

The first flowpipe segment:

The remaining ones:

t0 δ 2δ

V0

eAδV0

Ω0

Ω0

eAδΩ0

eAδΩ0 ⊕ V

Ábrahám - Hybrid Systems 12 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: Discrete steps (jumps)

Π1

Π2

Π3

Ω0

Ω1

Ω2

Ω3

Ω′1

Ω′2

Ω′3

V1

Ábrahám - Hybrid Systems 13 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



Linear hybrid automata II: The global picture

Ábrahám - Hybrid Systems 14 / 25



The second approach

Ábrahám - Hybrid Systems 15 / 25



Literatur

Alongkrit Chutinan and Bruce H. Krogh:
Computing Polyhedral Approximations to Flow Pipes for Dynamic Systems
In Proceedings of the 37rd IEEE Conference on Decision and Control, 1998

Olaf Stursberg and Bruce H. Krogh:
Efficient Representation and Computation of Reachable Sets for Hybrid
Systems
Hybrid Systems: Computation and Control, LNCS 2623, pp. 482-497, 2003

Ábrahám - Hybrid Systems 16 / 25



Some notations

We will use the following notations:
Let POLY (C, d) denote the convex polytope defined by the pair
(C, d) ∈ Rm×n × Rm according to

POLY (C, d) = {x | Cx ≤ d}.

For a polytope P by V (P ) we denote the finite set of its vertices,
which are points in P that cannot be written as a strict convex
combination of any other two points in P .
Given a finite set of points Γ, the convex hull conv(Γ) of Γ is the
smallest convex set that contains Γ.

Ábrahám - Hybrid Systems 17 / 25



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tk−1, tk]
(k ∈ {1, . . . , N}) consists of the following steps:

Evolve vertices: Compute the set of points reachable from the vertices
of X0 in time ti−1 and in time ti.
Determine hull: Compute the convex hull of those points.
Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

Ábrahám - Hybrid Systems 18 / 25



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tk−1, tk]
(k ∈ {1, . . . , N}) consists of the following steps:

Evolve vertices: Compute the set of points reachable from the vertices
of X0 in time ti−1 and in time ti.

Determine hull: Compute the convex hull of those points.
Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

Ábrahám - Hybrid Systems 18 / 25



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tk−1, tk]
(k ∈ {1, . . . , N}) consists of the following steps:

Evolve vertices: Compute the set of points reachable from the vertices
of X0 in time ti−1 and in time ti.
Determine hull: Compute the convex hull of those points.

Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

Ábrahám - Hybrid Systems 18 / 25



Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tk−1, tk]
(k ∈ {1, . . . , N}) consists of the following steps:

Evolve vertices: Compute the set of points reachable from the vertices
of X0 in time ti−1 and in time ti.
Determine hull: Compute the convex hull of those points.
Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

Ábrahám - Hybrid Systems 18 / 25



1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we
begin with taking sample points at times tk−1 and tk from the trajectories
emanating from the vertices of X0.

In particular, we compute the sets Vtk−1
(X0) and Vtk(X0) where

Vt(X0) = {x(t, v) | v ∈ V (X0)}.

Each point in the above sets can be obtained
by analytic solution of the state equation and computing the value, or
by simulation.

Ábrahám - Hybrid Systems 19 / 25



1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we
begin with taking sample points at times tk−1 and tk from the trajectories
emanating from the vertices of X0.

In particular, we compute the sets Vtk−1
(X0) and Vtk(X0) where

Vt(X0) = {x(t, v) | v ∈ V (X0)}.

Each point in the above sets can be obtained
by analytic solution of the state equation and computing the value, or
by simulation.

Ábrahám - Hybrid Systems 19 / 25



1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we
begin with taking sample points at times tk−1 and tk from the trajectories
emanating from the vertices of X0.

In particular, we compute the sets Vtk−1
(X0) and Vtk(X0) where

Vt(X0) = {x(t, v) | v ∈ V (X0)}.

Each point in the above sets can be obtained
by analytic solution of the state equation and computing the value, or
by simulation.

Ábrahám - Hybrid Systems 19 / 25



2. Determine hull

We use the evolved vertices in Vtk−1
(X0) and Vtk(X0) to form a convex

hull which serves as an initial approximation to the flow pipe segment
R[tk−1,tk](X0), denoted by

Φ[tk−1,tk](X0) = conv(Vtk−1
(X0) ∪ Vtk(X0)).

Note that Φ[tk−1,tk](X0) may not contain the whole flow pipe segment
R[tk−1,tk](X0).

Let (CΦ, dΦ) be the matrix-vector pair defining the convex hull, i.e.,

Φ[tk−1,tk](X0) = POLY (CΦ, dΦ).

Ábrahám - Hybrid Systems 20 / 25



2. Determine hull

We use the evolved vertices in Vtk−1
(X0) and Vtk(X0) to form a convex

hull which serves as an initial approximation to the flow pipe segment
R[tk−1,tk](X0), denoted by

Φ[tk−1,tk](X0) = conv(Vtk−1
(X0) ∪ Vtk(X0)).

Note that Φ[tk−1,tk](X0) may not contain the whole flow pipe segment
R[tk−1,tk](X0).

Let (CΦ, dΦ) be the matrix-vector pair defining the convex hull, i.e.,

Φ[tk−1,tk](X0) = POLY (CΦ, dΦ).

Ábrahám - Hybrid Systems 20 / 25



2. Determine hull

We use the evolved vertices in Vtk−1
(X0) and Vtk(X0) to form a convex

hull which serves as an initial approximation to the flow pipe segment
R[tk−1,tk](X0), denoted by

Φ[tk−1,tk](X0) = conv(Vtk−1
(X0) ∪ Vtk(X0)).

Note that Φ[tk−1,tk](X0) may not contain the whole flow pipe segment
R[tk−1,tk](X0).

Let (CΦ, dΦ) be the matrix-vector pair defining the convex hull, i.e.,

Φ[tk−1,tk](X0) = POLY (CΦ, dΦ).

Ábrahám - Hybrid Systems 20 / 25



3. Bloat hull

The normal vector on each face of the polytope points outward.

We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.
Given: POLY (CΦ, dΦ).

We want: R[tk−1,tk](X0) ⊆ POLY (CΦ, d ).

Ábrahám - Hybrid Systems 21 / 25



3. Bloat hull

The normal vector on each face of the polytope points outward.
We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.

Given: POLY (CΦ, dΦ).

We want: R[tk−1,tk](X0) ⊆ POLY (CΦ, d ).

Ábrahám - Hybrid Systems 21 / 25



3. Bloat hull

The normal vector on each face of the polytope points outward.
We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.
Given: POLY (CΦ, dΦ).

We want: R[tk−1,tk](X0) ⊆ POLY (CΦ, d ).

Ábrahám - Hybrid Systems 21 / 25



3. Bloat hull

The normal vector on each face of the polytope points outward.
We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.
Given: POLY (CΦ, dΦ).

We want: R[tk−1,tk](X0) ⊆ POLY (CΦ, d ).

Ábrahám - Hybrid Systems 21 / 25



3. Bloat hull

We compute d as the solution to the following optimization problem:

min
d

volume[POLY (CΦ, d)] (1)

s.t . R[tk−1,tk](X0) ⊆ POLY (CΦ, d).

The ith component d∗i of the optimum d∗ can be found by solving

max
x

cTi x s.t . x ∈ R[tk−1,tk](X0). (2)

or, equivalently,

max
x0,t

cTi x(t, x0) s.t . x0 ∈ X0, t ∈ [tk−1, tk]. (3)

Solution (x∗0, t
∗) to 3 →

Solution x(t∗, x∗0) to 2 →
Solution d∗i = cTi x(t∗, x∗0) to 1.

Ábrahám - Hybrid Systems 22 / 25



3. Bloat hull

We compute d as the solution to the following optimization problem:

min
d

volume[POLY (CΦ, d)] (1)

s.t . R[tk−1,tk](X0) ⊆ POLY (CΦ, d).

The ith component d∗i of the optimum d∗ can be found by solving

max
x

cTi x s.t . x ∈ R[tk−1,tk](X0). (2)

or, equivalently,

max
x0,t

cTi x(t, x0) s.t . x0 ∈ X0, t ∈ [tk−1, tk]. (3)

Solution (x∗0, t
∗) to 3 →

Solution x(t∗, x∗0) to 2 →
Solution d∗i = cTi x(t∗, x∗0) to 1.

Ábrahám - Hybrid Systems 22 / 25



3. Bloat hull

We compute d as the solution to the following optimization problem:

min
d

volume[POLY (CΦ, d)] (1)

s.t . R[tk−1,tk](X0) ⊆ POLY (CΦ, d).

The ith component d∗i of the optimum d∗ can be found by solving

max
x

cTi x s.t . x ∈ R[tk−1,tk](X0). (2)

or, equivalently,

max
x0,t

cTi x(t, x0) s.t . x0 ∈ X0, t ∈ [tk−1, tk]. (3)

Solution (x∗0, t
∗) to 3 →

Solution x(t∗, x∗0) to 2 →
Solution d∗i = cTi x(t∗, x∗0) to 1.

Ábrahám - Hybrid Systems 22 / 25



3. Bloat hull

We compute d as the solution to the following optimization problem:

min
d

volume[POLY (CΦ, d)] (1)

s.t . R[tk−1,tk](X0) ⊆ POLY (CΦ, d).

The ith component d∗i of the optimum d∗ can be found by solving

max
x

cTi x s.t . x ∈ R[tk−1,tk](X0). (2)

or, equivalently,

max
x0,t

cTi x(t, x0) s.t . x0 ∈ X0, t ∈ [tk−1, tk]. (3)

Solution (x∗0, t
∗) to 3 →

Solution x(t∗, x∗0) to 2 →
Solution d∗i = cTi x(t∗, x∗0) to 1.

Ábrahám - Hybrid Systems 22 / 25



Example

Van der Pol equation:

ẋ1 = x2

ẋ2 = −0.2(x2
1 − 1)x2 − x1.

Intial set: X0 = {(x1, x2) | 0.8 ≤ x1 ≤ 1 ∧ x2 = 0}.
Time: tf = 10.
Segments: 20

Ábrahám - Hybrid Systems 23 / 25



Other geometries for approximation

Van der Pol equation with a third variable being a clock.
Approximation

with convex polyhedra and with oriented rectangular hull:

Ábrahám - Hybrid Systems 24 / 25



Partitioning the initial set

Var der Pol system with initial set X0 = {(x1, x2) | 5 ≤ x1 ≤ 45∧ x2 = 0}.

Ábrahám - Hybrid Systems 25 / 25


