Modeling and Analysis of Hybrid Systems Convex polyhedra

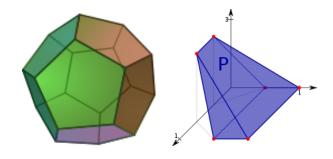
Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2015

Contents

Polyhedra



Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Definition

A set S is called convex, if

$$\forall x, y \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.

Convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Definition

A set S is called convex, if

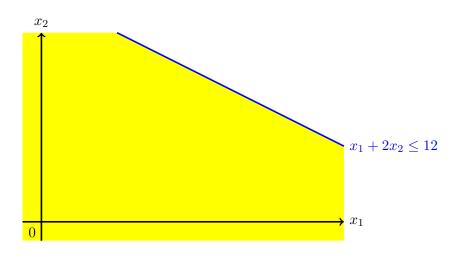
$$\forall x, y \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.

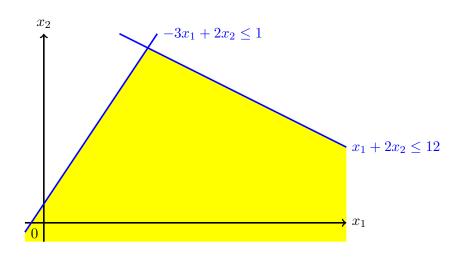
Depending on the form of the representation we distinguish between

- *H*-polytopes and
- V-polytopes

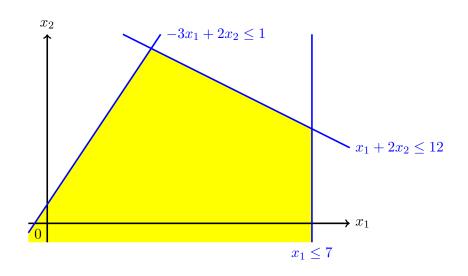
Intersection of a finite set of halfspaces



Intersection of a finite set of halfspaces



Intersection of a finite set of halfspaces



Definition (Closed halfspace)

A d-dimensional closed halfspace is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T x \leq z\}$ for some $c \in \mathbb{R}^d$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

Definition (Closed halfspace)

A d-dimensional closed halfspace is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^Tx \leq z\}$ for some $c \in \mathbb{R}^d$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

Definition (\mathcal{H} -polyhedron, \mathcal{H} -polytope)

A d-dimensional \mathcal{H} -polyhedron $P = \bigcap_{i=1}^n \mathcal{H}_i$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H} -polyhedron is called an \mathcal{H} -polytope.

The facets of a d-dimensional \mathcal{H} -polytope are d-1-dimensional \mathcal{H} -polytopes.

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

■ Each row of *C* is the normal vector to the *i*th facet of the polytope.

An \mathcal{H} -polytope

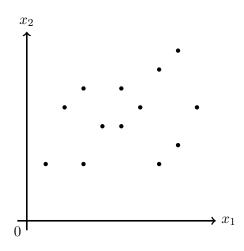
$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\}$$

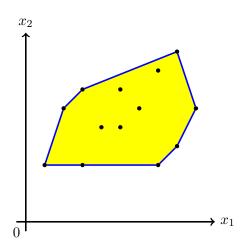
can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

- Each row of *C* is the normal vector to the *i*th facet of the polytope.
- An \mathcal{H} -polytope P has a finite number of vertices V(P).





Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (V-polytope)

A V-polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the V-representation of the polytope.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (V-polytope)

A V-polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the V-representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \dots, v_n\}$, its convex hull can be computed by

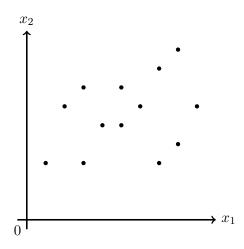
$$conv(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x\}.$$

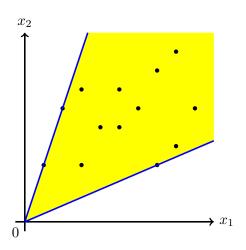
Definition (V-polytope)

A V-polytope P=conv(V) is the convex hull of a finite set $V\subset \mathbb{R}^d$. We call V the V-representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded.

Unbounded polyhedra can be represented by extending convex hulls with conical hulls.





If $U = \{u_1, \dots, u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \ge 0\}.$$
 (1)

If $U=\{u_1,\ldots,u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \ge 0\}.$$
 (1)

Each polyhedra $P\subseteq\mathbb{R}^d$ can be represented by two finite sets $V,U\subseteq\mathbb{R}^d$ such that

$$P = conv(V) \oplus cone(U) .$$

If U is empty then P is bounded (e.g., a polytope).

Motzkin's theorem

- For each \mathcal{H} -polytope, the convex hull of its vertices defines the same set in the form of a \mathcal{V} -polytope, and vice versa,
- $lue{}$ each set defined as a \mathcal{V} -polytope can be also given as an \mathcal{H} -polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H} - and the \mathcal{V} -representations of polytopes can be exponential in the state space dimension d.

Contents

Operations

If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation,
- intersection, or the
- union of two polytopes.

Membership for $p \in \mathbb{R}^d$:

Membership for $p \in \mathbb{R}^d$:

■ \mathcal{H} -polytope defined by $Cx \leq z$:

Membership for $p \in \mathbb{R}^d$:

■ \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.
- **v**-polytope defined by the vertex set V:

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.
- V-polytope defined by the vertex set V: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x.$$

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.
- **V**-polytope defined by the vertex set V: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x.$$

Alternatively:

Membership for $p \in \mathbb{R}^d$:

- \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.
- V-polytope defined by the vertex set V: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \wedge \sum_{i=1}^n \lambda_i v_i = x.$$

Alternatively: convert the \mathcal{V} -polytope into an \mathcal{H} -polytope by computing its facets.

Intersection

Intersection for two polytopes P_1 and P_2 :

■ \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:

Intersection

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
- \mathcal{V} -polytopes defined by V_1 and V_2 :

Intersection

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
- $lackbox{$\mathbb{V}$-polytopes defined by V_1 and V_2:} Convert P_1 and P_2 to \mathcal{H}-polytopes and convert the result back to a \mathcal{V}-polytope.}$

Note that the union of two convex polytopes is in general not a convex polytope.

 \rightarrow take the convex hull of the union.

- \rightarrow take the convex hull of the union.
 - \mathcal{V} -polytopes defined by V_1 and V_2 :

- \rightarrow take the convex hull of the union.
 - \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.
 - \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$:

- \rightarrow take the convex hull of the union.
 - \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.
 - \mathcal{H} -polytopes defined by $C_1x \leq z_1$ and $C_2x \leq z_2$: convert to \mathcal{V} -polytopes and compute back the result.

Hardness of the convex hull computation

	\mapsto	conv	\oplus	\cap
\mathcal{V} -polytope	easy	_	_	_
${\cal H}$ -polytope	hard	_	_	_
${\mathcal V}$ -polytope and ${\mathcal V}$ -polytope	_	easy	easy	hard
${\mathcal H}$ -polytope and ${\mathcal H}$ -polytope	_	hard	hard	easy
${\mathcal V}$ -polytope and ${\mathcal H}$ -polytope	_	hard	hard	hard

It could also be hard to translate a $\mathcal{V}\text{-polytope}$ to an $\mathcal{H}\text{-polytope}$ or vice versa.