Modeling and Analysis of Hybrid Systems Propositional and temporal logics

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2015

Assume

- lacktriangle a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.

Assume

- lacktriangle a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?

Assume

- lacktriangle a labeled state transition system $\mathcal{LSTS} = (\Sigma, Lab, Edge, Init)$,
- a set of atomic propositions AP, and
- lacksquare a labeling function $L: \Sigma \to 2^{AP}$.
- How can we describe properties of this system?
- We need a well-suited logic.

Propositional logic

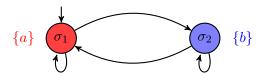
■ Abstract syntax:

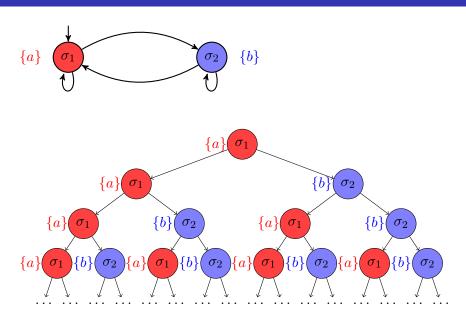
$$\varphi ::= a \mid (\varphi \wedge \varphi) \mid (\neg \varphi)$$

with $a \in AP$.

- Syntactic sugar: true, false, \lor , \rightarrow , \leftrightarrow , . . .
- Omit parentheses when no confusion
- Semantics:

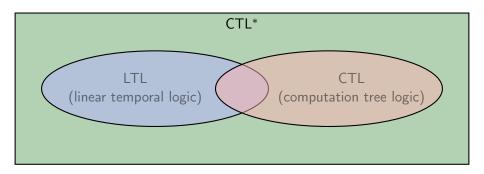
$$\begin{array}{lll} \mathbf{L}_{\mathbf{I}} \sigma \models a & \text{iff} & a \in L(\sigma), \\ \mathbf{L}_{\mathbf{I}} \sigma \models (\varphi_1 \wedge \varphi_2) & \text{iff} & \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2, \\ \mathbf{L}_{\mathbf{I}} \sigma \models (\neg \varphi) & \text{iff} & \sigma \not\models \varphi. \end{array}$$



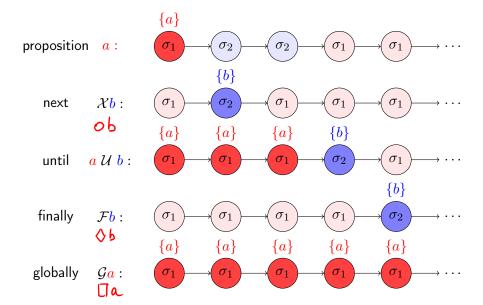


In the computation tree we can describe

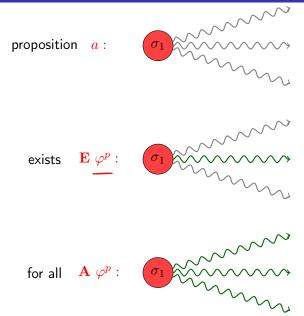
- a given path starting in a state (path formulas, "linear" properties) and
- quantified (universal/existential) properties over all paths starting in a given state (state formulas, "branching" properties).



Examples for path formulas



Examples for state formulas



CTL* state formulae:

$$\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \varphi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$$

where φ^s are CTL* state formulae.

CTL* state formulae:

$$\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \varphi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X}\varphi^p) \mid (\varphi^p \mathcal{U} \varphi^p)$$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

CTL* state formulae:

$$\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \varphi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

We sometimes omit parentheses, based on the order $\mathbf{E} > \mathcal{U} > \mathcal{X} > \land > \neg$ from strongest to weakest binding.

CTL* state formulae:

$$\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p)$$

with $a \in AP$ and φ^p are CTL* path formulae.

CTL* path formulae:

$$\varphi^p ::= \varphi^s \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X}\varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p) \quad |$$

where φ^s are CTL* state formulae.

CTL* formulae are CTL* state formulae.

We sometimes omit parentheses, based on the order $\mathbf{E} > \mathcal{U} > \mathcal{X} > \land > \neg$ from strongest to weakest binding.

Syntactic sugar:

$$\mathbf{A}\varphi^p := \neg \mathbf{E} \neg \varphi^p$$
 ("for all"), $\mathcal{F}\varphi^p := true \mathcal{U}\varphi^p$ ("finally" or "eventually"), $\mathcal{G}\varphi^p := \neg \mathcal{F} \neg \varphi^p$ ("globally" or "always"), \mathcal{R} ("releases"), ...

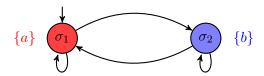
CTL* semantics

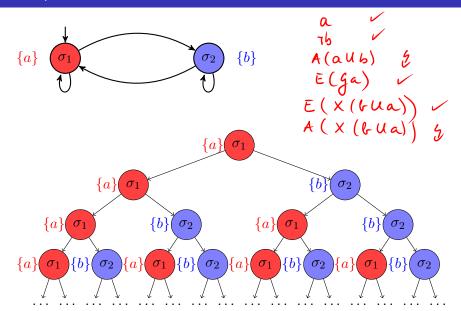
Assume $\mathcal{L}=(\Sigma,Lab,Edge,Init,L)$ to be a labeled state transition system $\mathcal{LSTS}=(\Sigma,Lab,Edge,Init)$ along with a labeling function $L:\Sigma\to 2^{AP}$, where AP is a finite set of atomic propositions.

For a path $\pi = \sigma_0 \to \sigma_1 \to \dots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \dots$

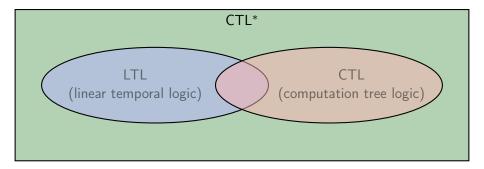
$$\begin{array}{lll} \mathcal{L},\sigma \models a & \text{iff} & a \in L(\sigma) \\ \mathcal{L},\sigma \models \varphi_1^s \wedge \varphi_2^s & \text{iff} & \mathcal{L},\sigma \models \varphi_1^s \text{ and } \mathcal{L},\sigma \models \varphi_2^s \\ \mathcal{L},\sigma \models \neg \varphi^s & \text{iff} & \mathcal{L},\pi \not\models \varphi^s \\ \mathcal{L},\sigma \models \mathbf{E}\varphi^p & \text{iff} & \mathcal{L},\pi \models \varphi^p \text{ for some path } \pi = \sigma \to \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L},\pi \models \varphi^s & \text{iff} & \mathcal{L},\pi(0) \models \varphi^s \\ \mathcal{L},\pi \models \varphi_1^p \wedge \varphi_2^p & \text{iff} & \mathcal{L},\pi \models \varphi_1^p \text{ and } \mathcal{L},\pi \models \varphi_2^p \\ \mathcal{L},\pi \models \neg \varphi^p & \text{iff} & \mathcal{L},\pi \not\models \varphi^p \\ \mathcal{L},\pi \models \mathcal{X}\varphi^p & \text{iff} & \mathcal{L},\pi^1 \models \varphi^p \\ \mathcal{L},\pi \models \varphi_1^p \mathcal{U} \varphi_2^p & \text{iff} & \text{exists } 0 \leq j \text{ with } \mathcal{L},\pi^j \models \varphi_2^p \text{ and } \\ \mathcal{L},\pi^i \models \varphi_1^p \text{ for all } 0 \leq i < j. \end{array}$$

 $\mathcal{L} \models \varphi^s$ iff $\mathcal{L}, \sigma_0 \models \varphi^s$ for all initial states σ_0 of \mathcal{LSTS} .





The relation of LTL, CTL, and CTL*



LTL syntax

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation tree.

■ Abstract syntax:

$$\varphi^p \ ::= \ a \mid (\varphi^p \wedge \varphi^p) \mid (\neg \varphi^p) \mid (\mathcal{X} \varphi^p) \mid (\varphi^p \ \mathcal{U} \ \varphi^p)$$

where $a \in AP$.

- Syntactic sugar: \mathcal{F} ("finally" or "eventually"), \mathcal{G} ("globally"), etc.
- Again, we sometimes omit parentheses using the same binding order as for CTL*.

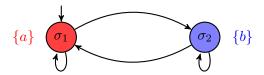
LTL semantics

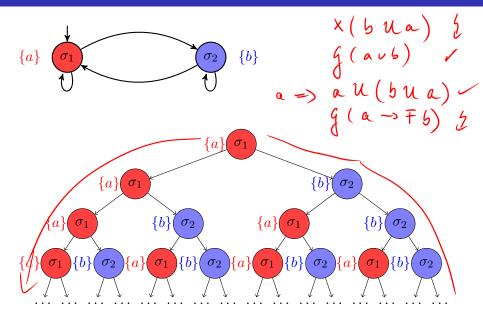
Assume $\mathcal{L}=(\Sigma, Lab, Edge, Init, L)$ to be a labeled state transition system $\mathcal{LSTS}=(\Sigma, Lab, Edge, Init)$ along with a labeling function $L:\Sigma \to 2^{AP}$, where AP is a finite set of atomic propositions.

For a path $\pi = \sigma_0 \to \sigma_1 \to \dots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \dots$

$$\begin{array}{lll} \mathcal{L}, \pi \models a & \text{iff} & a \in L(\pi(0)), \\ \mathcal{L}, \pi \models \varphi_1^p \wedge \varphi_2^p & \text{iff} & \mathcal{L}, \pi \models \varphi_1^p \text{ and } \mathcal{L}, \pi \models \varphi_2^p, \\ \mathcal{L}, \pi \models \neg \varphi^p & \text{iff} & \mathcal{L}, \pi \not\models \varphi^p, \\ \mathcal{L}, \pi \models \mathcal{X} \varphi^p & \text{iff} & \pi^1 \models \varphi^p, \\ \mathcal{L}, \pi \models \varphi_1^p \ \mathcal{U} \ \varphi_2^p & \text{iff} & \exists j \geq 0. \\ \pi^j \models \varphi_2^p \wedge \forall 0 \leq i < j. \\ \pi^i \models \varphi_1^p. \end{array}$$

 $\mathcal{LSTS} \models \varphi^p$ iff $\pi \models \varphi^p$ for all paths π of \mathcal{LSTS} starting in an initial state.





CTL state formulae:

$$\varphi^s ::= a \mid (\varphi^s \wedge \varphi^s) \mid (\neg \varphi^s) \mid (\mathbf{E} \varphi^p) \mid (\mathbf{A} \varphi^p)$$

with $a \in AP$ and φ^p are CTL path formulae.

CTL path formulae:

$$\varphi^p ::= \mathcal{X}\varphi^s \mid \varphi^s \mathcal{U} \varphi^s$$

where φ^s are CTL state formulae.

CTL formulae are CTL state formulae.

As before, we sometimes omit parentheses.

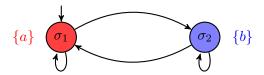
CTL semantics

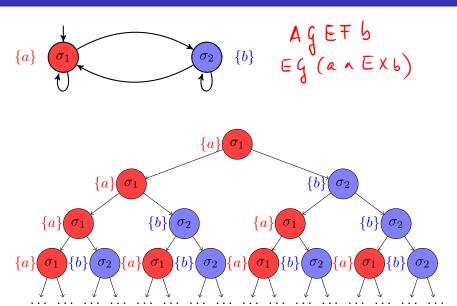
Assume $\mathcal{L}=(\Sigma,Lab,Edge,Init,L)$ to be a labeled state transition system $\mathcal{LSTS}=(\Sigma,Lab,Edge,Init)$ along with a labeling function $L:\Sigma\to 2^{AP}$, where AP is a finite set of atomic propositions.

For a path $\pi = \sigma_0 \to \sigma_1 \to \dots$ of \mathcal{LSTS} , let $\pi(i)$ denote σ_i , and let π^i denote $\sigma_i \to \sigma_{i+1} \to \dots$

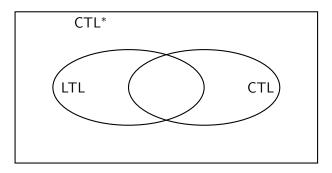
$$\begin{array}{lll} \mathcal{L},\sigma \models \mathbf{a} & \text{iff} & a \in L(\sigma) \\ \mathcal{L},\sigma \models \varphi_1^s \wedge \varphi_2^s & \text{iff} & \mathcal{L},\sigma \models \varphi_1^s \text{ and } \mathcal{L},\sigma \models \varphi_2^s \\ \mathcal{L},\sigma \models \neg \varphi^s & \text{iff} & \mathcal{L},\sigma \not\models \varphi^s \\ \mathcal{L},\sigma \models \mathbf{E}\varphi^p & \text{iff} & \mathcal{L},\pi \models \varphi^p \text{ for some path } \pi = \sigma \to \dots \text{ of } \mathcal{LSTS} \\ \mathcal{L},\sigma \models \mathbf{A}\varphi^p & \text{iff} & \mathcal{L},\pi \models \varphi^p \text{ for all } \pi = \sigma_0 \to \sigma_1 \to \dots \text{ with } \sigma_0 = \sigma \\ \mathcal{L},\pi \models \mathcal{X}\varphi^s & \text{iff} & \mathcal{L},\pi(1) \models \varphi^s \\ \mathcal{L},\pi \models \varphi_1^s \ \mathcal{U} \ \varphi_2^s & \text{iff} & \text{exists } 0 \leq j \text{ with } \mathcal{L},\pi(j) \models \varphi_2^s \text{ and } \\ \mathcal{L},\pi(i) \models \varphi_1^s \text{ for all } 0 \leq i < j. \end{array}$$

 $\mathcal{L} \models \varphi^s$ iff $\mathcal{L}, \sigma_0 \models \varphi^s$ for all initial states σ_0 of \mathcal{LSTS} .





The relation of LTL, CTL, and CTL*



- The LTL formula $\mathcal{FG}a$ is not expressible in CTL.
- The CTL formula $\mathbf{A}\mathcal{F}\mathbf{A}\mathcal{G}a$ is not expressible in LTL.

Given a state transition system and a CTL formula ψ^s , CTL model checking labels the states recursively with the sub-formulae of ψ^s inside-out.

■ The labeling with atomic propositions $a \in AP$ is given by

Given a state transition system and a CTL formula ψ^s , CTL model checking labels the states recursively with the sub-formulae of ψ^s inside-out.

■ The labeling with atomic propositions $a \in AP$ is given by a labeling function.

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .
- Given the labeling for ψ^s , we label a state with $\neg \psi^s$ iff

- The labeling with atomic propositions $a \in AP$ is given by a labeling function.
- Given the labelings for ψ_1^s and ψ_2^s , we label a state with $\psi_1^s \wedge \psi_2^s$ iff the state is labeled with both ψ_1^s and ψ_2^s .
- Given the labeling for ψ^s , we label a state with $\neg \psi^s$ iff the state is not labeled with ψ^s .

• Given the labeling for ψ^s , we label a state with $\mathbf{E} \mathcal{X} \psi^s$ iff

■ Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- lacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s\ \mathcal{U}\ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and $\psi_2^s,$ we

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - lacksquare label all with ψ^s_2 labeled states additionally with ${f E} \psi^s_1 \ {\cal U} \ \psi^s_2$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$, and

- Given the labeling for ψ^s , we label a state with $\mathbf{E}\mathcal{X}\psi^s$ iff there is a successor state labeled with ψ^s .
- lacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - label all with ψ_2^s labeled states additionally with $\mathbf{E}\psi_1^s \ \mathcal{U} \ \psi_2^s$, and
 - label all states that have the label ψ_1^s and have a successor state with the label $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{E}\psi_1^s~\mathcal{U}~\psi_1^s$ iteratively until a fixed point is reached.
- Given the labeling for ψ^s , we label a state with $\mathbf{A}\mathcal{X}\psi^s$ iff all successor states are labeled with ψ^s .
- \blacksquare Given the labeling for ψ_1^s and ψ_2^s , we
 - lacksquare label all with ψ_2^s labeled states additionally with ${f A}\psi_1^s~{\cal U}~\psi_2^s$, and
 - label all states that have the label ψ_1^s and all of their successor states have the label $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$ also with $\mathbf{A}\psi_1^s~\mathcal{U}~\psi_2^s$ iteratively until a fixed point is reached.

Discrete-time LTL

$$\begin{cases} \varphi^p & \text{if } k=0\\ \mathcal{X}\mathcal{X}^{k-1}\varphi^p & \text{else}. \end{cases}$$

$$\varphi_1^p\ \mathcal{U}^{[k_1,k_2]}\ \varphi_2^p = \begin{cases} \varphi_1^p\ \mathcal{U}\ \varphi_2^p & \text{for } [k_1,k_2]=[0,\infty]\\ \varphi_2^p & \text{for } [k_1,k_2]=[0,0]\\ \varphi_1^p\wedge\mathcal{X}(\varphi_1^p\ \mathcal{U}^{[k_1-1,k_2-1]}\ \varphi_2^p) & \text{for } k_1>0\\ \varphi_2^p\vee(\varphi_1^p\wedge\mathcal{X}(\varphi_1^p\ \mathcal{U}^{[0,k_2-1]}\ \varphi_2^p)) & \text{for } k_1=0,k_2>0 \end{cases}$$

Discrete-time CTL

$$\mathbf{E}\mathcal{X}^k\psi^s = \begin{cases} \psi^s & \text{if } k=0\\ \mathbf{E}\mathcal{X}\mathbf{E}\mathcal{X}^{k-1}\psi^s & \text{else.} \end{cases}$$

$$\mathbf{E}\psi_1^s \ \mathcal{U}^{[k_1,k_2]} \ \psi_2^s =$$

$$\begin{cases} \mathbf{E}\psi_{1}^{s} \ \mathcal{U} \ \psi_{2}^{s} & \text{for } [k_{1}, k_{2}] = [0, \infty] \\ \psi_{2}^{s} & \text{for } [k_{1}, k_{2}] = [0, 0] \\ \psi_{1}^{s} \wedge \mathbf{E}\mathcal{X}\mathbf{E}(\psi_{1}^{s} \ \mathcal{U}^{[k_{1}-1, k_{2}-1]} \ \psi_{2}^{s}) & \text{for } k_{1} > 0 \\ \psi_{2}^{s} \vee (\psi_{1}^{s} \wedge \mathbf{E}\mathcal{X}\mathbf{E}(\psi_{1}^{s} \ \mathcal{U}^{[0, k_{2}-1]} \ \psi_{2}^{s})) & \text{for } k_{1} = 0, k_{2} > 0 \end{cases}$$

Syntactic sugar

We also write

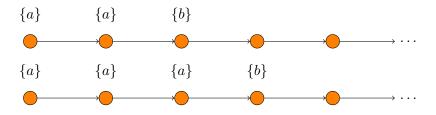
- lacksquare $\mathcal{U}^{\leq k}$ instead of $\mathcal{U}^{[0,k]}$,
- $U^{\geq k}$ for $\mathcal{U}^{[k,\infty]}$,
- lacksquare $\mathcal{U}^{=k}$ for $\mathcal{U}^{[k,k]}$, and
- lacksquare \mathcal{U} for $\mathcal{U}^{[0,\infty]}$.

Example

The discrete-time LTL formula $a~\mathcal{U}^{[2,3]}~b$ is defined as

$$a \wedge \mathcal{X}(a \wedge \mathcal{X}(b \vee (a \wedge \mathcal{X}b))).$$

It is satisfied by paths of the following form:



Discrete-time model checking

As the discrete-time temporal operators are defined as syntactic sugar, LTL model checking can be applied to check the validity of discrete-time LTL formulae for state transition systems.