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Subclasses of hybrid automata for which reachability is decidable:
m Timed automata

Initialized stopwatch automata

Initialized singular automata

Initialized rectangular automata

Timed automata with difference constraints  — y ~ ¢

Simple multirate timed systems

Subclasses of hybrid automata for which reachability is undecidable:
m Discrete automata
m Uninitialized stopwatch automata
m Uninitialized singular automata
m Uninitialized rectangular automata
m 2-rate timed systems
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Decidability: Timed automata with difference constraints

Difference constraint:

x —y ~ ¢ with x, y being clocks and ¢ a non-negative integer
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Decidability: Timed automata with difference constraints

Difference constraint:
x —y ~ ¢ with x, y being clocks and ¢ a non-negative integer

copy where z —y < ¢

x:=0 y:=0

e

z:=0 y:=0 z—y<c
— e — e — e A > x:=0 z>c \ y:=0

copy where x —y > ¢

A state is reachable in the original system iff it is reachable in one of the

copies.
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Multirate timed systems

m A skewed clock is a variable = with © = ¢ in all locations for some
c e .
Multirate timed systems have

m skewed clocks as variables,

m resets to 0,

m clock constraints = ~ ¢ and equality constraints x = y in conditions
and invariants.

Simple multirate timed systems have no equality constraints.

2-rate timed systems are multirate timed systems with skewed clocks
at two different rates.

Abraham - Hybrid Systems 4 /12



Decidability: Simple multirate timed systems

Abraham - Hybrid Systems 5/ 12



Decidability: Simple multirate timed systems

For each variable x let k&, denote its derivative and let & be the smallest
common multiple of all non-zero derivatives. For each variable z with
kz # 0 we set its derivative to 1 and replace in all

m initial conditions,
m location invariants and
m transition guards

each clock constraint x ~ ¢ by x ~ %—k
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Let f:V — V with f(v)(z) =v(x) if k, =0 and f(v)(z)
otherwise. Then (I, v) is reachable in the original system iff
reachable in the transformed system.
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Proven undecidable: 2-counter machines

A 2-counter machine [Minsky (1961, 1967), Lambek (1961)] consists of
m 2 unsigned-integer-valued registers,

m a program counter, and
m a list of labelled sequential instructions:
m increment a register and let the other register unchanged
m decrement a register and let the other register unchanged
m if a given register contains 0 then jump to a given instruction else
continue in sequence; the register values remain unchanged
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Proven undecidable: 2-counter machines

A 2-counter machine [Minsky (1961, 1967), Lambek (1961)] consists of
m 2 unsigned-integer-valued registers,
m a program counter, and
m a list of labelled sequential instructions:
m increment a register and let the other register unchanged
m decrement a register and let the other register unchanged
m if a given register contains 0 then jump to a given instruction else
continue in sequence; the register values remain unchanged
To encode the computations of a 2-counter machine by a 2-rate timed
system we need to encode

setting up the initial configuration,
m changing the program counter,

m testing a register for 0,

m letting a register unchanged,

m incrementing a register, and

decrementing a register.



Undecidability: Uninitialized singular automata
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Undecidability: 2-rate timed systems
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Encoding the register values
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Encoding the register values

m We use two clocks z1 and x5 of rate 1 to encode the register values.

The ith state of the 2-counter machine is encoded by the state of the
2-rate timed system at time 2i.

The value n of register ¢ is encoded by the value 1/2" of x;.

m We use a clock y of rate 1 to measure the step length 1; it is reset to
0 whenever it reaches the value 1.

m We additionally use a clock z of rate 1,
and a skewed clock 2’ of rate 2.
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Letting a register unchanged
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Letting a register unchanged
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Incrementing a register
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Incrementing a register
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Decrementing a register
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Decrementing a register
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