Modeling and Analysis of Hybrid Systems

What's decidable about hybrid automata?

Prof. Dr. Erika Abraham

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2015

Abraham - Hybrid Systems



Henzinger et al.: What's decidable about hybrid automata?
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m The special class of timed automata with TCTL is decidable, thus
model checking is possible.

m What about more expressive model classes for hybrid systems?
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What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:

m Safety: The problem to decide whether something “bad” can happend
during the execution of a system.
m Liveness: The problem to decide whether there is always the possibility
that something “good” will eventually happen during the execution of
a system.
Both problems are decidable in certain special cases, and undecidable in
certain general cases.
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What is decidable about hybrid automata?

A particularly interesting class:
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What is decidable about hybrid automata?

A particularly interesting class:

m all conditions, effects, and flows are described by rectagular sets.

m A set R C R" is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose finite endpoints are rationals.

m The set of rectangular sets in R™ is denoted R".
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Rectangular automaton

A rectangular automaton A is a tuple
H = (Loc, Var, Con,Lab, Edge, Act, Inv, Init) with

m finite set of locations Loc,

m finite set of real-valued variables Var = {x1,...,2z,},

m a function Con: Loc — 2V assigning controlled variables to locations,
m finite set of synchronization labels Lab,

m finite set of edges Edge C Loc x Lab x R™ x R"™ X 2{L-n} « Loc,

m a flow function Act : Loc — R™,

® an invariant function Inv : Loc — R",

m initial states Init : Loc — R"™.
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Rectangular automaton

A rectangular automaton A is a tuple
H = (Loc, Var, Con,Lab, Edge, Act, Inv, Init) with

m finite set of locations Loc,

m finite set of real-valued variables Var = {x1,...,2z,},

m a function Con: Loc — 2V assigning controlled variables to locations,
m finite set of synchronization labels Lab,

m finite set of edges Edge C Loc x Lab x R™ x R"™ X 2{L-n} « Loc,

m a flow function Act : Loc — R™,

® an invariant function Inv : Loc — R",

m initial states Init : Loc — R"™.

m States: 0 = (I, %) € (Loc x R™) with Z € Inv(l)
m State space: X C Loc x R" is the set of all states

m Is the state space rectangular?
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Rectangular automaton

m Flows: first time derivatives of the flow trajectories in location [ € Loc
are within Act(l)

m Jumps: e = (I, a, pre, post, jump,l’) € Edge may move control from
location [ to location I’ starting from a valuation in pre, changing the
value of each variable z; to a nondeterministically chosen value from
post; (the projection of post to the ith dimension), such that the
values of the variables z; ¢ jump are unchanged.
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Operational semantics
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Operational semantics

(1, a, pre, post, jump,l') € Edge
Zepre T €post Vigjump.x,=x; &€ Inv(l)

Rule piscrete
(1,2 = (I, @)
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Operational semantics

(1, a, pre, post, jump,l') € Edge

Zepre T €post Vigjump.x,=x; &€ Inv(l)
Rule piscrete

(1,7) = (&)

t=0ANZ=2)V({Et>0A (T —2)/t € Act(l)) T’ € Inv(l)
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Operational semantics

(1, a, pre, post, jump,l') € Edge

Zepre T €post Vigjump.x,=x; &€ Inv(l)
Rule piscrete

(1,7) = (&)

t=0ANZ=2)V({Et>0A (T —2)/t € Act(l)) T’ € Inv(l)

(1,7) 5 (1,7

Rule Time

Execution step: — = 5 U L
Path: o9 = 01 — 02... with o9 = (lo, %o), Zo € Inv(lp)

Initial path: path o9 — 01 — 09... with o9 = (lo, Zo), Zo € Init(ly)

Reachability of a state: exists an initial path leading to the state
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Example rectangular automaton
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m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a special rectangular automaton.

0
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m If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.

m A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.
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Decidability

The reachability problem is decidable for initialized rectangular automata:
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Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition

A rectangular automaton A is initialized, if for every edge
(1, a, pre, post, jump,l’) of A, and every variable index i € {1,...,n} with
Act(l); # Act(l');, we have that i € jump.

The reachability problem becomes undecidable if one of the restrictions is
relaxed.
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Initialized rectangular automaton

lg W b ( l3
T € [—4,-2] J < —=2—x:=[0,4] L @€ [—4,-2]

This rectangular automaton is initialized.
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What we already know

A timed automaton is a special rectangular automaton such that
m for each edge, post; is a single value for each i € jump and

m every variable is a clock, i.e., Act(l)(z) = [1,1] for all locations [ and
variables z.
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What we already know

A timed automaton is a special rectangular automaton such that
m for each edge, post; is a single value for each i € jump and

m every variable is a clock, i.e., Act(l)(z) = [1,1] for all locations [ and
variables z.

The reachability problem for timed automata is complete for PSPACE.
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Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.
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Decidability results

Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.

Timed automaton

/]\
Initialized stopwatch automaton
/]\
Initialized singular automaton
T

Initialized rectangular automaton
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Decidability results

Timed automaton

/]\

Initialized stopwatch automaton
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Initialized stopwatch automata

m A stopwatch is a variable with derivatives 0 or 1 only.

m A stopwatch automaton is as a timed automaton but allowing
stopwatch variables instead of clocks. 4 reged + ik and Cela el o
Wes e

m Initialized stopwatch automata can be polynomially encoded by timed
automata.

Lemma

The reachability problem for initialized stopwatch automata is complete for
PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.
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Proof idea:
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Proof idea: Notice, that a timed automaton is a stopwatch automaton
such that every variable is a clock.

Assume that C' is an n-dimensional initialized stopwatch automaton. Let
ko be the set of constants used in the definition of C, and let

k= ko U{-}.

We define an n-dimensional timed automaton D¢ with locations

Locp,, = Loc. x k1™ Each location (I, f) of D¢ consists of a location [
of C'and a function f: {1,...,n} — k_. Each state ¢ = ((I, f), &) of D¢
represents the state a(q) = (I, %) of C, where y; = z; if f(i) = —, and

yi = 1) if £3) # —

Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of D¢; if the ith stopwatch is halted
(slope 0) at value k € k¢, then this value is remembered by the current
location of D¢.
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Decidability results

Timed automaton

/I\

Initialized stopwatch automaton

T

Initialized singular automaton
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Initialized singular automata

m A variable x; is a finite-slope variable if flow(l); is a singleton in all
locations [.

m A singular automaton is as a stopwatch automaton but allowing
finite-slope variables instead of stopwatches.

m Initialized singular automata can be polynomially encoded by
initialized stopwatch automata.

Lemma

The reachability problem for initialized singular automata is complete for
PSPACE.
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Proof idea:
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Proof idea: Let B be an n-dimensional initialized singular automaton. We
define an n-dimensional initialized stopwatch automaton C'p with the same
location set, edge set, and label set as B.

Each state ¢ = (I, &) of Cp corresponds to the state 3(q) = (I, 3(Z)) of B
with 8 : R™ — R"™ defined as follows:

For each location [ of B, if Actp(l) = II}",[k;, k;], then

ﬁ(.%’l,...,l‘n) = (ll-xl,...,ln-xn) with [; = k; if k; 7&0, and [; =1 if
]C,' =0;

B3 can be viewed as a rescaling of the state space. All conditions in the
automaton B occur accordingly rescaled in Cp.

We have:

m The reachable set of Reach(B) of B is f(Reach(Cg)).
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Decidability results

Timed automaton

T
Initialized stopwatch automaton
T
Initialized singular automaton
T

Initialized rectangular automaton
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Lemma

The reachability problem for initialized rectangular automata is complete
for PSPACE.
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Proof idea:
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Proof idea: An n-dimensional initialized rectangular automaton A can be
translated into a 2n-dimensional initialized singular automaton B, such
that B contains all reachability information about A.

The translation is similar to the subset construction for determinizing finite
automata.

The idea is to replace each variable ¢ of A by two finite-slope variables ¢
and c,: the variable ¢; tracks the least possible value of ¢, and ¢, tracks
the greatest possible value of c.
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