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Basic method: Abstraction

Given: a concrete system
(here: a timed automaton)
Goal: reduce the size of the system by abstraction
(here: reduce the infinite state space to a finite one)
Result: abstract system
(here: region transition system)

Conservative (safe) abstraction: If we see both the concrete and the
abstract system as black boxes and make experiments with them, we
cannot distinguish between their observable behavior.
Two systems P and P ′ have the same observable behaviour iff for
each context C we have that JC[P ]K = JC[P ′]K.
(C[P ]: the composition of C and P , J·K: (global) semantics)
E.g., for programs it could mean the same input-output behaviour.
For model checking we require that they satisfy the same formulas of
the underlying logic.
(here: TCTL)
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TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a finite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ iff RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5
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1. Eliminating timing parameters

Let T be a timed automaton with clock set C and atomic propositions AP .
Let T ′ = T ⊕z result from T by adding a fresh clock which never gets
reset.

For any state σ of T it holds that

1
σ |=TCTL E(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL E (ψ1 U ((z ∈ J) ∧ ψ2) .

2
σ |=TCTL A(ψ1 UJ ψ2) iff
reset(z) in σ |=TCTL A (ψ1 U ((z ∈ J) ∧ ψ2) .

3 σ |=TCTL EF≤2ψ1 iff reset(z) in σ |=TCTL EF((z ≤ 2) ∧ ψ1)

4 σ |=TCTL EG≤2ψ1 iff reset(z) in σ |=TCTL EG((z ≤ 2)→ ψ1)
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Keywords:
Finite abstraction

Equivalence relation, equivalence classes
Bisimulation

And what does it mean in our context?
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2. Finite state space abstraction

We search for an equivalence relation ∼= on states, such that equivalent
states satisfy the same (sub)formulae ψ′ occurring in the timed automaton
T or in the specification ψ:

σ ∼= σ′ ⇒
(
σ |= ψ′ iff σ′ |= ψ′

)
.

Since the set of such (sub)formulae is finite, we strive for a finite number
of equivalence classes.
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Bisimulation on the state space of an LSTS

Definition
Let LSTS = (Σ,Lab,Edge, Init) be a state transition system, AP a set of
atomic propositions, and L : Σ→ 2AP a labeling function over AP .
A bisimulation for LSTS is an equivalence relation ≈⊆ Σ×Σ such that for
all σ1 ≈ σ2

1 L(σ1) = L(σ2)

2 for all σ′1 ∈ Σ with σ1
a→ σ′1 there exists σ′2 ∈ Σ such that σ2

a→ σ′2
and σ′1 ≈ σ′2.
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Time abstract bisimulation

Definition
Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of
atomic propositions, and L : Σ→ 2AP .
A time abstract bisimulation on T is an equivalence relation ≈⊆ Σ× Σ
such that for all σ1, σ2 ∈ Σ satisfying σ1 ≈ σ2

L(σ1) = L(σ2)

for all σ′1 ∈ Σ with σ1
a→ σ′1 there is a σ′2 ∈ Σ such that σ2

a→ σ′2 and
σ′1 ≈ σ′2
for all σ′1 ∈ Σ with σ1

t1→ σ′1 there is a σ′2 ∈ Σ such that σ2
t2→ σ′2 and

σ′1 ≈ σ′2.
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Bisimulation

Lemma
Assume a timed automaton T with state space Σ, and a time-abstract
bisimulation ≈⊆ Σ× Σ on T .
Then for all σ, σ′ ∈ Σ with σ ≈ σ′ we have that for each path

π : σ
α1→ σ1

α2→ σ2
α3→ . . .

of T there exists a path

π′ : σ′
α′
1→ σ′1

α′
2→ σ′2

α′
3→ . . .

of T such that for all i
σi ≈ σ′i,
αi = α′i if αi ∈ Lab and
αi, α

′
i ∈ R≥0 otherwise.
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2. Finite state space abstraction

Now, back to timed automata. How could such a bisimulation look like?

Since, in general,
the atomic propositions assigned to and
the paths starting at

different locations in T are different, only states (l, ν) and (l′, ν ′)
satisfying l = l′ should be equivalent.
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2. Finite state space abstraction

Equivalent states should satisfy the same atomic clock constraints.

Notation:
Integral part of r ∈ R: brc = max {c ∈ N | c ≤ r}
Fractional part of r ∈ R: frac(r) = r − brc

For clock constraints x < c with c ∈ N we have:

ν |= x < c ⇔ ν(x) < c ⇔ bν(x)c < c.

For clock constraints x ≤ c with c ∈ N we have:

ν |= x ≤ c ⇔ ν(x) ≤ c ⇔ bν(x)c < c ∨ (bν(x)c = c ∧ frac(ν(x)) = 0) .

I.e., only states (l, ν) and (l, ν ′) satisfying

bν(x)c = bν ′(x)c and frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

for all x ∈ C should be equivalent.
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2. Finite state space abstraction

Problem: It would generate infinitely many equivalence classes!

Let cx be the largest constant which a clock x is compared to in T or in ψ.
Then there is no observation which could distinguish between the x-values
in (l, ν) and (l, ν ′) if ν(x) > cx and ν ′(x) > cx.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x) > cx ∧ ν ′(x) > cx) ∨(
bν(x)c = bν ′(x)c ∧ frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

)
for all x ∈ C should be equivalent.
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2. Finite state space abstraction

x

y

0

1

2

0 1 2 3

2 < x < 3
1 < y < 2

x = 3
y = 2

x = 3
0 < y < 1

cy = 2
cx = 3
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2. Finite state space abstraction

As the following example illustrates, we must make a further refinement of
the abstraction, since it does not distinguish between states satisfying
different formulae.
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2. Finite state space abstraction

. . .

. . .

y ≤ 1

. . .

. . .

x ≥ 2

x

y

0

1

2

0 1 2 3
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2. Finite state space abstraction

What we need is a refinement taking the order of the fractional parts of the
clock values into account. However, again only for values below the largest
constants to which the clocks get compared.
I.e., only states (l, ν) and (l, ν ′) satisfying

(ν(x), ν ′(x) > cx ∧ ν(y), ν ′(y) > cx) ∨
( frac(ν(x)) < frac(ν(y)) iff frac(ν ′(x)) < frac(ν ′(y)) ∧

frac(ν(x)) = frac(ν(y)) iff frac(ν ′(x)) = frac(ν ′(y)) ∧
frac(ν(x)) > frac(ν(y)) iff frac(ν ′(x)) > frac(ν ′(y)))

for all x, y ∈ C should be equivalent.
Because of symmetry the following is also sufficient:

(ν(x), ν ′(x) > cx ∧ ν(y), ν ′(y) > cy) ∨
(frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)))

for all x, y ∈ C should be equivalent.
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2. Finite state space abstraction
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2. Finite state space abstraction

Definition
For a timed automaton T and a TCTL formula ψ, both over a clock set C,
we define the clock equivalence relation ∼=⊆ Σ× Σ by (l, ν) ∼= (l′, ν ′) iff
l = l′ and

for all x ∈ C, either ν(x) > cx ∧ ν ′(x) > cx or

bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 iff frac(ν ′(x)) = 0)

for all x, y ∈ C if ν(x), ν ′(x) ≤ cx and ν(y), ν ′(y) ≤ cy then

frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)).

The clock region of an evaluation ν ∈ V is the set [ν] = {ν ′ ∈ V | ν ∼= ν ′}.
The clock region of a state σ = (l, ν) ∈ Σ is the set
[σ] = {(l, ν ′) ∈ Σ | ν ∼= ν ′}.
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2. Finite state space abstraction

Lemma
Clock equivalence is a bisimulation over AP ′ = AP ∪ACC (T )∪ACC (ψ).
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TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a finite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ iff RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5
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3. The abstract transition system

We have defined regions as abstract states,
now we connect them by abstract transitions.

Two kinds of transitions:
time and discrete
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3. The abstract transition system

Definition
The clock region r∞ = {ν ∈ V | ∀x ∈ C. ν(x) > cx} is called unbounded.
Let r, r′ be two clock regions. The region r′ is the successor clock region of
r, denoted by r′ = succ(r), if either

r = r′ = r∞, or
r 6= r∞, r 6= r′, and for all ν ∈ r:

∃d ∈ R>0. (ν + d ∈ r′ ∧ ∀0 ≤ d′ ≤ d. ν + d′ ∈ (r ∪ r′).

The successor state region is defined as succ((l, r)) = (l, succ(r)).
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l x ≥ 2 : α, reset(x)

l

x = 0

z = 0

fr(x) = fr(y)

l

0 < x < 1

0 < z < 1

fr(x) = fr(y)

l

x = 1

z = 1

fr(x) = fr(y)

l

1 < x < 2

1 < z < 2

fr(x) = fr(y)

l

x = 2

z = 2

fr(x) = fr(y)

l

x > 2

z > 2

τ τ τ τ τ

τ

l

x = 0
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fr(x) = fr(y)

l

0 < x < 1

z > 2

l

x = 1

z > 2

l

1 < x < 2

z > 2

l

x = 2

z > 2

l

x = 0

z > 2

τ τ τ τ α

α
τ

α

τ
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3. The abstract transition system

Definition
Let T = (Loc, C,Lab,Edge, Inv , Init) be a non-zeno timelock-free timed
automaton with an atomic proposition set AP and a labeling function L,
and let ψ̂ be an unbounded TCTL formula over C and AP .
The region transition system of T for ψ̂ is a labelled state transition system
RT S(T , ψ) = (Σ′,Lab′,Edge ′, Init ′) with atomic propositions AP ′ and a
labeling function L′ such that

Σ′ = {(l, [ν]) | (l, ν) ∈ Σ ∧ ν ∈ Inv(l)}
Init ′ = {(l, [ν]) ∈ Σ′ | (l, ν) ∈ Init}
AP ′ = AP ∪ACC (T ) ∪ACC (ψ̂)

L′((l, [ν])) = L(l) ∪ {g ∈ AP ′\AP | ν |= g}
and
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3. The abstract transition system

Definition

(l, ν)
a→ (l′, ν ′)

(l, [ν])
a→ (l′, [ν ′])

Rule Discrete

succ(r) |= Inv(l)

(l, r)
t→ (l, succ(r))

Rule Time
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3. The abstract transition system

Lemma
For non-zeno T and π = s0 → s1 → . . . an initial, infinite path of T :

if π is time-convergent, then there is an index j and a state region
(l, r) such that si ∈ (l, r) for all i ≥ j.
if there is a state region (l, r) with r 6= r∞ and an index j such that
si ∈ (l, r) for all i ≥ j then π is time-convergent.

Lemma
For a non-zeno timed automaton T and a TCLT formula ψ:

T |=TCTL ψ iff RTS (T , ψ̂) |=CTL ψ̂
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TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a finite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ iff RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5

Ábrahám - Hybrid Systems 30 / 32



TCTL model checking

The procedure is quite similar to CTL model checking for finite automata.

One difference:
Handling nested time bounds in TCTL formulae

Ábrahám - Hybrid Systems 31 / 32



TCTL model checking

Input: timed automaton T , TCTL formula ψ
Output: the answer to the question whether T |= ψ

1 Eliminate the timing parameters from the TCTL formula ψ, resulting
in a CTL formula ψ̂ (with clock constraints as atomic propositions).

2 Make a finite abstraction of the state space of T .
3 Construct abstract state transition system RTS (with the states

labeled by clock constraints as atomic propositions) such that
T |=TCTL ψ iff RTS |=CTL ψ̂.

4 Apply CTL model checking to check whether RTS |=CTL ψ̂.
5 Return the model checking result.

T

RTS

ψ

ψ̂

2,3 1

|=TCTL

|=CTL

4

5
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