Modeling and Analysis of Hybrid Systems Algorithmic analysis for linear hybrid systems

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2015

Literature

Alur et al.: The algorithmic analysis of hybrid systems

Theoretical Computer Science, 138(1):3-34, 1995

Linear terms, constraints and formulas

 \blacksquare A linear term e over a set Var of variables is of the form

$$e ::= c \mid c \cdot x \mid e + e$$

where $x \in Var$ is a variable and c stays for an integer (rational) constant.

Example: $x_1 + 2x_2 + 5x_3$ is a linear term over $Var = \{x_1, x_2, x_3\}$.

 \blacksquare A linear constraint t over Var is an (in)equality

$$t := e \sim 0$$

with $\sim \in \{>, \geq, =, \leq, <\}$ and e a linear term over Var.

Example: $x_1 + 2x_2 + (-2) \ge 0$ is a linear constraint over $Var = \{x_1, x_2\}$. We sometimes deviate from this normal form and write, e.g., $x_1 + 2x_2 \ge 2$.

Linear terms, constraints and formulas

■ A conjunctive linear formula φ over Var is defined by the following grammar:

$$\varphi ::= t \mid \varphi \wedge \varphi \mid \exists x. \ \varphi$$

with t a linear constraint over Var and $x \in Var$ a variable. Let Φ_X be the set of all conjunctive linear formulas with free (non-quantified) variables from $X \subset Var$.

Example: $\exists t. \ \exists x_1. \ x_1 \geq 0 \land x_1' = x_1 + 2t \land t \geq 0$ is a conjunctive linear formula over $\{x_1, x_1', t\}$, with free (non-quantified) variables $\{x_1'\}$.

- A region over Var is a pair $(l,\varphi) \in Loc \times \Phi_{Var}$ of a location and a conjunctive linear formula with free variables from Var. Example: $(l, \exists t. \ \exists x_1. \ x_1 \geq 0 \land x_1' = x_1 + 2t \land t \geq 0)$ is a region over $\{x_1'\}$.
- We will use the intersection of two sets $P_1, P_2 \subseteq Loc \times \Phi_{Var}$ of regions, defined as

$$P_1 \cap P_2 = \{(l, \varphi_1 \wedge \varphi_2) \mid (l, \varphi_1) \in P_1, (l, \varphi_2) \in P_2\}$$
.

Substitution

■ Assume a set Var of variables, a linear formula $\varphi \in \Phi_{Var}$ over Var, a variable $x \in Var$, and a linear term e over Var. The substitution $\varphi[e/x]$ replaces each free occurrence of x in φ by e.

Example: $(x + 2y \le 0)[5/y] = x + 2 \cdot 5 \le 0$ Example: $(\exists y. \ x + 2y \le 0)[5/y] = x + 2y \le 0$

- lacksquare We also write $\varphi[e_1,\ldots,e_n/x_1,\ldots,x_n]$ instead of $\varphi[e_1/x_1]\ldots[e_n/x_n]$.
- For $Var = \{x_1, \dots, x_n\}$ we will also use a primed variable set $Var' = \{x'_1, \dots, x'_n\}$ and write short $\varphi[Var'/Var]$ for $\varphi[x'_1/x_1] \dots [x'_n/x_n]$.

Linear terms, constraints and formulas

The semantics of linear terms, constraints and formulas over $Var = \{x_1, \ldots, x_n\}$ in the context of a valuation $\nu \in V_{Var}$ (i.e., $\nu : Var \to \mathbb{R}$) is as usual (we use the same notation for the syntax and the semantics of constants and operators):

$$\begin{array}{lll} \nu(c) & \equiv & c & & & & & \\ \nu(c \cdot x) & \equiv & c \cdot \nu(x) & & \\ \nu(e_1 + e_2) & \equiv & \nu(e_1) + \nu(e_2) & & \\ \nu(e \sim 0) & \equiv & \nu(e) \sim 0 & & \\ \nu(\varphi_1 \wedge \varphi_2) & \equiv & \nu(\varphi_1) \text{ and } \nu(\varphi_2) & & \\ \nu(\exists x. \; \varphi) & \equiv & \operatorname{exists} \; v \in \mathbb{R} \; \operatorname{such \; that} \; \nu(\varphi[v/x]) \; \operatorname{holds} \end{array}$$

Linear terms, constraints and formulas

The solution set $Sat(\varphi)$ of a linear formula φ over Var is the set of all valuations $\nu \in V_{Var}$ that make φ true:

$$Sat(\varphi) = \{ \nu \in V_{Var} \mid \nu(\varphi) \text{ holds} \}$$

The solution set $Sat((l, \varphi))$ of a region $(l, \varphi) \in Loc \times \Phi_{Var}$ over Loc and Var is

$$Sat((l,\varphi)) = \{(l,\nu) \in Loc \times V_{Var} \mid \nu(\varphi) \text{ holds}\}$$

Two region sets $P_1, P_2 \subseteq Loc \times \Phi_{Var}$ are equivalent, written $P_1 = P_2$, iff

$$\bigcup_{R \in P_1} Sat(R) = \bigcup_{R \in P_2} Sat(R) .$$

We define similarly the inclusion $P_1 \subseteq P_2$ iff

$$\bigcup_{R \in P_1} Sat(R) \subseteq \bigcup_{R \in P_2} Sat(R) .$$

Linear hybrid automata I

A linear hybrid automaton is a hybrid automata $\mathcal{H} = (Loc, Var, Lab, Edge, Act, Inv, Init)$ with the following restrictions:

■ Edges $e = (l, \mu_e, l')$ are represented as $(l, \varphi_e^{guard}, \varphi_e^{reset}, l')$ with $\varphi_e^{guard} \in \Phi_{Var}$ and $\varphi_e^{reset} \in \Phi_{Var \cup Var'}$, where the transition relation μ_e is given as:

$$\mu_e = \{(\nu, \nu') \in V_{Var} \times V_{Var} \mid \nu \in Sat(\varphi_e^{guard}) \text{ and } (\nu \oplus \nu') \in Sat(\varphi_e^{reset})\}$$
 where $(\nu \oplus \nu')(x) = \nu(x)$ for $x \in Var$ and $(\nu \oplus \nu')(x') = \nu'(x)$ for $x' \in Var'$.

lacktriangleright For each location $l \in Loc$, the activities are specified by a conjunctive linear formula of the form

$$\mathsf{Act}_l = \bigwedge_{i=1}^n x_i + k_{l,i}^{lower} t \leq x_i' \wedge x_i' \leq x_i + k_{l,i}^{upper} t$$
, defining

$$Act(l) = \{ f : \mathbb{R}_{\geq 0} \to V_{Var} \mid \dot{f} \in [k_l^{lower}, k_l^{upper}] \} .$$

Linear hybrid automata

■ Each invariant Inv(l) is defined by a $Inv_l \in \Phi_{Var}$ as

$$Inv(l) = \{ \nu \in V_{Var} \mid \nu \in Sat(\mathtt{Inv}_l) \}$$
.

■ The initial states Init are specified by a finite set $Init \subset Loc \times \Phi_{Var}$ of regions as

$$Init = \bigcup_{(l,\varphi) \in \mathtt{Init}} \{ (l,\nu) \mid \nu \in Sat(\varphi) \} \ .$$

Water-level monitor

Mixer of fluids

$$0 < l_1 < u_1, \ 0 < l_2 < u_2, \ l \le u \le 0, \ d > 0, \ c > 0$$

Reminder: Semantics of hybrid automata

$$(l,a,\mu,l') \in Edge \quad (\nu,\nu') \in \mu \quad \nu' \in Inv(l')$$

$$Rule_{\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$$

$$(l,\nu) \stackrel{a}{\to} (l',\nu')$$

$$f \in Act(l) \quad f(0) = \nu \quad f(t) = \nu'$$

$$t \geq 0 \quad \forall 0 \leq t' \leq t. f(t') \in Inv(l)$$

$$Rule_{\,\,\,\,\,\,\,\,\,\,\,\,\,}$$

$$Rule_{\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$$

$$Rule_{\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$$

$$Rule_{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$$

$$Rule_{\,}$$

Forward analysis

■ Given a set if initial states $Init \subseteq \Sigma$, we want to compute the set of all states which are reachable from Init:

$$Reach^+(Init) = \{ \sigma' \in \Sigma \mid \exists \sigma \in Init. \ \sigma \to^* \sigma' \} \ .$$

■ Given a set if initial states $Init \subseteq \Sigma$, we want to compute the set of all states which are reachable from Init:

$$Reach^+(Init) = \{ \sigma' \in \Sigma \mid \exists \sigma \in Init. \ \sigma \to^* \sigma' \} \ .$$

More specifically, we want to check whether the reachable region intersects with a set of bad (unsafe) states.

Forward reachability analysis

```
(a) unsat if non-empty intersection with Sad

\mathcal{C}_{\mathsf{while}} P_i \neq \emptyset \ \{

       //compute time successors of
       //discrete successors of all regions from P_i
       for each (R = (l, \phi) \in P_i) {
           for each e = (l, \cdot, \cdot, l') \in Edge  {
            R' := \mathcal{T}_{l'}^+(\mathcal{D}_e^+(R));
             if (\{R'\} \cap P^{bad} \neq \emptyset)
                 return unsafe;
             else if (not \{R'\} \subseteq \bigcup_{i=0}^i P_i)
                 P_{i+1} := P_{i+1} \cup \{R'\};
   return safe:
```

One-step reachability under time steps

 $\text{We define the forward time closure } \mathcal{T}_l^+(\varphi) \text{ of a formula } \varphi \in \Phi_{\mathit{Var}} \text{ at } l \in \mathit{Loc} \text{ as } \overset{\mathsf{X}}{\underset{\mathsf{V}}{\bowtie}} \overset{\mathsf{X}}{\underset{\mathsf{V}}} \overset{\mathsf{X}}{\underset{\mathsf{V}}}$

$$\mathcal{T}_l^+(\varphi) = \underbrace{\exists x_{\mathit{pre}}. \ \exists t. \ t \geq 0 \land \underbrace{\varphi}[x_{\mathit{pre}}/x] \land \mathsf{Act}_l[x_{\mathit{pre}}, x/x, x'] \land \mathsf{Inv}_l}_{}$$

 $\blacksquare \ \mathsf{Region} \ R = (l,\varphi) \in Loc \times \Phi_{\mathit{Var}} :$

$$\mathcal{T}_l^+(R) = (l, \mathcal{T}_l^+(\varphi))$$

■ Set of regions $P \subseteq Loc \times \Phi_{Var}$:

$$\mathcal{T}^+(P) = \{ \mathcal{T}_l^+(R) \mid R = (l, \varphi) \in P \}$$

One-step reachability under discrete steps

■ We define the postcondition $\mathcal{D}_e^+(\varphi)$ of a formula $\varphi \in \Phi_{\mathit{Var}}$ with respect to an edge $e = (l, \varphi_e^{\mathit{guard}}, \varphi_e^{\mathit{reset}}, l')$ as

$$\mathcal{D}_{e}^{+}(\varphi) = \exists x_{\text{pre}}. \ \varphi[x_{\text{pre}}/x] \land \varphi_{e}^{guard}[x_{\text{pre}}/x] \land \varphi_{e}^{reset}[x_{\text{pre}}]/x, x'] \land \text{Inv}_{l'}$$

 $\blacksquare \ \, \mathsf{Region} \,\, R = (l,\varphi) \in Loc \times \Phi_{\mathit{Var}} :$

$$\mathcal{D}_e^+(R) = (l', \mathcal{D}_e^+(\varphi))$$

■ Set of regions $P \subseteq Loc \times \Phi_{Var}$:

$$\mathcal{D}^+(P) = \{\mathcal{D}_e^+(R) \mid R = (l,\varphi) \in P, \ e = (l,\varphi_e^{guard},\varphi_e^{reset},l') \in \mathtt{Edge}\}$$

la Ex A. Almex A x Eu, A. .. A x Eu m A Prest (=> (Hij. lisu)

FORKER - Rokkin

Backward analysis

■ Given a set if target states $B \subseteq \Sigma$, we want to compute the set of all states from which a state in B is reachable:

$$Reach^{-}(B) = \{ \sigma \in \Sigma \mid \exists \sigma' \in B. \ \sigma \to^* \sigma' \} \ .$$

■ Given a set if target states $B \subseteq \Sigma$, we want to compute the set of all states from which a state in B is reachable:

$$Reach^{-}(B) = \{ \sigma \in \Sigma \mid \exists \sigma' \in B. \ \sigma \to^* \sigma' \} \ .$$

 More specifically, we want to check whether the set of backward reachable states intersects with a set of initial states.

Backward reachability analysis

```
method backward_reach() {
   ethod backward_reach() { \qquad \tau \text{ check intosec. with initial } \qquad P_0:=\{\mathcal{T}_l^-(R)\,|\, R=(l,\varphi)\in P^{bad}\}; //time predec. of bad regions
   while P_i \neq \emptyset {
        //compute time predecessors of
        //discrete predecessors of all regions from P_i
         for each (R = (l, \phi) \in P_i) {
              for each e = (l', \cdot, \cdot, l) \in Edge  {
               R' := \mathcal{T}_{l'}^-(\mathcal{D}_e^-(R));
                if (\{R'\} \cap \text{Init} \neq \emptyset)
                     return unsafe:
                else if (not \{R'\} \subseteq \bigcup_{i=0}^i P_i)
                     P_{i+1} := P_{i+1} \cup \{R'\};
   return safe:
```

One-step reachability under time steps

■ We define the backward time closure $\mathcal{T}_l^-(\varphi)$ of a formula $\varphi \in \Phi_{\mathit{Var}}$ at $l \in \mathit{Loc}$ as

$$\mathcal{T}_l^-(\varphi) = \exists x_{\textit{post}}. \ \exists t. \ t \geq 0 \land \varphi[x_{\textit{post}}/x] \land \texttt{Act}_l[x, x_{\textit{post}}/x, x'] \land \texttt{Inv}_l \ .$$

■ Region $R = (l, \varphi) \in Loc \times \Phi_{Var}$:

$$\mathcal{T}_l^-(R) = (l, \mathcal{T}_l^-(\varphi))$$

■ Set of regions $P \subseteq Loc \times \Phi_{Var}$:

$$\mathcal{T}^{-}(P) = \{ \mathcal{T}_{l}^{-}(R) \mid R = (l, \varphi) \in P \}$$

One-step reachability under discrete steps

■ We define the precondition $\mathcal{D}_e^-(\varphi)$ of a formula $\varphi \in \Phi_{\mathit{Var}}$ with respect to an edge $e = (l, \varphi_e^{\mathit{guard}}, \varphi_e^{\mathit{reset}}, l')$ as

$$\mathcal{D}_e^-(\varphi) = \exists x_{\textit{post}}. \ \varphi[x_{\textit{post}}/x] \land \varphi_e^{\textit{guard}} \land \varphi_e^{\textit{reset}}[x, x_{\textit{post}}/x, x'] \land \texttt{Inv}_l.$$

■ Region $R = (l', \varphi) \in Loc \times \Phi_{Var}$:

$$\mathcal{D}_e^-(R) = (l, \mathcal{D}_e^-(\varphi))$$

■ Set of regions $P \subseteq Loc \times \Phi_{Var}$:

$$\mathcal{D}^-(P) = \{\mathcal{D}^-_e(R) \mid R = (l', \varphi) \in P, \ e = (l, \varphi_e^{guard}, \varphi_e^{reset}, l') \in \mathtt{Edge}\}$$

De (Po) = (Po) =

= {(C, 3 gpe, ype & gre ~ O = x ~ x = yre - 1 ~ y = yre ~ x = y)] = { (1, 0 Ex n x & y -1)}