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Subclasses of hybrid automata for which reachability is decidable:
Timed automata
Initialized stopwatch automata
Initialized singular automata
Initialized rectangular automata
Timed automata with difference constraints x− y ∼ c
Simple multirate timed systems

Subclasses of hybrid automata for which reachability is undecidable:
Discrete automata
Uninitialized stopwatch automata
Uninitialized singular automata
Uninitialized rectangular automata
2-rate timed systems
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Decidability: Timed automata with difference constraints

Difference constraint:

x− y ∼ c with x, y being clocks and c a non-negative integer

x:=0 y:=0 x−y≤c

copy where x− y ≤ c

x:=0 y:=0

x≤c

copy where x− y > c

x:=0

y:=0

y:=0x>c

A state is reachable in the original system iff it is reachable in one of the
copies.
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Multirate timed systems

A skewed clock is a variable x with ẋ = c in all locations for some
c ∈ Z.
Multirate timed systems have

skewed clocks as variables,
resets to 0,
clock constraints x ∼ c and equality constraints x = y in conditions
and invariants.

Simple multirate timed systems have no equality constraints.
2-rate timed systems are multirate timed systems with skewed clocks
at two different rates.
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Decidability: Simple multirate timed systems

For each variable x let kx denote its derivative and let k be the smallest
common multiple of all non-zero derivatives. For each variable x with
kx 6= 0 we set its derivative to 1 and replace in all

initial conditions,
location invariants and
transition guards

each clock constraint x ∼ c by x ∼ c·k
kx

.

ẋ = 3
ẏ = 2

x ≤ 4 ∧ y < 3

y:=0

ẋ = 1
ẏ = 1

x ≤ 4·6
3
∧ y < 3·6

2

y:=0

Let f : V → V with f(ν)(x) = ν(x) if kx = 0 and f(ν)(x) = ν(x)·k
kx

otherwise. Then (l, ν) is reachable in the original system iff (l, f(ν)) is
reachable in the transformed system.
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Proven undecidable: 2-counter machines

A 2-counter machine [Minsky (1961, 1967), Lambek (1961)] consists of
2 unsigned-integer-valued registers,
a program counter, and
a list of labelled sequential instructions:

increment a register and let the other register unchanged
decrement a register and let the other register unchanged
if a given register contains 0 then jump to a given instruction else
continue in sequence; the register values remain unchanged

To encode the computations of a 2-counter machine by a 2-rate timed
system we need to encode

setting up the initial configuration,
changing the program counter,
testing a register for 0,
letting a register unchanged,
incrementing a register, and
decrementing a register.
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Undecidability: Uninitialized singular automata
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Undecidability: 2-rate timed systems
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Encoding the register values

We use two clocks x1 and x2 of rate 1 to encode the register values.
The ith state of the 2-counter machine is encoded by the state of the
2-rate timed system at time 2i.
The value n of register i is encoded by the value 1/2n of xi.
We use a clock y of rate 1 to measure the step length 1; it is reset to
0 whenever it reaches the value 1.
We additionally use a clock z of rate 1,
and a skewed clock z′ of rate 2.
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Letting a register unchanged

xj

t

1
2n

1

2i− 1
2n

2i

2i+1− 1
2n

2i+1

2(i+1)− 1
2n

2(i+1)

l

l′

y:=0
y=0

xj=1

xj :=0

xj=1

xj :=0

y=2

y:=0
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Incrementing a register

xj
z
z′
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Incrementing a register

xj
z
z′

t

1
2n+1

1
2n

1

2i− 1
2n

2i
2i+1− 1

2n

2i+1− 1
2n+1

2i+1

2(i+1)− 1
2n+1

2(i+1)

l

l′

y:=0
y=0

xj=1

z:=0

xj :=0
z′:=0

y=1 ∧ z=z′

xj=1

xj :=0

y=2
y:=0

Ábrahám - Hybrid Systems 11 / 12



Decrementing a register
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