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Basic Notations

We use the following standard notations:

Symbol Description

Sets and set operators

AUB ={x|xz€e AV e B}
ANB ={zx|xr€e ANz € B}
A\B ={zx|zre€e ANz ¢ B}
AX B ={(a,b) |la€ ANbeE B}
Z
N
N =Nx...xN

—_———

d times

N., = N\{0}
Q
R
R¢ =Rx...xR

—_———

d times

Rs, ={xeR|z>0}
R., ={zeR|z>0}
oM ={P|PC M}
Mappings
id M — M
FM) = {f(m)|meM}CD,

set union

set intersection

set minus

cross product of two sets A and B

set of integers

set of natural numbers including 0

the n-dimensional space of natural numbers

set of positive natural numbers
set of rational numbers

set of real numbers

the d-dimensional real space

set of non-negative real numbers
set of positive real numbers
powerset of the set M

identity mapping for a set M with id(m) = m for all
me M

image of a set M C Dq

according to a mapping f : D1 — Do
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Chapter 1

Introduction

Most areas of computer science deal with discrete systems, i.e., systems whose evolution can be
described by a sequence of discrete state changes. Prominent examples are programs executing
a sequence of computation steps, each of them possibly modifying the program’s heap and stack.
When we are only interested in the program’s input-output behavior, such computation steps
can be seen as instantaneous, discrete state changes.

Whereas the modeling and the analysis of discrete systems is a typical computer science
subject, the development of methods and tools for the modeling and simulation of dynamic
systems is hosted mainly in physics and control theory. Quantities of dynamic systems, like the
temperature of a room or the speed of an object, evolve continuously over time according to the
laws of physics in dependence on the current system state and the influence of the environment.

Discrete systems (e.g., sensors, chips, computer programs) are often used to control the
behavior (e.g., temperature, speed, acceleration) of dynamic systems. The resulting system,
consisting of the controller together with the controlled system, exhibits a combined discrete and
continuous behavior, and is therefore called a hybrid system. Hybrid systems can have quite
complex behavior, posing a challenging task for their analysis.

This book is devoted to modeling formalisms and algorithmic analysis techniques for different
classes of hybrid systems, from the view point of computer science. It can be used as learning
material for undergraduate courses, but also as a state-of-the-art overview for graduate students
and researchers.

The contents of the book are as follows:

o We start with introducing hybrid systems on a number of examples in Chapter

e In Chapter [3| we recall some automata-based modeling approaches for discrete systems, in
the absence of dynamic behavior. We use labeled state transition systems (Kripke struc-
tures) to model finite-state systems, and labeled transition systems to model general discrete
systems with possibly infinite state spaces. We define the temporal logics LTL, CTL, and
CTL* to specify properties of discrete systems, and give a short introduction to (explicit)
CTL model checking for labeled state transition systems.

e We discuss discrete-time systems in a nutshell in Chapter [4 before we deal with continuous-
time systems in the following chapters.

o Timed automata [AD94, BKOS§|, extending discrete systems with a notion of time, are
introduced in Chapter 5] We use the timed temporal logic TCTL to specify properties
of timed automata. We show that the validity of TCTL properties for timed automata is
decidable by giving the standard model checking algorithm.

7



CHAPTER 1. INTRODUCTION

Timed automata are quite restrictive in their modeling power. In Chapter [6] we define
rectangular automata, a bit more general class, which is at the boundary of decidability:
though checking TCTL properties of initial rectangular automata is a decidable problem,
relaxing any of the restrictions on the expressivity of the modeling language leads to un-
decidability. We give the decidability proof following [HKPV9§| in form of a reduction to
TCTL model checking for timed automata.

In Chapter 7?7 we elaborate on the above-mentioned border of decidability and give some
undecidability results via selected reduction proofs from [HKPV98| and JACHT95| for
different model classes.

Even if the reachability problem for more expressive modeling formalisms for hybrid sys-
tems is in general undecidable, we need them to model more complex systems without
too strong abstraction. Though undecidability implies that we cannot give any complete
model checking algorithm for them, there might exist useful incomplete algorithms for their
analysis. Such a more expressive model class is given by linear hybrid automataﬂ being the
subject of Chapter [7] They are particularly interesting, because the bounded reachability
problem (reachability within a fixed finite number of steps) is still decidable and efficiently
computable for this class. We discuss a fixed-point-based algorithm from [ACHT95| and
mention some approximation and abstraction techniques.

To model hybrid systems more precisely, in Chapter [§] we introduce hybrid automata. The
dynamics in these models is specified by ordinary differential equations, which might be
linear or non-linear. The reachability analysis for hybrid automata requires special (over-
approximative) representation techniques for state sets. We discuss representations by
different geometric objects like convex polyhedra, oriented rectangular hulls, zonotopes,
support functions and orthogonal polyhedra. Using such representations, we discuss an
incomplete fixed-point-based algorithm for the reachability analysis of hybrid automata.

Regarding undergraduate courses, the contents are determined such that they demonstrate
the application and usefulness of a wide range of general computer science methods and tech-
niques:

Formal modeling: labeled state transition systems (Section , labeled transition sys-
tems (Section [3.1.2)), discrete-time models (Chapter [}, timed automata (Section [5.1)),
rectangular automata (Section , linear hybrid automata (Section , general hybrid
automata (Section [8.1));

Logics to formalize system properties: propositional logic (Section |3.2.1)), temporal logics
LTL, CTL, CTL* (Section , timed temporal logic TCTL (Sec;

Decidability issues: proving decidability constructively by giving a finite bisimulation-based
abstraction (Sectionfor timed automata), proving decidability by reducing the question
to a known problem (Section for initialized rectangular automata), proving undecid-
ability by reduction to a known problem (Chapter ?? for 2-rate singular automata);
Model checking: CTL properties for labeled state transition systems (Section , TCTL
properties for timed automata (Section , fixedpoint-based reachability analysis (Sec-
tions and 7 minimization (Section

Approximation: for state sets of linear (Section [7.4]) and general (Section hybrid au-
tomata.

IThere are two different notions of linear hybrid automata. We mean here systems with a linear behavior, and
not with linear differential equations describing the continuous behavior.
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Chapter 2

Hybrid Systems

Discrete systems are systems with discrete, instantaneous state changes. E.g., when abstracting
away physical details, a sensor reporting whether a tank is full or whether the temperature is
above a certain threshold can be considered as a simple discrete system. Also a program running
on a computer can be seen as a discrete system, when we assume that each atomic execution step
changes the program’s configuration in a discrete manner. Note that, though the state space of
a program can be very large, due to the finite memory it is finite. Other systems might have
an infinite or even uncountable state space, they are nevertheless classified as discrete systems
when their state changes can be assumed to be discrete.

Dynamic systems are systems with a real-valued state space and continuous behavior. Physi-
cal systems with quantities like time, temperature, speed, acceleration etc. are dynamic systems.
There evolution over time can be described by continuous functions or ordinary differential equa-
tions.

Hybrid systems are systems with combined discrete and continuous behavior (cf. Figure .
Typical examples are physical systems controlled by a discrete controller. In modern cars there
are hundreds of embedded digital chips helping to drive the car, that means, controlling the
physical behavior like speed and acceleration. Behind the autopilot of an airplane there is a
program running on a computer and acting with the physical environment.

= L7

discrete continuous hybrid
Figure 2.1: Hybrid systems exhibit a combined discrete-continuous behavior

In the following we introduce some hybrid system examples from [ACH™ 95| [Hen96].

Example 2.1 (Thermostat). Assume a thermostat, which senses the temperature x of a room
and turns a heater on and off in order to keep the temperature between 17°C' and 23°C'. Initially,
the heater is on and the temperature is 20°C. If the heater is on, the temperature increases
according to the differential equation & = K(h — x) where h € R, is a constant of the heater

9



CHAPTER 2. HYBRID SYSTEMS

and K € R., is a room constant. If the temperature is 22°C or above, but at latest when it
reaches 23°C', the heater gets turned off. If the heater is off, the temperature falls according to
the differential equation © = —Kx. If the temperature falls to 18°C' or below, but at latest if it
reaches 17°C', the heater gets switched on. Figure[2.9 visualizes a possible behavior of the system,
both of its continuous dynamics (the temperature) and its discrete control (the heater being on
or off).

This system is hybrid. The discrete part of the system’s state consists of the control mode of
the heater being on or off. The continuous part is the temperature which continuously evolves
over time, taking values from R. The discrete part controls the continuous part by changing the
discrete state and thereby influencing the continuous behavior.

Note that, since the heater gets switched on and off within certain temperature intervals, the
system is non-deterministic. Replacing these intervals by fized values would yield a deterministic
system.

23

22 on

20

18

off _— _—

17

Figure 2.2: A possible behavior of the thermostat: the continuous dynamics for the temperature
(left) and the control state with the heater being on or off (right) as a function of time

Example 2.2 (Water-level monitor). Assume two identical, constantly leaking water tanks
and a hose that refills exactly one of the tanks at each point in time (Figure left). Let us
denote the water level in the two tanks by x1 and s, respectively, and let the leaking lead to
a decrease of v1 and vy units of tank height per time unit, respectively, for some vi,vy € R,
without refilling. The hose fills w € R., units of tank height per time unit. Thus the derivative
of the water height for the first tank is £1 = w — v1 when it gets refilled and ©1 = —v1 otherwise.
The water height in the second tank changes according to to = w — vy when it gets refilled and
o = —vg otherwise. When refilling the first tank, the hose switches to the second tank when its
water level xo reaches a given lower threshold ro € R.,. The switch from the second tank to the
first one works analogously when x1 reaches some r1 € R.,.

Also this is a hybrid system. The discrete part of the state space consists of the position
of the hose refilling either the first or the second tank. The continuous part of the state space
corresponds to the water heights in the tanks which evolve continuously over time.

Example 2.3 (Bouncing ball). Assume a bouncing ball with the initial height h € R, and
with an initial upwards directed speed v € R.,. Due to gravity, the ball has the acceleration
v = —g. Thus the ball’s speed is decreasing to 0 until the ball reaches its highest position, and
gets negative when the ball is falling down again. The ball bounces when it reaches the earth at
position h = 0 with a speed v < 0. When bouncing, the sign of v gets inverted, and a part of the
ball’s kinetic energy gets lost. Its speed after bouncing is —cv with some ¢ € (0,1) CR and v the

10
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CHAPTER 2. HYBRID SYSTEMS

1
el r1
¥ Do T2
w
t
2
T fill right tank _— —
1
T2
| | :
V1 v2
fill left tank —— _—

Figure 2.3: Water-level monitor illustration (left) and a possible behavior (right)

speed before bouncing. Figure illustrates the behavior of the system.

The continuous part of the state space covers the physical quantities of height and speed
which follow the same evolution rules all the time. Thus there is only a single mode (“moving”)
for the ball behavior, and the state space does not have any discrete component. However, the
discrete time points of bouncing introduce discrete events. That’s why a bouncing ball can also
be considered as a hybrid system.

Figure 2.4: A possible behavior of the bouncing ball

Exercises

Exercise 2.1. Give three further examples for hybrid systems.

Exercise 2.2. Assume a vending machine, where you can buy some beverage after having inserted some
coins. Which parts of the machine’s state components can be considered as discrete and which are
continuous?

Exercise 2.3. Real-time systems are systems whose correct functioning requires (under others) that
they react within certain time limits. Since time is a continuous quantity, real-time systems are also
hybrid systems. Give some examples for real-time systems!

——— Draft version, please do not distribute



CHAPTER 2. HYBRID SYSTEMS

Exercise 2.4. Assume an ice block, which gets warmed by the sun from —10° to 10°. What is hybrid
in this process? Explain the discrete and the continuous components of the state of the ice.

12 - Draft version, please do not distribute



Chapter 3

Discrete Models

In the next chapters we address the modeling and analysis of hybrid systems. Before doing
so, in this chapter we first recall some fundamentals about the modeling of discrete systems in
Section [3.I] and about logics that allow to formalize properties of discrete systems in Section [3.2
Finally, we explain the basic idea of (explicit) CTL model checking for discrete finite-state systems
in Section 3.3

3.1 Modeling Languages

As modeling languages we use in this chapter labeled state transition systems (generally known
as Kripke structures, see Section [3.1.1)) and labeled transition systems (Section [3.1.2)) which
additionally allow variables in the model.

3.1.1 Labeled State Transition Systems (LSTSs)

Labeled state transition systems consist of a set of states, a set of initial states where the execution
starts, and labeled transitions between the states.

Definition 3.1 (Syntax of labeled state transition systems). A labeled state transition
system (LSTS) is a tuple LSTS = (X, Lab, Edge, Init) with

a (possibly infinite) set ¥ of states,

a set Lab of (synchronization) labels,

a set Edge C X x Lab x X of labeled transitions or edges, and
a non-empty set Init C 3 of initial states.

The semantics allows to build paths of an LSTS starting in an initial state and following
transitions.

Definition 3.2 (Semantics of LSTS). The operational semantics of a labeled state transition
system LSTS = (X, Lab, Edge, Init) is given by the following single rule:
(0,a,0") € Edge
o5 a

Rul €discrete

We call 0 % o' an (execution) step. A path (or run or execution) 7 of LSTS is a (finite or

infinite) sequence ™ = oy X o1 L2

13

LSTS LSTS

%
Lab
Edge
Init



AP, L

LETS1||
LSTSs

CHAPTER 3. DISCRETE MODELS

For a path m = 09 — 01 — ... of LSTS and some i € N, i < |r|, let 7(i) = 0; and ©* = 0; —
Oip1 =7 «v--

We use Hesrs (or simply I1) to denote the set of all paths of LSTS and define Npsts(o) =
{7‘(‘ ellzsts ‘ 7T(0) = U}.

The path m is initial if 7(0) is an initial state. A state is reachable iff there is an initial path
leading to it.

We sometimes simply write 71 = 09 — 01 — ... when the labels of the edges are not of
interest. We say that ¢’ € ¥ is a successor of 0 € ¥ and ¢ is a predecessor of o’ iff o % o for
some a € Lab. Note that for a path m = oy 2 o1 % ... the state 0i+1 is a successor of o; for

each 0 < i < |«|, where |7| denotes the number of steps in the path (possibly being infinity).

The labels of the set Lab are attached to edges and are used for synchronization purposes in
the parallel composition (see page .

To be able to formalize properties of LSTSs, it is common to define a set of atomic propositions
AP and a labeling function L : ¥ — 247 assigning a set of atomic propositions to each state.
The set L(o) C AP consists of all propositions that are defined to hold in the state o. These
propositional labels on states should not be mixed up with the synchronization labels on edges.

A labeled state transition system LSTS = (X, Lab, Edge, Init) can be represented as a di-
rected graph, where the vertices of the graph are the states from 3 and the (labeled) edges are
the transitions from Fdge. The initial states are marked by an incoming edge without source.

Example 3.1 (Pedestrian light). We model a pedestrian traffic light in a crossing by a labeled
state transition system LSTS = (X, Lab, Fdge, Init). The light can be red or green (we do
not model the light being off or blinking). Thus we can represent the light’s state set by X =
{red, green}. Assume the light is initially red, i.e., Init = {red}. Possible state changes go
from red to green and from green to red, yielding Edge = {(red, go, green), (green, stop, red)} for
a possible label set Lab = {go, stop}. The labels can be used, e.g., to synchronize state changes
with another light in the same crossing. The model LSTS can be visualized as follows:

/g_o\

This model is deterministic, i.e., both of its states has a single possible successor state. The

system has the single initial run red ke green L red. ...

Larger or more complex systems are often modeled componentwise, such that the whole sys-
tem is given by the parallel composition of the components. Component-local, non-synchronizing
transitions, having labels belonging to one component’s label set only, are executed in an inter-
leaved manner. Synchronizing transitions of the components, agreeing on the label, are executed
synchronously.

Definition 3.3 (Parallel composition of LSTS). Let

LSTS1 = (X4, Laby, Edgeq, Inity) and
LSTSQ = (Zg,Labg,EdgeQ,[mtg)

be two LSTSs. The parallel composition LSTS1||LSTSe = (X, Lab, Edge, Init) is an LSTS
with

14
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CHAPTER 3. DISCRETE MODELS

Y= 21 X 22,
Lab = Laby U Labo,
((s1,52),a,(s1,55)) € Edge iff

1. a € Laby N Labs, (s1,a,s}) € Edge,, and (s2,a, sh) € Edge,, or

2. a € Labi\Laba, (s1,a,s}) € Edge, and sy = s, or
3. a € Labs\Laby, (S2,a,sh) € Edge,y, and sy = s},

Init = Inity x Inits.

To demonstrate the advantages of compositional modeling, we give an example for the parallel
composition of two traffic lights.

Example 3.2 (Two pedestrian lights). Assume now a crossing of two roads with two pedes-
trian lights, similar to those from Example[3.1], one in north-south and one in east-west direction.
The two lights are composed such that they allow pedestrians to pass alternatingly.

901 901
902 S~ 9%

Formally, the two LSTSs are given by

LSTS1 = ({reds,green,}, {goy, gos}, {(reds, goy, green, ), (green,, go, redh )}, {reds })
—_————  —— ——
3 Labq Edge, Inity
LTSy = ({reds, greeny}, {goy, g0y}, {(reds, goy, greens,), (greens, gor, reds)}, {greens})
—_————  —— ———
Yo Labs Edge, Inito

The parallel composition LSTS1||LSTS2 = (2, Lab, Edge, Init) is by definition:

Y = {(greeny, greeny), (green,, reds), (redy, greens,), (redy, reds)}
Lab = {goy,gos}
Edge = {((redy, green,), goy, (greeny, reds)), ((green,, reds), go,, (redy, greens))}
Init = {(redy, green,)}

The parallel composition can be visualized be the following graph:

901

(redy, greens) (green, reds)

(redy, reds) (greeny, greens,)

——— Draft version, please do not distribute



CHAPTER 3. DISCRETE MODELS

Note that the states (redy, reds) and (greeny, greens) are not reachable, i.e., the two lights are
never green respectively red at the same time.

Again, the composition is deterministic and has a single initial run (redy, greens,) 3 (green,,

reds) 9% (redy, green2) .. ..
Another well-known example for the parallel composition is that of a railway crossing.

Example 3.3 (Railroad crossing). Assume the crossing of a railroad with a street, secured
by a gate. The system consists of three components: a train, a controller and a gate. The train
communicates with the controller, and the controller communicates with the gate as follows.

e Sensors recognize when the train is approaching to the gate and an “approach” signal is sent
to the controller. Similarly, if the train has left the railroad crossing, an “exit” signal gets
sent to the controller.

e The controller reacts to an incoming “approach” signal with the sending of a “lower” signal
to the gate. Similarly, when the controller receives an “exit” signal, it sends a “raise” signal
to the gate.

e The gate reacts to an incoming “lower” signal with closing the gate, and to a “raise” signal
with opening the gate.

If we are interested in the communication aspects only, we can model the railroad crossing
system as the parallel composition of the following three LSTS components:

exit
Train: l
(ost)
ar near past
f approach ) enter
Controller: Gate:

@—» {up} lower coming down | ()

raise

down {down}

Given the proposition set AP = {up, down}, we can define a state labeling function L assigning
a set of propositions to the states of the gate as depicted in the above graph.

The formal specification of the parallel composition is the content of Exercise[3.3 The parallel
composition’s initial state is (far,0, up). In the initial state the gate cannot execute, because the
only possible transition from the state up has the label lower that synchronizes with the controller,
but the controller first has to move to the state 1 to be able to synchronize on it. Thus first

synchronization on approach must take place. Therefore, each initial path of the composition
approach

starts with the step (far,0,up) ~ —  (near, 1, up).

16 Draft version, please do not distribute




CHAPTER 3. DISCRETE MODELS

3.1.2 Labeled Transition Systems (LTSs)

Another, more expressive but still discrete modeling language are labeled transition systems
(LTSs), which additionally allow wvariables in the model. Here we consider real-valued variables
only, and in the following we restrict the formalisms accordingly.

Given a set of real-valued variables Var, a wvaluation is a function v : Var — R assigning
values to the variables. We use Vi, (or short V') to denote the set of all valuations for the
variable set Var.

An LTS has a finite set of locations, also called modes, which can possibly be entered with
different valuations. The current state o = (¢,v) of an LTS is determined by the current location
[ and the current valuation v. A set of initial states specifies the states in which the execution
may start.

The locations of an LTS are connected by labeled transitions (edges). In contrast to LSTSs,
each edge of an LTS can have a guard and an effect, specified in form of a transition relation
i €V x V: the transition can be taken with a valuation v thereby changing the valuation to v/
ift (v,v') € p.

Example 3.4. Assume a variable set Var = {x} and a transition that is enabled if x > 0 holds
and it decreases the value of x by 1. The corresponding transition relation would be u = {(v,v') €

V2 v(x)>0AV (2) =v(z)—1}.

In the following definition of LTSs we also embed controlled variables and T-transitions (also
called stutter transitions). Their role will become clear later when we define the parallel compo-
sition of LTSs. Intuitively, these constructs help us to define “local”; “output” or “write” variables
of an LTS whose values may not be changed by non-synchronizing steps of other parallel LTSs.

Definition 3.4 (Syntax of labeled transition systems). A labeled transition system (LTS)
is a tuple LTS = (Loc, Var, Con, Lab, Edge, Init) with

a finite set Loc of locations,

a finite set Var of real-valued variables,

a function Con : Loc — 2V assigning a set of controlled variables to each location,

a finite set Lab of labels, including the stutter label 7 € Lab,

a finite set Edge C Loc x Lab x 2V* x Loc of edges or transitions including a T-transition
(¢,7,1d,0) for each location ¢ € Loc with Id = {(v,v') € VZ,, |Vx € Con(f). V' () = v(z)},
and where all edges with label T are T-transitions, and

e q set Init C X of initial states,

where ¥ = Loc X Vg, denotes the state space of LTS.

Definition 3.5 (Semantics of LTSs). The operational semantics of a labeled transition system
LTS = (Loc, Var, Con, Lab, Edge, Init) is specified by the following single rule:

(¢,a,p,t') € Edge  (v,V') € p
(6v) = (0, 0")

Rul €discrete

We call 0 % o' an (execution) step, which we also write as o — o’ when we are not interested
in its label. A path (or run or execution) 7 of LTS is a (finite or infinite) sequence T = o <%
B . forieN, i< 7|, we define 7(i) = o; and 7 =0y = Tit1 —> .. ..

We use llz1s (or simply I1) to denote the set of all paths of LTS and define lpys(c) = {7 €
HLTS ‘ 7T(0) = O‘}.

- 17
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CHAPTER 3. DISCRETE MODELS

method mult(int y, int z){ y=0
int x;
by x := 0;
¢, while(y > 0) {
ly y = y-1;
{3 X 1= x+z;
}
l }

Figure 3.1: Modeling a simple while program with an LTS.

The path m is initial if 7(0) is an initial state. A state is reachable iff there is an initial path
leading to it.

We sometimes simply write 7 = 09 — 01 — ... when the labels of the edges are not of
interest. Note again that for a path m = o9 2 5, % ... there is a transition o; = 0it+1 between
all successive states o; and 0,11, 0 < i < |«|, in the path, where |7r| denotes the number of steps
in the path (possibly being infinity).

Based on the operational semantics, an LTS induces an underlying LSTS state space model:
a transition (¢,v) % (¢',1) can be performed in the induced LSTS if there is an edge (¢, a, i, ')
from ¢ to ¢ in the LTS with (v, 1) € p.

The next example shows how LTSs can be used to describe program execution.

Example 3.5 (Modeling a simple while program). The simple while program on the left
of Figure [3.1] calculates x := y - z for two input integers y and z with y > 0. FEach instruction
corresponds to a transition (€,a, p,€') with the source location | being the program location before
the instruction, the target location I being the program location after the instruction, a label
a which is omitted here because no synchronization is needed, and a set of valuation pairs p
describing the condition or effect represented by the instruction.

Formally, this (closed) system can be defined as a transition system LTS = (Loc, Var,
Con, Lab, Edge, Init) where

e Loc = {60361762763364}}

o Var ={x,y,z},

o V={v|v:Var >R} and ¥ = Loc x V,

e Con(f) = Var for each £ € Loc,

o Lab={a,T},

e Fdge =

(o, a, {(nv) €V’ | V(2) =0V (y) = vl(y) AV (2) = v(=)}, 0,

(b1, a, {(n,V)eV?|v(y)>0AV =v}, ls),
(b @ {(nv) € V2| V(2) = vla) AV (y) = w(y) — L AV() = (2}, fo),
(b3, a, {(v,v) € V2|V () =v(@)+v(2) NV (y) =v(y) AV (2) =v(2)}, 4),
(b1, a, {(v,v)eV?|v(y) <OAV =1}, ly),

750,721,7'@277'€3,7'£4},
o Init ={(o,v) €X | v(y) eNAv(z) €Z}

with 7o, = (b, 7, {(v,V") € V2 | v =v'},4;) for alll € Loc. This LTS model is illustrated on the
right of Figure (without showing the transition label a and the T-transitions).
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The parallel composition of LTSs allows to model larger systems compositionally. Intuitively,
two LTSs running in parallel may execute non-synchronizing steps interleaved on their own,
whereas synchronizing steps are executed simultaneously in both components. Whether a step
is synchronizing or not depends on the fact whether both systems have the step’s label in their
label sets. One of the components can take a transition with a common label only if the other
component also takes a transition with the same label. For this joint step the conditions and
effects of both transitions must be considered, i.e., the transition relation for the joint step is the
intersection of the transition relations of both local transitions.

If one of the components executes a local, non-synchronizing step, the other component is
basically not active. However, in the parallel composition of LTSs we define the other component
to take a so-called T-transition or stutter transition, a “do nothing” step. The reason for this is
twofold: Firstly, this makes the definitions and the underlying algorithms more unique, since in
each step both systems take a transition. Secondly, and more importantly, sometimes we would
like to define components with variables local to this component, or with variables that can only
be read but not written by the other components. Then the 7-transitions of this component
will specify in their transition relation that the values of those variables are not modified by the
environment’s non-synchronizing steps. Variables that a component has under its control and
that must not be modified by the local steps of its environment are defined by the function Con.

Definition 3.6 (Parallel composition of LTSs). Let

LTS,y = (Locy, Var, Cony, Laby, Edge,, Init1) and
LTSy = (Loce, Var, Cong, Labs, Edge,, Inits)

be two LTSs.The parallel composition or product
LTS =LTS, || LTS2 = (Loc, Var, Con, Lab, Edge, Init)
of LTS, and LT Ss is the LTS defined by

Loc = Locy x Locs,
COTL((él,gg)) = C’onl(ﬂl) U COnQ(EQ),
Lab = Laby U Labo,
((61762)7047”’ (gllvéé)) € Edge Z.ﬁ
— there exist ({1, a1, 11,¢}) € Edge, and ({2, as, e, ly) € Edgey such that
— either a1 = as = a or
a1 = a € Laby\Labs and ag = 1, or
a1 =71 and ag = a € Laby\Laby, and
— p= 1 Npg, and
o Init = {((¢1,42),v) | (¢1,v) € Inity A (l2,v) € Inits}.

Example 3.6. Assume the parallel composition of the following two LTSs:
LTS1 = (Locy, Var, Cony, Laby, Edge,, Inity)
LTSs = (Loca, Var, Congy, Laba, Edges, Inits)
with

o Locy = {ty,03}, Loco = {¢}, 45},
o Var = {z,y},
e Cony(¢y) = Cony(€2) = {x}, Cong(¥)) = Cona(4}) = {y},

——— Draft version, please do not distribute

LTS1]|
LTS2



CHAPTER 3. DISCRETE MODELS

e Lab; = Labs = {a,7},
o Edge, = {(fl, a, {(Va Vl) ev? | V/(x) = V(y) + 1}7 £2)7 Tty 752}7
Edgey = {(fy, a, {(v,") € V2 | V'(y) = v(z) +1}, &), 7o, 7o},
o Inity = {(t1,{v € V|v(z) = 0})}, Inite = {(¢},{v € V]v(y) =0})}
with 7, = {(v,v') € V2 | Vv € Con;(¢). v(v) = V' (v)} for alli = 1,2 and ¢ € Loc;. Graphically
(without representing the control variables and T-transitions):

z=0 y=20

| |

a: xv:=y+1 a: =x+1
0 Y 05 " Y 0

The graphical representation of the parallel composition (again without control variables and
T-transitions) looks as follows:

z=0,y=0

a: v,y:=y+lz+1
(fhé/l) (62765)

As the only non-t-transitions of the LTSs are synchronized by the label a, all runs of the
system are of the form o9 = ...00 — 01 = 01 ... with og(x) = 0o(y) = 0 and 01 (x) = o1(y) = 1.
Let us modify the example such that the transitions do not synchronize:

z=0 y=20

a: r:=y+1 l b: yi=ax+1
0 Y 0 ¢ Y 0

The parallel composition looks as follows:

a: r:=y+1

b: y=x+1

Now the transitions interleave, and if we skip the transitions where both components do a
T-step, we get two possible runs:

a b .
® 09 — 01 — 09 with

- 0o = ((£17€/1)7V0>7 l/()(x) = VO(y =0,
- 01 = ((€27£/1)5V1)7 V1($> =1, Vl(y) =0, and
— 09 = ((62,6’2),V2), 1/2(33) = 1’ 1/2(y) = 2’ or

b a .
® 09 —> 01 — 02 with
— 00 = ((€1,41),10), vo(x)
— o1 = ((l1,63),11), vi(z) =0, 11(y) = 1, and
— 09 = ((£27£/2),V2), 1/2({,6) 2 ) 1.
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3.2 Logics

For the formalization of properties for discrete systems, after introducing propositional logic in a
nutshell in Section [3.2.I] we deal with the temporal logics LTL, CTL and CTL* in Section [3:2:2}

3.2.1 Propositional Logic

Assume a set of states ¥, a set of atomic propositions AP, and a labeling function L : ¥ — 247
assigning to each state a set of propositions holding in that state. Then we can use proposi-
tional logic to describe properties of states. Propositional logic formulae are built from atomic
propositions using Boolean operators according to the following abstract syntax:

o = al(eAp)| (-

with a € AP and where A is the “and”operator for conjunction and — is the operator for negation.
As syntactic sugar the constants true and false, and further Boolean operators like V (“or”), —
(“implies”), <> (“if and only if”), etc. can be introduced. We often omit parentheses with the
convention that the strength of binding is in the order =, A, V, —, <>, i.e., = binds the strongest
and <« the weakest. We use Formgi (or short Form,,,,) to denote the set of all propositional
logic formulae over the atomic proposition set AP.

Propositional logic formulae are evaluated in the context of a state with the help of the
labeling function. The semantics is given by the relation |=,,,, < % x Form,,,, (or short |=),
which is defined recursively over the structure of propositional logic formulae as follows:

O Fprop @ iff a€ L(o),
g ':pmp (901 A 902) Zﬁ g l:rfmp ®1 and o ':pmp ¥2,
o ':pmp (_'90) Zﬁ g |7épmp P-

Though propositional logic is well-suited to describe states of a system, we are also interested
in describing computations of systems. Propositional logic extended with temporal modalities
can be used for this purpose.

3.2.2 Temporal Logics

Assume in the following a labeled state transition system £STS = (X, Lab, Edge, Init), a set of
atomic propositions AP, and a labeling function L : ¥ — 247 The semantics of LSTS specifies
its behavior as a set of paths. This path set can also be seen as a set of trees, which we get by
sharing common prefixes of paths and branching only at the place of the first difference. IL.e., for
each initial state there is a computation tree and each path of the system corresponds to a path
in one of the trees.

For deterministic systems with a single initial state, the computation tree is just a line. For
non-deterministic systems, the branching at a node of a computation tree represents possible
non-deterministic choices for further execution. Each reachable state is represented as a node in
one of the trees as many times as the number of different (finite) paths leading to it. Note that
this might happen infinitely often when the state is part of a reachable loop.

In the following we assume deadlock-free systems, i.e., infinite computation trees.

Example 3.7 (Computation tree). Assume the following simple state transition system,
where we omit synchronization labels on edges, but depict the labeling of states with atomic
propositions:

——— Draft version, please do not distribute
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@ (=) (o)

This system has the following computation tree:

Next we describe the temporal logics LTL, CTL, and CTL*, which are suited to argue about
paths in the computation tree.

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the computation
tree.

Definition 3.7 (Syntax of LTL). Assume a set AP of atomic propositions. LTL has the
abstract syntax

e = al(pA)] (=) | (Xe) | (pUp)

where a € AP. We use Form®E (or short Form,,.) to denote the set of LTL formulae over
AP.

Again, we omit parentheses when it causes no confusion, assuming that the Boolean operators
bind stronger than the temporal ones.

Recall that for a path @ = 09 — 01 — ... of LSTS and some i € N, i < |n|, we defined
7(i) = 0; and 7 = 0; — 7;11 — ... (see Definition .

A path 7 satisfies a proposition a € AP if the proposition holds in the first state w(0) of ,
ie., if a € L(w(0)). Using the “next time” temporal operator X we can build LTL formulae X
(“next time ¢”) which are satisfied by a path 7 iff © holds in 7!, i.e., when removing the first
state from 7. The second temporal operator is the “until” operator. The formula ¢; U w2 (“p1
until ,”) is satisfied by a path 7 = 09 — o1 — ... iff (5 holds for some suffix 7/ and ¢; holds
all the time before, i.e., for all 7% with 0 <1 < j.

As syntactic sugar the temporal operators F (“finally” or “eventually”) and G (“globally”) can
be introduced. The formula Fe (“finally ¢) is defined as trueld p, stating that ¢ will be true
after a finite number of steps. The formula Gy (“globally ¢”) is defined as —(true U —p), stating
that ¢ holds all along the path.
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Remark 3.1. Some approaches define two further temporal operators which we do not use in the
following but mention them for completeness. The first one is the “release” operator: 1 R @2, defined
as =((—p1) U (—p2)), expresses that o2 holds either forever or until ¢1 A 2 gets valid. The second one is
the “weak until”: the formula @1 Uyear ©2, defined as (o1 U 2) V (Gp1), weakens the meaning of “until”
with the possibility that ¢ holds forever without 2 becoming true.

It is also possible to define operators “since”, “previous”, “once”, “always been” referring to the past.
They are symmetric to “until”, “next”, “finally” and “globally”, but they refer to the past computation

instead of the future one.

Definition 3.8 (Semantics of LTL). Assume an atomic proposition set AP, a labeled state
transition system LSTS = (X, Lab, Edge, Init) and a state labeling function L : ¥ — 247, The
semantics of LTL is given by the satisfaction relation =, C (X UIL) X Formy,r, (or short )
which evaluates LTL formulae in the context of a path as follows:

T ELm a iff a€ L(n(0))

71— ':LTL 1 N\ Y2 Zﬁ (7T ):LTL SDI) A (71— ':LTL 902)
m 'ZLTL ' if w I#LTL 2

™ ':LTL XSO zﬁ mt ':LTL 2]

T o1l oo iff 35> 0. (77 Epr 2) AV0 <i < j. (7' o @1) -

For a state 0 € ¥ and an LTL formula ¢ we define 0 =, ¢ to hold iff m =prp, ¢ for all paths
m € (o) of LSTS starting in o, and LSTS Errr ¢ iff 00 Evre ¢ for all oo € Init.

Example 3.8. We give some example LTL formulae and some paths of the system from Exam-
ple[5.7 satisfying them. Thereby we omit labelings irrelevant for the satisfaction.

——
=)
—

g1 g1

IS
(2
—

®z ®= ©
® ©

)

)

G
G

. () (o)
Xb: @ %Y
{a} {a} {b)

{b)
Fb: @

{a}
go: ()

The initial state o1 of the system LSTS from Example does not satisfy Fb (written
o1 e Fb), since there is a path m = 01 — o1 — ... on which b never holds. But it satisfies
Fa, since the proposition a holds in the initial state.

@
) ©
©

)T
®z ©

©
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Remark 3.2. There are two special subclasses of path properties: safety and liveness properties. In-
tuitively, a safety property states that something “bad” never happens. E.g., the safety property Ga
expresses that the proposition a holds all the time. Partial correctness of a program—whenever the
program terminates its output is correct—is also a safety property. The violation of a safety property
by a path 7 can be shown by looking at a finite prefix of .

In contrast, liveness properties express that something “good” will eventually happen. E.g., Fa is
a liveness property meaning that a will happen after a finite number of steps. Termination is a typical
liveness property. To show the violation of a liveness property we must consider infinite paths.

Note that not all path formulae starting with the “globally” operator are safety properties. E.g.,
reactiveness, stating that something (let’s say a) holds over and over again, is a typical liveness property
which can be formalized as GFa.

By definition, the sets of safety and liveness properties are disjoint. However, their union does not
cover all path properties. E.g., program correctness can be expressed only by the conjunction of a safety
property (partial correctness) and a liveness property (termination).

Remark 3.3. Besides the above notation, for the temporal operators there is another commonly used
alternative notation:

for
for
for
for

o< 0o
Q9 x<

For example, the formula GF ¢ can also be written as O .

Computation Tree Logic (CTL)

Whereas LTL argues about linear paths, CTL formulae specify properties of computation trees.
We distinguish between state formulae and path formulae. Intuitively, state formulae describe
properties of the states (nodes) in the computation tree, and path formulae describe properties
of paths in the tree. On the one hand, a path formula can be converted into a state formula by
putting an existential or a universal quantifier in front of it, denoting that the path formula holds
for a path respectively for all paths starting in a given node of the computation tree. On the
other hand, state formulae are used to generate path formulae using the temporal operators. This
implies, that a CTL state formula contains quantifiers and temporal operators in an alternating
manner.

Definition 3.9 (Syntax of CTL). Assume a set AP of atomic propositions. CTL state for-
mulae can be built according to the abstract grammar

¥ ou=a| (AY) | (=9) [ (Ee) | (Ap)

with a € AP and where ¢ is a CTL path formula.
CTL path formulae are built according to the abstract grammar

o u= XY [ PUY

where 1 is a CTL state formula.
CTL formulae are CTL state formulae building the set FormAL (or short Former,).

We omit parentheses when it causes no confusion. Similarly to LTL, we can introduce the
“finally” and “globally” operators. For state formulae ¢ we define 1) = trueld 1 as path formulae.

24
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Note that the LTL definition Gy = —(trueld —)) of “globally” cannot be directly adapted to CTL,
since it is not accepted by the CTL syntax. Instead, we define

EGY <« —Atrueld —
AGyY < —Etrueld — .

Definition 3.10 (Semantics of CTL). Assume an atomic proposition set AP, a labeled state
transition system LSTS = (¥, Lab, Edge, Init) and a state labeling function L : ¥ — 247 The
satisfaction relation =gy, C (X UIL) X Former, (or short =) evaluates CTL state formulae in
the context of a state, and CTL path formulae in the context of a path as follows:

o Eor a iff a€ L(o)

a ):CTL 1 Ao iff (0' ):CTL wl) A (U ':CTL '(/)2)
o FEor. ™ iff o Fer ¥

o Ecr Ep iff Imell(o). m Eor @

o Ecr A iff Vomell(o). m Eor @

T FEor XY iff m(1) Fore ¥
T Eer ViUYs dff 30 < 4. (7(f) Fore 2) AV0 < i < j. (7(i) Fore Y1) -

For ¢ € Former, we define LSTS FEcr ¥ iff 00 Ecr ¥ for all og € Init.
Example 3.9. For our LSTS from Ezample[3.7 the CTL formula AGEXb holds, since at each

node of the computation tree we can take a transition to oo labeled with b.

The CTL formula AGEGa does not hold, as the path 01 — 092 — 09 — ... violates the path
property GEGa.

However, the CTL formula AGEX EGa holds.

Remark 3.4. Sometimes it is useful to define sub-logics of CTL that allow quantification in a restrictive
manner: ACTL stays for the subset of CTL in which existential quantification cannot be expressed and
ECTL for the one excluding universal quantification.

Remark 3.5. Additionally to the temporal operators in Remark [3.3] also quantifiers have an alternative
notation:

3 for F
YV for A

For example, the formula AGEF can also be written as YOI .

CTL*

The logic CTL* is an extension of LTL and CTL and allows arbitrary alternation of path quan-
tifiers and temporal operators.

Definition 3.11 (Syntax of CTL*). Assume a set AP of atomic propositions. CTL* state
formulae can be built according to the abstract grammar

o= al (WAY) | () | (Ep)

with a € AP and where ¢ is a CTL* path formula.

——— Draft version, please do not distribute
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CTL*

Figure 3.2: The expressiveness of LTL, CTL, and CTL*

CTL* path formulae are built according to the abstract grammar

o m= Pl(eAp)| (=p) | (Xe) | (pUp)

where 1 is a CTL* state formula.
CTL* formulae are CTL* state formulae building the set FormAL . (or short Former,. ).

Again, we omit parentheses when it causes no confusion. As in CTL, we can define the
“finally” and “globally” operators also for CTL* as syntactic sugar. Note that the universal
quantification is not part of the CTL* syntax since Ay can be defined as syntactic sugar by

Definition 3.12 (Semantics of CTL*). Assume an atomic proposition set AP, a labeled state
transition system LSTS = (¥, Lab, Edge, Init) and a state labeling function L : ¥ — 247, CTL*
state formulae are evaluated in the context of a state and CTL* path formulae in the context of
a path by the satisfaction relation |=grp C (X UIL) X Former« (or short =) as follows:

o Ecr a iff a€ L(o)
g ':CTL* "/’1 A ¢2 Zﬁ (J ):CTL* ¢1) A (0 ':CTL* 1/)2)
g ':(JTL* ﬁ"/} Zﬁ g l?écTL* 1/}

o Eor- Eg iff I ell(o). m Eomn- ¢

T FEorw ¥ iff 7(0) Fore ¥

T Eor 1 A@2 iff (T Eore ©1) AMT Fors ¢2)
T Eors 0@ iff T lors @

T FEor X iff ! Forwe ¢

T Ecr e1Upa iff 30 < 4. (77 Eor @2) AV0 <i < j. (1t Eor 1) -

For ¢ € Formegr+ we define LSTS Ecrws ¥ iff 00 Ecr ¥ for all og € Init.

The Relation of LTL, CTL, and CTL*

The logics LTL and CTL are incomparable, and both are included in CTL*, as shown in Fig-
ure 3.2} That LTL and CTL are incomparable means, that there are LTL formulae for which no
equivalent CTL formulae exist, and vice versa, there are CTL formulae which are not expressible
in LTL.

Example 3.10.
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e The LTL formula FGa is not expressible in CTL.
e The CTL formula AF AGa is not expressible in LTL.

There are CTL* formulae that syntactically does not belong to LTL or to CTL but for that
semantically equivalent LTL or CTL formulae can be given. However, CTL* is more expressive
than LTL and CTL together, i.e., there are CTL* formulae that can be expressed neither in LTL
nor in CTL (see Exercise [3.9).

Example 3.11. The CTL* formula A—GEFa with a € AP is syntactically not a CTL formula.
Howewver, it can be expressed by the semantically equivalent CTL formula AFAG—a.

The CTL* formula AGAFGa with a € AP is syntactically not an LTL formula. However, it
can be expressed by the semantically equivalent LTL formula FGa.

3.3 CTL Model Checking for LSTSs

Model checking of discrete systems is not the basic content of this lecture, therefore here we
restrict ourselves to the intuition behind expliciﬂ CTL model checking for LSTSs, which can
handle finite-state systems, only. This will be relevant later, as we will build finite abstractions
of infinite-state systems to be able to apply model checking to them. For more details on model
checking we refer to [BKO0S].

Given an LSTS, an atomic proposition set AP, a state labeling function and a CTL (state)
formula 19, CTL model checking labels the states of the LSTS recursively with the sub-state-
formulae of 1 inside-out, depending on the type of the subformula:

a: The labeling with atomic propositions a € AP is given by the labeling func-
tion.

1 A o Given the labelings for 1 and 15, we label those states with 11 A9 that are
labeled with both 1 and 5.

- Given the labeling for 1, we label those states with —¢ that are not labeled
with .

EXq: Given the labeling for ¢, we label those states with £ Xt that have a successor

state labeled with ).
Eiy1 U, Given the labeling for ¥, and 9, we

e label all with 15 labeled states additionally with F; U 19, and

e label those states that have the label 1); and have a successor state with
the label Ev1 U 19 also with Ei; U 1y iteratively until a fixed point is
reached, i.e., until no new labels can be added.

AXY: Given the labeling for ¥, we label those states with AX1 whose successor
states are all labeled with .

IExplicit model checking is based on the enumeration of states, in contrast to symbolic model checking using
a symbolic state representation like, e.g., binary decision diagrams (BDDs).
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Ay U ps: Given the labeling for 1, and s, we

e label all with v labeled states additionally with Ay U o, and

e label those states that have the label ¥ and all of their successor states
have the label Ay U 1o also with Ay U 1o iteratively until a fixed point
is reached.

The formula v is satisfied by the LSTS iff after termination of the procedure the initial state
is labeled with ).

Since 1y has only a finite number of sub-formulae and since there is only a finite number of
states that can be labeled in the iterative cases, the procedure always terminates. Note that this
model checking approach would not be complete, i.e., it would not terminate, for infinite-state
systems.

Theorem 3.1 (Time complexity of CTL model checking for LSTS [BKO08]). Assume an
LSTS LSTS with N states and K edges, an atomic proposition set AP, a state labeling function
and a CTL formula ¢ with M subformulae. Then the problem to decide whether LSTS |Ecrr ¥
holds can be answered in time O((N + K) - M).

Example 3.12. Assume again the LSTS from Ezample 37

fa} e @ )

In Example[3.9 we stated that this LSTS satisfies the CTL formula AGEX EGa. Now we can
prove this fact using model checking.
First we replace the syntactic sugar of the “globally” operator by its definition using

EGy < —Atrueld ~
AGY < - Etrueld —.
This yields
= (Etrueld = (EX- (Atrueld (—a)))) .

Model checking this property for the given system consists of labeling the states with the
following subformulae in this order:

1. ¢ = —a

2. g := Atrueld ¥y
3. 3 1=y

4. Vg := EXi3

5. s 1= "y

6. v = Etruell s

28
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7. = g

Labeling with the atomic proposition a is given by the labeling function: it holds only in oy.
For the labeling with the above subformulae we get:

1.

1 = —a: We label with 11 all those states where a does not hold. That means we label o
with d)l .

o = Atrueld 1y :

o We first label with 1o all those states where Yy holds. That means, we label oo with
Va.

e Those states that are not yet labeled with ¥ but whose successors are all labeled with
1o get also labeled with . However, there are no such states.

3 = —hy: We label with 3 all states that are not labeled with 1s. That means, we label
o1 with 3.

Wy = EX3: We label with 14 all states that have a successor state labeled with 3. That
means, we label both o1 and oo with 4.

U5 := =Py Label with s all states that are not labeled with 4. As both states are labeled
with Y4, no states get the label 15 attached.

Vg = Etrueld s:

o We label with g all states with the label 5. However, there are no such states.
o We label with s all states that are not yet labeled with g but that have a successor
state labeled with 1g. There are no such states.

Y7 = —pg: We label with 17 all states that are not labeled with 1g. That means, we label
both states o1 and oo with .

The labeling result is as follows:

a, b,
(3
ol oRE
3,
1547 ¢4,
7 P

As the initial state is labeled with 17, the LSTS satisfies ¥7.

Exercises

Modeling Languages

Exercise 3.1. Show that the LSTS parallel composition is commutative and associative.

Exercise 3.2. Show that the LTS parallel composition is commutative and associative.

Exercise 3.3. Construct the parallel composition of the automata for the controller and the gate from
Example [3:3]
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Logics

Exercise 3.4. Assume AP = {a,b}. Which of the following formulae are well-formed LTL formulae,
i.e., contained in Formpr.? Which ones are well-formed CTL formulae, i.e., contained in Formeor.?

e a
e aldd

e Faldbd

e ald (bU c)

e Eald (bU c)

ea VAGD

e AFEGa

e EF ((E Xa)U (A G D))

Exercise 3.5. Express the following properties as CTL* formulae using the atomic propositions from
AP = {c1,ca} with the meaning that ¢;, ¢ = 1,2 holds whenever process P; is in its critical section.

e [t never happens that both processes P; and P» are in their critical sections simultaneously.

e Process P will surely enter its critical section.

e For each possible program execution, process P; will eventually enter its critical section the first
time and it happens before P» does so.

e It might happen that none of the processes ever enter their critical sections.

e Whenever one of the processes enters its critical section it will leave it after a finite number of
computation steps.

e Process P; enters its critical section only finitely many times.

e Starting with Pi, the two processes enter their critical sections alternatingly forever.

Exercise 3.6. Assume the atomic proposition set AP = {send, receive, correct, terminate}. Which of the
following LTL formulae are safety properties? Which are liveness properties?

G(send — (F receive))
F(G —send)

G(sendV (X send))

F send

G (—receive)

send U receive)

send Uyeak TeCETVE)

G (terminate — correct)
F terminate

Exercise 3.7. Show that the LTL and the CTL definitions for the “globally” operator are equivalent.

Exercise 3.8. Assume an LSTS LSTS, a set AP of atomic propositions and a labeling function L :
¥ — 247 Are the following statement true? Prove or disprove.

1. Yy € Formpry. ((ﬁSTS ':LTL 1/1) > (ﬂSTS 'ZCTL* Aw))
2. V’l/] € Formcn. ((LSTS ':CTL 'l/)) R a (ﬁSTS ':C’TL* w))

Exercise 3.9. To show that CTL" is more expressive than LTL and CTL together, give a CTL* formula
that can be expressed neither in LTL nor in CTL.

Exercise 3.10. Define a meaningful syntax and semantics for the language ACTL from Remark [3.4]

CTL Model Checking for LSTS

Exercise 3.11. Apply the CTL model checking algorithm to the LSTS from Example 3.9 to decide
whether AG(a vV EGb) holds or not.
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Chapter 4

Discrete-Time Models

Though discrete systems have no continuous components in their model, the real-time behavior
of the modeled systems may nonetheless be relevant. Assume a controller executing a program.
The program itself can be modeled as a discrete system, however, it may be critical if the program
executes too long and the control values arrive too late.

If we want to model time without having a hybrid model, we can use a discrete-time model:
Time is modeled by discrete time steps, also called ticks. Each transition step lasts for exactly
one tick. Thus the elapsed time between two actions is always a multiple of a tick.

In order to describe the time behavior of discrete-time systems, the temporal operators of
LTL, CTL, and CTL* can be extended with time bounds. This way we can express not only
that some events take place but also when they take place in time. However, this extension
does not increase the expressive power of the logics, i.e., a formula in the extended logics can be
represented with an equivalent formula without the discrete-time extension. This has the effect
that we can use model checking for LTL, CTL and CTL* also for their discrete-time extensions.

Remember that only the temporal operators “next” & and “until” U are basic, the remaining
ones like “finally” F and “globally” G are syntactic sugar.

We extend the “next” operator X with an upper index. The formula X*¢ with k € N denotes
that ¢ is true after k steps. This indexed “next” operator does not increase the expressiveness
of the logic, as it is syntactic sugar. In LTL it is defined recursively by

e = {XXklcp else.

Thus X*p =X ... X ¢ in LTL.

k
In CTL the quantifiers and temporal operators are alternating. For CTL we define

k. P ifk=0
EX™ = { EXEXF14)  else.
Thus EX* ) = EX ... EX . The definition in combination with the universal quantifier AX*)
—_——

k
is analogous.

The extension of the “until” U operator is similar, but here we allow intervals instead of fixed
values for the time bounds. The formula ¢ Ylkrke2] w2 (k1,k2 € N, k; < ko) states that there
exists a k € N with k1 < k < k5 such that ¢ holds in k steps and ¢; holds all the time before.
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CHAPTER 4. DISCRETE-TIME MODELS

We also allow right-open intervals with ks being oo, such that we can still represent the original
“until” operator by 1 U vy = 1 U ps.
In LTL we define

w1 U @2 for I =10, 00)
o Ul oy = 2 o for I =10,0]
p1 A X((pl Z/l[kl Lk2—1] (pg) fO?” I = [k‘l, kQL ki1 >0
o V (o1 A X (1 UOF2 00))  for T = [k, ko), k1 = 0,ke >0 .

In CTL we define

Eyy U for I =[0,00)
B Yo for I =10,0]
BOiUlve = N g N BXB@ U ) for T = [kl k> 0
Ga V (1 A BXE(y U1 o)) for I = [k, ko), k1 = 0,ks > 0

We also write

U=F instead of U],
U=k for Ykl

U=* for Y**! and
U for Y191,

Example 4.1. The discrete-time LTL formula a U3 b is defined as
aANX(@aNX(DV(aNnXD))).

It is satisfied by paths of the following form:

{a} {a} {0}

{a} {a} {a} {0}

As the discrete-time temporal operators are defined as syntactic sugar, model checking can
be applied to check the validity of discrete-time temporal formulae for labeled state transition
systems [Kat99, [CGPO01].

Exercises

Exercise 4.1. For non-empty intervals I C N of the form [k1, k2] or [k1,00) (k1,k2 € N, k1 < k2), define
the discrete-time LTL operators FX o and G’ as syntactic sugar.

Exercise 4.2. For non-empty intervals I C N of the form [k1, k2] or [k1,00) (k1,k2 € N, k1 < k2), define
the discrete-time CTL operators AF ¢, EF p, AG'p and EG! ¢ as syntactic sugar.
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Chapter 5

Timed Automata

The popular modeling formalism of timed automata combines labeled transition system models
with a notion of time as the only continuous component. Its success is based on two main
facts: Firstly, this model class, despite its rather weak expressiveness, already allows to model a
wide range of real-time systems. Secondly, the model checking problem for safety and liveness
properties of timed automata is still efficiently decidable. Driven by both academic and industrial
interests, a lot of effort was put into tool support. Uppaal is one of the most widely used tools
for model checking timed automata.

In this chapter we first introduce timed automata in Section [5.1} In Section [5.2] we extend
the logic CTL with continuous-time aspects, resulting in the logic timed CTL (TCTL). In this
book we restrict ourselves to the introduction of TCTL. Another popular timed temporal logic
is, e.g., metric LTL (MTL). We discuss model checking TCTL properties of timed automata in
Section [5.3] For further reading on timed automata and its model checking algorithm we refer
to [BKOS].

5.1 Syntax and Semantics

A timed automaton has a finite number of clocks as variables. A clock measures the time, i.e.,
it continuously evolves at rate 1. The values of the clocks can only be accessed in a limited way.
For read access, the only fact we can observe about a clock value is the result of a comparison of
its value with a constant. Such comparisons can be formulated by clock constraints. For write
access, clocks can only be reset, i.e., their values can only be set to 0.

Definition 5.1 (Syntax of clock constraints). Clock constraints over a finite set C of clocks
can be built using the following abstract grammar:

g = z<cl|lz<clz>clz>c|lghyg

wherecENHanda: eC.

Clock constraints which are not a conjunction are called atomic. The set of atomic clock con-
straints over a set C of clocks is denoted by ACCc. The set of all clock constraints over C is
referred to as CCec.

Clock constraints are evaluated in the context of a waluation v : C — R, assigning non-
negative real values to clocks. We use Ve (or short V') for the set of all valuations.

IWe could also allow ¢ € Q.
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Definition 5.2 (Semantics of clock constraints). The semantics of clock constraints over a
finite set C of clocks is given by the relation Fce € V x CCc  (or short =) defined as follows:

viEccx<c iff v(z)<c
vEccz<c iff v(z)<c
viEccx>c iff v(z)>c
viEcczx>c iff v(z)>c

v ):cc g1 N\ g2 Zﬁ (V ':cc 91) A (V lzcc 92) .

For the sake of readability we also use notations like
true, « € [c1,¢2), @<z <ca, T=¢...

with the expected meaning. E.g., + = ¢ can be defined using z > c Az < c.
Based on its semantics, a clock constraint g € C'C¢ can also be seen as the set {v € V' | v |= g}
of all valuations that satisfy g.

Remark 5.1. Note that the syntax of clock constraints allows conjunction but no negation, assuring
that the sets defined by clock constraints are convex. This has the big advantage that, when we start
time progress with a valuation v € V satisfying a clock constraint g € CC¢ then, since time progress is
linear, when a valuation v + ¢ after some time elapse t € R, still satisfies the clock constraint g then
we know that all the valuations inbetween also satisfied g, i.e., v+ =g for all 0 < ¢’ < t.

As mentioned above, write access to clocks is restricted to resetting their values to 0.

Definition 5.3 (Syntax of clock reset). Given a finite set C of clocks, a clock reset is an
expression of the form reset(C) with C CC.

Sometimes we also write reset(zy,...,x,) instead of reset({x1,...,zn}).

Also the semantics of a clock reset is given in the context of a valuation. Semantically, a
clock reset reset(C) denotes that the values of all clocks in C' get reset to 0, and the values of all
other clocks from C\C remain unchanged.

Definition 5.4 (Semantics of clock reset). Let C be a finite set of clocks and C C C. The
result of reset(C) applied to a valuation v € V is given by the valuation satisfying

(reset(C) in v)(z) = { 0  ifzeC

v(z) otherwise
forall x € C.
The following notation formalizes time delay.

Definition 5.5. For all valuations v € V' and constants t € R, we define the valuation v+t by
(v+1t)(x)=v(z)+t forallz €C.

Example 5.1 (Clock access). Assume a clock set C = {z,y} and a valuation v : C — Ry, with
v(z) =2 and v(y) = 3. Then

e v+ 9 assigns 11 to x and 12 to y,

reset(z) in (v +9) assigns 0 to x and 12 to y,

(reset(x) in v)+9 assigns 9 to x and 12 to y,

reset(z) in (reset(y) in v) assigns 0 to both x and y, and
reset(xz,y) in v assigns 0 to both x and y.
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CHAPTER 5. TIMED AUTOMATA

Next we give the definition of timed automata. These models have an LTS component with
a rectricted syntax for discrete steps, allowing only clock constraints and clock resets in the
definition of the transition relation. This discrete model is extended by introducing time as a
continuous quantity: while the control stays in a location, time ellapses and the values of the
clocks increase continuously. The main differences to LTS models are the following:

The variable set of a timed automaton is denoted by C instead of Var to express the fact
that all variables of a timed automaton are clocks. assign the value 0 to all clocks. A state
of a timed automaton is a location-valuation pair (I,v) € Loc x Ve = X, storing the location
of the timed automaton in that the control currently stays together with the current values
of the clocks.

In order to restrict the transition relation of the discrete edges to the less powerful clock
access, we use enabling conditions in form of clock constraints combined with reset sets in
place of general transition relations. Given a pair (g, C) € CC¢ x 2¢ of a clock constraint
g and a reset set C, the corresponding transition relation p C V? is given by

p={w,v)eV?|viEgnr =reset(C) in v} .

Thus edges have the form (¢, a, (g,C),#') € Loc x Lab x (CC¢ x 2¢) x Loc).

As long as the control stays in a location, the values of all clocks evolve with the derivative
1. That means, when a location is entered with a valuation v, after ¢ time the valuation
will be v 4 t¢.

The locations can be annotated with invariants. Control may stay in a location only as
long as the invariant of the location is not violated. Invariants allow to enforce discrete
transitions; without invariants, the control could stay in a location forever. Similarly to
the guards of the discrete transitions, also invariants are defined by clock constraints.
There is a further difference between LTS and timed automata regarding the parallel com-
position. For LTS the parallel composition supports shared variables accessible by different
components. However, allowing shared variables in the timed automata composition would
lead to some complications, which we do not discuss here. Instead, we restrict the com-
position of timed automata to components having disjoint variable sets. Note that when
excluding shared variables, the only way of communication is label synchronization. Thus
the definition of the controlled variable sets Con and also the 7-transitions get superfluous.

Definition 5.6 (Syntax of timed automata). A timed automaton is a tuple T = (Loc,C, Lab,
Edge, Inv, Init) with

Loc is a finite set of locations,

C is a finite set of real-valued variables called clocks,

Lab is a finite set of synchronization labels,

Edge C Loc x Lab x (CC¢ x 2°) x Loc is a finite set of edges,

Inv : Loc — CC¢ is a function assigning an invariant to each location, and

Init C Loc x Ve = X a set of initial states with v(x) = 0 for all (¢,v) € Init and each
x eC.

To simplify the formalisms, we extend the notations for valuations to states and use o o g
for a state 0 = (¢, v) to express that v |=c¢ ¢. Similarly, for o = (£, ) we also write reset(z) in o
to denote (¢, reset(x) in v).
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CHAPTER 5. TIMED AUTOMATA

Definition 5.7 (Semantics of timed automata). The operational semantics of a timed au-
tomaton T = (Loc,C, Lab, Edge, Inv, Init) is given by the following two rules:
(¢,a,(g,C),0') € Edge viEg v =reset(C)inv v = Inv(l)
(6,v) S (0,0
teR,, V=v+t V[ Inv{)
(6v) > (V)

Rul €discrete

Ruleti,,,e .

We write ¢ — o' instead of o % o' or o - o' when the type of the step is not of interest.

A run (or path or execution) of T is an infinite sequence o9 — o1 — 0a... with o; € ¥ and
oo = (bo,vp) € Inv(by); if additionally o¢ € Init then we call ™ an initial path.

We use I1(o) (or short I1(c)) to denote the set of all paths of T starting in o € X, and define
7 = U,ex Hr (o) (or short I1). A state is reachable if there is an initial path leading to it; we
write Reachy (or short Reach) for the set of reachable states of T .

Note that, since the invariants are convex sets, it is enough to require that they hold after each
time step, and we do not need the requirement that they hold during the whole period of a time
step. Together with the requirement that the starting states of paths satisfy the corresponding
invariants, we get by induction that the invariants hold on all paths at each time point.

Again, the semantics of a timed automaton induces an LSTS for its (in general uncountable)
state space. As in the case of discrete systems, also timed automata can be augmented by a
labeling function. However, since the state space is now uncountable, we attach propositions to
the locations (instead of the states) by a labeling function L : Loc — 247 where AP denotes the
set of atomic propositions. To simplify the notation, we overload the labeling function defining
L:Y — 247 with L((¢,v)) = L(¢).

Timed automata are often represented graphically, where non-synchronizing labels, trivial
conditions and empty reset sets are skipped. As all clocks evolve with derivative 1 we do not
represent the time behavior in the graphs.

Example 5.2. The graphical representation

K/

b: x> 3 reset(x)

denotes the timed automaton T = (Loc,C, Lab, Edge, Inv, Init) with

Loc = {¢,0'}
C= {I}a
Lab = {a, b},

Edge={(¢, a, (x>1, 0), &), (¢, b, (x >3, {z}), 1)},
Inv(0) =x <2, Inv({') =z < 4,
Init = {(¢,vp)} with vy(x) = 0.

Definition 5.8 (Parallel composition of timed automata). Let T; = (Locy,Cy, Laby, Edge,,
Invy, Inity) and T = (Loca, Ca, Laby, Edges, Invs, Inits) two timed automata with Cy N Co = ().
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The parallel composition T1||T2 is a timed automaton T = (Loc,C, Lab, Edge, Inv, Init) with
valuations v : C = Ry, valuation set V', and states ¥ = Loc x V', where

Loc = Locy X Loco

C=C1UC

Lab = Laby U Labs

Inv((€1,42)) = Invi(€1) A Inva(€2) for all (¢1,¢3) € Loc
Init = {((1,42),v) € B | (¢1,v) € Init1 A ({a,v) € Inits}
Edge =

{((£1,02),a,(g1 A g2,C1 U Ca), (€1, 45)) | (L1,a,(g1,Cr), 01) € Edgey A
(L2,a,(g2,C2), l;) € Edgey}
{((£1,02),a,(9,C), (€1, 62)) | (L1,a,(9,C), ¢;) € Edge; Na ¢ Labs}
{((t1,02),a,(g,C), (1,£5)) | (fa2,a,(g,C),t5) € Edgey Na ¢ Laby} .

To illustrate the parallel composition, we extend our previous LSTS railroad crossing model
to a timed automaton model.

Example 5.3 (Railroad crossing). We extend Ezample with real-time behavior as follows:

o After the train triggers the “approach” signal it reaches the gate between 2 and 3 minutes.
It passes the track between the “approach” and the “exit” semsors within 5 minutes. The
timed automaton H prein modeling the train has a clock x which is a control variable in each
location.

o After receiving an “approach” signal, the controller delays 1 minute before it sends a “lower”
signal to the gate. After receiving an “exit” signal it notifies the gate by emitting a “raise”
signal with a delay of at most one minute. The timed automaton model H controlier Of the
controller has a clock y being a control variable in each location.

e The gate needs at most one minute to be lowered and between one and two minutes to be
raised. The timed automaton model HGate has its own clock z, being a control variable in
each location.

Adapting the syntax of timed automata we get the following graphical representation:
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exit:

approach:

reset(x)

approach: 1 up lower: | coming down
reset (y) y<1 reset(z) z<1
P SIE N
< I Al
S — 93 N
3 exit: going up raise: down
y<1 reset(y) z<2 reset(z)

5.1.1 Continuous-Time Phenomena

Similarly to LTS, the semantics of a timed automaton induces a LSTS. Each path in the in-
duced LSTS corresponds to a possible system behavior. However, some of the paths may model
unrealistic behavior.

Time convergence: There are syntactically inavoidable paths of timed automata along which
time converges, i.e., time never evolves beyond some value. For example, the timed au-
tomaton from Example [5.2] has a path

) S () L (0 v) B ()

starting in the initial state and executing time steps with durations converging to 0. The
time duration Z:-L:l% converges to 2 with path length n — oco. Such a path is called
time-convergent. Paths that are not time-convergent are called time-divergent.
Time-convergent paths are not realizable, but are unavoidable in the modeling. We will
explicitly exclude such paths in the semantics of the logic TCTL for the property specifi-
cation.

Time lock: There could be states in the LSTS of a timed automaton from which all paths are
time-convergent, such that there is no possibility that time progresses forever. Such states
do not allow time divergence, and are therefore called time locks. Timed automata without
time locks are called time-lock free. Time locks are modeling flaws, i.e., they can be avoided
by appropriate modeling.

Zeno paths: Paths along which infinitely many discrete steps are performed in a finite amount
of time are called Zeno paths. Note that all Zeno paths are time-convergent. Zeno paths
are not realizable, as they would require infinitely fast processors. They are also modeling
flaws and can be avoided by careful modeling.

Next we formalize the above properties.
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Definition 5.9 (Time convergence, time lock, Zeno paths). For a timed automaton T =
(Loc,C, Lab, Edge, Inv, Init) we define the time duration of a step by the function ExecTime :
(LabUR.,) — Ry, with

0 ifa€ Lab

EzecTime(a) = { a ifa€Ry,

The time duration of an infinite path ™ = 0o -5 01 2> 0o 3 ... of T is defined by the (overloaded)
function

EzecTime(mw) = ZE:vecTime(Ti).
i=0
o An infinite path m € II is said to be time-divergent if EzecTime(mw) = oo, and time-

convergent otherwise.
For a state o € X we define g, (0) C II(0) to be the set of time-divergent infinite paths
starting in o, and Mgy = U, cx, Haw(0).

o A state ¢ € ¥ contains a timelock iff Iy (c) = 0. A timed automaton is said to be
timelock-free if none of its reachable states contains a timelock.

o An infinite path m € Il is said to be Zeno if it is time-convergent and infinitely many
discrete actions are executed within w. The timed automaton T is said to be non-Zeno if
it has no Zeno paths.

As mentioned above, Zeno paths a modeling flows. To check whether a timed automaton is
non-Zeno is algorithmically difficult. However, there is a sufficient (but not necessary) condition
which is simple to check.

Theorem 5.1 (Sufficient condition for non-Zenoness). Assume a timed automaton T =
(Loc,C, Lab, Edge, Inv, Init) such that for each sequence of edges

a1:91,C1 a2:92,C2 nign,C
Ko 51 EQ e gnzfo

in T there exists a clock x € C such that
1. x € C; for some 0 <1i<n and
2. for all valuations v € V there exists a ¢ € Ny, such that
v(iz) <ec — (v g; orv = Inv(ly))
for some 0 < 7 < n.

Then T is non-Zeno.

5.2 Timed Computation Tree Logic (TCTL)

Timed automata often model real-time systems that are time-critical in the sense that for their
correct functioning certain events must occur within some time bounds. For example, in case of
an accident the airbag of a car must react within very tight time limits. Also other controller
are supposed to support control values within some predefined time bounds.
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CHAPTER 5. TIMED AUTOMATA

The untimed logics of the previous section are not yet able to argue about such time con-
straints. In this section we extend them for this purpose. Thereby we restrict ourselves to the
extension of CTL to timed CTL (TCTL). The extensions of LTL and CTL* are analogous.

The main differences between CTL and TCTL are as follows:

e For discrete systems we used an atomic proposition set and a labeling function to assign
atomic propositions to states. Besides such atomic propositions, for timed automata we
also want to argue about clock values in form of atomic clock constraints. Therefore, both
atomic propositions and atomic clock constraints are atomic TCTL state formulae.

e Since timed automata model continuous time, there is no “next” operator in TCTL.

e Remember that a CTL “until” formula 1 U 15 is satisfied by a path if 1), is satisfied by a
state somewhere on the path, and 1, holds in all the states before. In TCTL, the “until”
operator of CTL gets indexed with a time interval. TCTL “bounded until” formulae have
the form 1 Ultrt2] 2, where the time interval [t1, t2] puts a restriction when o gets valid.
A path satisfies the formula 11 U[1t2] oy if, when measuring the time from the beginning
of the path, 9 is valid at a time point ¢ € [¢1, 2], and 91 V 1) holds all the time before.
(Note that we do not require 17 to hold all the time before, but only the weaker statement
Y1V o)

e There is a difference between the CTL and the TCTL semantics of quantification over
paths. CTL quantification ranges over all paths. However, timed automata have time-
convergent paths that cannot be excluded by modeling. Since those paths are not realistic,
they are not considered in the TCTL semantics. Therefore, TCLT quantification ranges
over time-divergent paths, only.

Definition 5.10 (Syntax of TCTL). TCTL state formulae over a set AP of atomic proposi-
tions and a set C of clocks can be built according to the abstract grammar

¢ ou= alg | (@W@AY)[(=9) [ (Ee) | (Ap)

with a € AP, g € ACC¢, and ¢ are TCTL path formulae. TCTL path formulae are built
according to the abstract grammar

o u= VU
with J C Ry, is an (open, half-open or closed) interval with integer bounds (open right bound
may be 00), and where i are TCTL state formulae. TCTL formulae are TCTL state formulae.

Similarly to CTL, we introduce further operators as syntactic sugar. Besides the “finally” and
“globally” operators, we consider TCTL formulae with intervals [0, 00) as CTL formulae.

F = true U’ 1)
EGTy = —AF -
AGT = -EF'—
PrU Py =y U gy
Fip = Flooy
gy = gy
For the time bounds on temporal operators, we sometimes write < ¢, < ¢, ... instead of the

intervals [0, ], [0,¢), .. ..
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Definition 5.11 (Semantics of TCTL). Let T = (Loc,C, Lab, Edge, Inv, Init) be a timed
automaton, AP a set of atomic propositions, and L : Loc — 24 a state labeling function. The
satisfaction relation |=ror, C (X UILY) X Formaeer, (or short =) evaluates TCTL state and path
formulae as follows:

0 FEror true

0 FErera iff a€ L(o)

o ':TCTL g if o ):cc g

g |:TCTL - Zﬁ o %TCTL P

g ':TCTL 1 N o Zﬁ g ):TCTL wl and o ':TCTL o

0 FEror Ep iff ®™Ercr. @ for some w € Iy, (0)
o Eror A iff ™Erer @ for allm € Mgy, (o)

where 0 € 3, a € AP, g € ACC(C), ¥, 1 and o are TCTL state formulae, and ¢ is a TCTL
path formula.

For an infinite path m = 09 3 01 B 00 B ... € g, let d; = EzecTime(c;). The satisfaction
relation for bounded until formulae is defined by

T Eror, U1 UT o iff there is an i > 0 such that o; + d = rery Vo
for some d € [0,d;) with (Xi_ydi) +d € J
and for all j <1 it holds that 0 + d' Erors P2
for any d' € [0, d;] with either j <i ord <d .

We define St
Sat(p) ={oc € X | 0 Ercr ¥}

and

T Erer ¥ iff Yo = (6,v) € Init N Inv({). 0 Eror V.
Note that TCLT quantification ranges over time-divergent paths, only.

Remark 5.2. The TCTL semantics introduced above is the so-called continuous semantics. There is
another interpretation of TCTL formulae based on a pointwise semantics, the main difference being that
along a path m = 09 — 01 — ... only the states o; are considered in the satisfaction relation but not
the other states visited during time steps.

There is also another established variant of the above-defined continuous TCTL semantics, differing
in the meaning of the bounded until formula ¢; U J 1a: instead of 11 the weaker requirement 11 V 2
must hold before the time point of 5.

T Erore Y1 U7 o iff there is ani > 0 such that o; +d ErorL 2
for some d € [0,d;] with (Y1_t dx) +d € J
and for all j < it holds that o; + d' |=rcrs 11V s
for any d' € [0,d;] with either j <i ord <d .

5.3 Model Checking TCTL for Timed Automata

After introducing timed automata and the logic TCTL to define properties of timed automata,
in this section we give a model checking algorithm to check whether a TCTL formula holds for
a given timed automaton. The main problem for model checking TCTL for timed automata lies
in the infinite state space. We use abstraction to solve this problem.

The basic structure of the model checking algorithm is as follows:
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Input: Non-Zeno timed automaton 7 with clock set C,
a labeling function L over a set of atomic propositions AP, and
a TCTL formula ¥ over AP and C

Output: The answer to the question whether 7 = rcry ¢

1. Eliminate the timing parameters from 1, resulting in a formula 1& which contains atomic
clock constraints but no intervals on the temporal operators. If we see atomic clock con-
straints as atomic propositions then ¥ is a CTL formula.

2. Make a finite abstraction of the state space, with the abstract states called regions.

3. Construct an abstract finite transition system RTS (region transition system) with re-
gions as abstract states, and label the regions with atomic propositions and atomic clock
constraints. We have T Ercr, ¢ it RTS o ¥.

4. Apply CTL model checking to check whether RTS Feory 0.
5. Return the result of the CTL model checking.

Assume in the following an input for the algorithm in form of a timed automaton 7 =
(Loc,C, Lab, Edge, Inv, Init), a set of atomic propositions AP, a labeling function L : Loc — 247,
and a TCTL formula v over AP and C.

5.3.1 Eliminating Timing Parameters

Let 7/ = T @ z result from 7 by adding a fresh clock 2 which never gets reset. We use this
auxiliary clock to measure the time from the beginning of a path and express the time bound of
a bounded until as atomic clock constraint. For any state o of T it holds that

0 Eror, E(1 U7 o) iff  reset(z) in 0 Eror, EY1 U (2 € ) Aib)
0 Eror Ay U7 h9)  iff  reset(z) in o Eror At U ((2 € J) Ahg) .

We transform all subformulae of the TCTL formula ¢ to be checked applying the above
equivalences, resulting in the formula 1[) Correctness of the transformation is straightforward
for non-nested formulae. For nested formulae we need to slightly adapt the CTL model checking
algorithm, as will be explained later (see Section .

Example 5.4. The TCTL formula EFS2AGR23lg gets transformed into EF(z < 2 AN AG(2 <
z<3—a).

5.3.2 Finite State Space Abstraction

Since the state space of a timed automaton is in general infinite, to enable model checking
we define a finite abstraction of the state space. In this abstraction we represent a (possibly
infinite) number of states that behave “equivalent” by a single abstract state. That two states
behave “equivalent” means, that no observation can distinguish between their behavior. Here we
do not formalize the notion of observation and observational equivalence, neither the notion of
bisimulation. Instead, we define that two states may (but do not have to) be equivalent only
if they satisfy the same formulae of a given logic. This definition implies, that model checking
the concrete system without abstraction would yield the same result as model checking the
abstraction.
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Up to the identity relation, an abstraction has in general less states than the concrete system.
For this reason, abstraction is widely used also for finite-state systems, since model checking is
faster and needs less memory for smaller systems than for larger ones. For infinite-state systems,
for which state enumeration is not possible, abstraction may give us a finite-state system which
can be model checked.

Before we deal with the abstraction for timed automata and TCTL, let us have a short look at
abstractions for the simpler case of labeled state transition systems and the logic CTL*. Assume
a labeled state transition system LSTS with state set 3, a set of atomic propositions AP, a
labeling function L : ¥ — 247 and two states 01,02 € ¥. The following conditions assure that
o1 and oy satisfy the same CTL* formulae:

e To satisfy the same atomic CTL* formulae, i.e., atomic propositions, o; and o2 must be
labeled with the same set of atomic propositions, i.e., L(o1) = L(o2).

e To satisfy the same nested CTL* formulae, for each successor state of o; there must be
a successor state of oo such that the two successor states again satisfy the same CTL*
formulae, and vice versa, for each successor state of oy there must be a successor state of
o1 satisfying the same CTL* formulae. Thus we require that if there is a transition from
o1 to a state o7, than there is also a transition from oy to a state o} that is equivalent to
o1, and vice versa.

Due to this inductive definition, we say that equivalent states can “mimic” each other’s be-
havior in terms of atomic propositions.

The transition system L£STS may be parallel composed with other LSTSs. In this case
label synchronization has to be considered. In order to be able to do the same synchronization
steps from equivalent states, we extend the previous requirements as follows (the extensions are
emphasized):

e As before, to satisfy the same atomic CTL* formulae, i.e., atomic propositions, o and oy
must be labeled with the same set of atomic propositions, i.e., L(c1) = L(03).

e We require that if there is a transition from o; to a state o with label a, than there is also
a transition with the same label a from oy to a state o} that is equivalent to o}, and vice
versa.

We say that equivalent states can “mimic” each other’s behavior in terms of atomic proposi-
tions and transition labels. For a LSTS, a bisimulation is defined to be an equivalence relation
on the state set satisfying the above conditions for each pair of equivalent states.

Let us try to extend the above conditions to timed automata and for the logic TCTL. Due to
the discrete steps of timed automata, we will need similar conditions as above to cover atomic
propositions and discrete steps. However, timed automata has additionally continuous steps,
and TCTL may refer to atomic clock constraints. Thus we additionally require that equivalent
states can mimic also the time steps of each other, and that equivalent states satisfy, in addition
to atomic propositions, also the same atomic clock constraints.

Assume now a timed automaton with state space . Two states o3 = (¢1,11) € ¥ and
o9 = (f3,19) € X are equivalent, implying that they satisfy the same TCTL formulae, if the
following conditions hold (the extensions are again emphasized):

e To satisfy the same atomic TCTL formulae, i.e., atomic propositions and atomic clock
constraints, o1 and oo must be labeled with the same set of atomic propositions, i.e.,
L(¢y) = L(¢3), and must satisfy the same atomic clock constraints.

e We require that if there is a discrete transition from oy to a state of with label a, than
there is also a discrete transition with label a from o3 to a state ¢ that is equivalent to
o}, and vice versa.
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e For each time step from oy in a successor state o there is also a time step from oo to some
ob such that o, is equivalent to of, and vice versa.

The above conditions are similar to the definition of time-abstract bisimulation (which does
not consider atomic clock constraints). Note that for the time steps, the actual duration of the
mimicking time step is not important, as long as the successor states cannot be distinguished by
any TCTL formulae. This fact will become more clear later, when defining the abstraction for
timed automata.

The above conditions would still lead to an infinite abstract state space, since there are
infinitely many different clock constraints with different satisfying state sets. However, we need
a finite abstraction to check a certain TCTL property. Consequently, equivalent states do not
have to satisfy the same TCTL formulae but only the same subformulae of the given TCTL
property. Thus we can release the requirements for all clock constraints to clock constraints
appearing in the given timed automaton or in the given formula.

Assume a timed automaton 7 with locations Loc, clocks C, and state space X. Assume
furthermore an atomic proposition set AP, a labeling function L : Loc — 24F, and a TCTL
formula 1. Below we define an abstraction by an equivalence relation 2C 3 x 3 on the states of
T. We use

e |r| to denote the integral part of r € R, i.e., max{c € N| ¢ < r}, and
e fr(r) to denote the fractional part of r € R, i.e., r — |r].

For clock constraints x < ¢ with ¢ € N we have:
vErz<c & v(z)<c e |v(r)] <e
For clock constraints z < ¢ with ¢ € N we have:
vEz<c & v(r)<c e [v(z)] <cV(lv(x)] =cAfriv(z)) =0).

That means, if we would require that equivalent states should satisfy the same clock con-
straints over the clock set C, then only states (¢,v) and (¢, ') satisfying

lw(@)] = [V/(2)] and fr(v(z)) =0 iff fr(/(z)) =0

for all x € C could be equivalent. However, as mentioned above, if we distinguish between all
possible integral parts in N, we would generate infinitely many equivalence classes.

Given the timed automaton 7 and the TCTL formula 1, we are only interested in those
clock constraints that play a role in the satisfaction or violation of ¥ by 7. I.e., it is sufficient if
equivalent states satisfy the same clock constraints occurring in 7 or 1.

Let ¢, be the largest constant which a clock x is compared to in T or in 1. Then there is
no observation which could distinguish between the z-values in (¢,v) and (¢,v') if v(z) > ¢, and
V'(x) > ¢y Le., equivalent states (¢,v) = (¢,v") should satisfy

(5.1) (v(x) >ce ANV (2) > ) V
(lv(@)] = [V ()] A fr(v(z) =0 iff fr(v'(z)) =0)

for all z € C.

Example 5.5. Assume that T has two clocks © and y with c, = 3 and ¢y = 2, i.e., the largest
constant that x is compared to in T orin v is 3, and for y this is 2.
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Then we can possibly observe different behavior for states satisfyingx =0,0< x <1, z =1,
l<z<2,x=22<x<3,x=3, and x> 3. Le., two states that satisfy two different clock
constraints from the above list must not be equivalent.

Similarly fory, only states satisfying the same clock constraint from the listy =0, 0 <y < 1,
y=1,1<y<2,y=2, andy > 2 may be equivalent.

In the graphical representation below, valuations belonging to different points, line fragments,
or bozes must not be equivalent. This yields at least 48 equivalence classes.

Y r=3 2<x <3
y=2 l<y<?2

) ’///,,—""/‘

1 77777777777777777 {E:S
O<y<1

0 T

0 1 2 3
As the following example illustrates, we must make a further refinement of the abstraction.

Example 5.6. Assume the following fraction of a timed automaton and the corresponding clas-
sification of states according to the above observations:

\ e>9

v A
0 V! > T
o 1 2

If the control is in location | with a valuation v with, e.g., v(x) = 1.2 and v(y) = 0.5, then the
transition with condition x > 2 cannot be taken, since the invariant y < 1 forces the control to
leave the location before the value of x reaches 2. But if the valuation assigns, e.g., V' (x) = 1.5
and V' (y) = 0.2, then the transition gets enabled before the invariant gets violated.

Though the classification respects Equation the valuations in the classes are not yet of
the same behavior.

What we need is a refinement taking the order of the fractional parts of the clock values
into account. ILe., we must extend the condition of Equation [5.1] with the requirement that
states (¢,v) and (¢,7') may be equivalent only if for all clock pairs z,y € C with v(z),r'(z) <
ca ANv(y), V' (y) < ¢y

frv(@) < friv(y)) iff frv'(z)) <fr@(y)) A

friv(@) = fr(v(y)) iff fr/'(z) =fr@'(y) A

frv(@) > friv(y)) of frv'(z)) > fr(V(y)).
Because of symmetry requiring

(5:2) frv(@) < friv(y)) i frv'(z) < friv'(y).

is sufficient.
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Example 5.7. We extend the graphical representation of the clock equivalence classes from Ezx-
ample taking the conditions of both Equations and into account. Below, the left
picture shows the division of the state space into regions, whereas the right picture enumerates
the resulting regions.

Y Y

3 54 55 56 57 58 59 60

7—48-49—50—-51-—52—

[\
N W s Ut
&\%

e

Definition 5.12. For a timed automaton T and a TCTL formula v, both over a clock set C, we
define the clock equivalence relation ZC X x ¥ by (¢,v) = (¢',v) iff L =0 and

o for allz € C, either v(z) > cy AV (z) > ¢y OF
(@) =V (@)] A (frv(@) =0 iff fr/(z)) =0)
o forallz,y € C if v(z),V(x) < ¢y and v(y),V'(y) < ¢, then
frw(@)) < frivly)) iff fr'(z)) < fr(v'(y)).

The clock region of an evaluation v € V is the set [v] = {v/ € V | v 2 V'}. The state region of a
state (¢, v) € X is the set [(L,v)] = {(¢, V') € & | v =2 V'}. We also write (¢,r) for {({,v) | nu € r}.

5.3.3 The Region Transition System

After we have defined state regions, next we define how to connect them by abstract transitions,
yielding an abstract transition system, which we call the region transition system.
We extend the satisfaction relation for clock constraints to regions by defining

reg iff Ywervky
(tr) g il rEg

for r being a clock region of 7 with clocks C and a TCTL formula %, and g € ACCc U ACC.
On the right-hand side, instead of the universal quantification we could have also required just
the existence of a valuation in r satisfying g, as it holds that
Vv erviEg < ViEg.
We also extend the reset operator to regions as follows:

reset(C) inr = {({, reset(C) inv)eX | (f,v) €}

Note that reset(C) in r is again a region.
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Definition 5.13. The clock region roo = {v € V | Yz € C. v(z) > ¢;} is called unbounded.
Let r,7" be two clock regions. The region r’ is the successor clock region of r, denoted by r' =
succ(r), if either

e r=7r'=r, or
o r£ro, r#7, and for allv € r:
deR., (v+der AVOL<d <d v+d erur).

The successor state region is defined as succ((¢,r)) = (¢, suce(r)).

Definition 5.14. Let T = (Loc,C, Lab, Edge, Inv, Init) be a non-Zeno timed automaton and let
¥ be an unbounded TCTL formula over C and a set AP of atomic propositions. The region tran-
sition system of T for 1 is a labeled state transition system RTS(T,v) = (¥, Lab’, Edge’, Init")
with

e Y the finite set of all state regions,

e Lab' = LabU {7},

o Init' = {[o] | o € Init},
and

(¢,a,(g,C),0') € Edge
riEg 1 =reset(C) inr v EInv(l') Rule giserete
(€, [v]) = (¢, [vV])

r = Inv(f)  suce(r) & Inv(f)
(,7) 5 (¢, succ(r))
Assume a labeling function L : ¥ — 247 of T. We define

e AP' = APUACC(T)UACC(v))
o L'((t.) = L() U{g € AP\AP | 1 = g}

Rule time

Example 5.8. Assume the following timed automaton having a single clock x:

a: x> 2, reset(x)

Without taking any TCTL formula into account, the abstraction distinguishes the following equiv-
alence classes:

moo = {(v)eX|v(z)=0}
roy = {r)eX|0<v(z) <1}
my = 1Gv)ex|v(z)=1}
ra2 = {Gv)eX|1l<v(r) <2}
T2 = {(Lv)eX|v(r)=2}
T200) = {(v)eX |v(x)>2}

For the transitions, T-transitions are defined from each region into its successor region:

T0,0] < T(01) T(0,1) 7 T T[] T(L2)
P(2) 22 T[22 © T(200)  T(200) — T(2,00)
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Discrete transitions are possible from the regions with x > 2 into the region with x = 0:
a, a,
T2,2) 7 T0,0]  T(2,00) 77 T(0,0]

The resulting region transition graph can be visualized as follows, where for clarity we write
into the states the locations and the constraints to which they correspond:

l T l T l
rz=0 O<ax<1 r=1
a a \ T
l T l T l
T >2 =2 l<zr<?2

T

Example 5.9. Assume the same timed automaton as in the previous Ezample but now
additionally consider the TCTL formula EF 2 (x = 0). After removing the bound we get the
unbounded formula EF(0 < z <2Ax =0). Thus we have ¢; =2 and ¢, = 2.

We get the following region transition system, where we omit unreachable abstract states.
Dotted lines in the coordinate system represent possible behaviors, moving through the different
regIONSs.

z
- —»@:) a: x> 2 reset(x) 3F(0:2] (x =0)
e
6
./
1 ,
’ e
10 6
2 L’
9 11
/, /‘
8 10
e L
12 ,,9 s
.8 6
’ d
27 5
/
/4
1 3 T
/
2
/

The following graph shows again the region transition system where the abstract states are
annotated with the information determining the regions:
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I I l l 1 T
z=0 0<e<1 z=1 1<z <2 =2
z=0 T 0<z<1 T z=1 T 1<z<2 T z=2 Pt
fr(z)=fr(z) fr(z)=fr(z) Jr(z)=fr(z) fr(z)=fr(z) fr(z)=fr(2)

The next lemma states that infinite time-convergent paths of a timed automaton correspond
to finite paths in the region transition system.

Lemma 5.1. For non-Zeno T and ™ = sg — s1 — ... an infinite path of T :

o if w is time-convergent, then there is an index j and a state region (£,r) such that s; € (£,1)
for alli > j.

o if there is a state region (£,7) with r # roo and an index j such that s; € (¢,r) for alli > j
then m is time-convergent.

Theorem 5.2. A non-Zeno timed automaton T is timelock free iff its region transition system
does not have any deadlocks, i.e., reachable terminal states.

5.3.4 TCTL Model Checking

The procedure is quite similar to CTL model checking for finite automata. The only difference
concerns the handling of nested time bounds in TCTL formulae.

As in CTL model checking, we label the abstract states of the region transition system with
subformulae of the formula 1 to be checked, inside-out starting with the inner-most subformulae.
However, since we want to use a single auxiliary clock, we must additionally represent the “restart”
of the auxiliary clock at some places.

To explain the problem, consider the formula EF!(a A EF12p). Removing the bounds
yields EF(0 < z < 1AaAEF(1 <z <2Ab)). The labeling with the atomic propositions a and b
is defined by the labeling function. The labeling with atomic clock constraints is done upon the
generation of the region transition system. The first step of the model checking algorithm would
label those regions with 1 < z < 2 A b that are labeled with 1 < z, 2z < 2, and b. Now we come to
the more interesting part: the algorithm would determine all those regions from which a region
labeled with 1 < z < 2 A b is reachable, and may label them with FF(1 < z <2 Ab). Now we
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make two observations: Firstly, EF[12b is satisfied only by those determined regions that are
labeled with z = 0. Secondly, the start value z = 0 of the auxiliary clock is just a convention,
we could also have started with a value, e.g., z = 2 and check reachability of 3 < z < 4 A'b.
Consequently, we should label all those regions r with EF!2lp for that the region reset(z) in r
is labeled with EF(1 < z < 2 Ab). The labeling for the other subformulae is analogous. After
termination, the timed automaton satisfies the above TCTL formula iff each initial region is
labeled with it.

Lemma 5.2. For a non-Zeno timed automaton T and an unbounded TCTL formula v :
TErent iff RTS(T,¥) Fer ¥

Lemma 5.3. The model checking problem for timed automata and TCTL properties is complete
for PSPACE.

Exercises

Exercise 5.1. Construct the automaton Hcontrolier||Hcate from Example

Exercise 5.2. Prove Theorem [5.2
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Chapter 6

Rectangular Automata

In the previous chapter we have seen that TCTL for timed automata, a special class of hybrid
automata, is decidable, thus model checking is possible. In this chapter we discuss a bit more
general class, the class of rectangular automata, and analyse decidability. The contents of this
chapter are based on [HKPV9S|.

Rectangular automata build an interesting class of hybrid automata because on the one hand
they allow a more expressive modeling than timed automata and on the other hand (under some
additional conditions) both safety and liveness for rectangular automata are decidable. However,
they lie on the boundary of decidability in the sense that several slight generalizations lead to
undecidability.

In the previous chapters we used temporal logics supporting the specification of both safety
and liveness properties. From now on we restrict ourselves to safety properties, stating that each
reachable state of an automaton is included in a given set of safe states.

In the following Section we define syntax and semantics of rectangular automata, before
discussing decidability in Section [6.2}

6.1 Syntax and Semantics

In the following we first formally define the syntax and semantics of rectangular automata. As
rectangular automata are special hybrid automata, their states o = (I,v) € ¥ = Loc x V also
consist of a discrete component describing the current location, and of a valuation component,
assigning values to the real-valued variables. To simplify the notation, in the following we
assume that the real-valued variables Var = {z1,...,z4} of the automata are ordered and write
(I,v) € Loc x R? for a state (I,v) with v(z;) = v; foralli=1,...,d.

To define rectangular automata we first need to define rectangular sets.

Definition 6.1 (Rectangular set). A set R C R is rectangular if it is a cartesian product of
(possibly unbounded) intervals, all of whose finite endpoints are rational. The set of rectangular
sets in RY is denoted by RY.

Given a set Loc of locations, a subset of the state space Loc x R® is called a zone. Each zone Z
is decomposable into a collection \J,c 1,1} X Zi of zones. The zone Z is rectangular iff each Z;
is rectangular. A zone is multirectangular, if it is a finite union of rectangular zones.

Rectangular automata are hybrid automata whose invariants, activities, and transition rela-
tions are all described by rectangular sets. For the invariants and transition guards it means that
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those conditions may not compare the values of different variables to each other, but to constant
values only. Similarly, a transition may reset the value of a variable to a non-deterministically
chosen value from an interval, whose end-points are constants, i.e., they do not depend on the
values of other variables. Finally, the activities assign constant lower and upper bounds to the
derivatives, allowing also non-linear behaviour. However, since the evolution of a variable may
not depend on the value of another variable, the set of states reachable via time steps from a
rectangular set is again a rectangular set.

Definition 6.2 (Syntax of rectangular automata). A d-dimensional rectangular automaton
(or short rectangular automaton) is a tuple H = (Loc, Var, Con, Lab, Edge, Act, Inv, Init) with

e a finite set Loc of locations;

e a finite set Var = {x1,...,24} of d ordered real-valued variables; we write x = (x1,...,2q)
for the ordered sequence of the variables;

a function Con : Loc — 2V assigning a set of controlled variables to each location;

a finite set Lab of synchronization labels;

a set Edge C Loc x Lab x (R? x R x 281-m}) x Loc of edges;

a flow function Act : Loc — R¢;

an invariant function Inv : Loc — RY;

initial states Init : Loc — RY.

A rectangular automaton is initialized iff for all edges e = (I, a, pre, post, jump,l’) € Edge and all
i €{1,...,n} we have that Act(l); # Act(l'); implies i € jump, where Act(l); is the projection
of Act(l) to the ith dimension.

For the flows, the first time derivatives of the flow trajectories in location [ € Loc are within
the rectangular set Act(l). For the jumps, an edge e = (I, a, pre, post, jump,l’) € Edge may move
control from location [ to location I’ starting from a valuation in pre, changing the value of each
variable x; € jump to a nondeterministically chosen value from post; (the projection of post to
the ith dimension), and leaving the values of the other variables unchanged.

An initialized rectangular automaton has the property that whenever the flow of a variable
changes due to a discrete transition, the variable is re-initialized to a value from an interval with
constant bounds. The reachability problem for initialized rectangular automata is decidable.
However, it becomes undecidable if the restriction of being initialized is relaxed.

Example 6.1. The following graph illustrates is an initialized rectangular automaton:

>0Ad<2—>d:=1 v4
1,3] A 1,3

c<HNd<L -3 — c> -3Nd< —-2—
c:=4 c:€[-1,-2]
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Note that a timed automaton is a special rectangular automaton such that every variable is a
clock, the initial sets Init(l) are empty or are singletons for each location I € Loc, and the edges
reset variables to 0 only. Furthermore, if we replace rectangular regions with linear regions, we
obtain linear hybrid automata, a super-class of rectangular automata, which are the subject of
the next chapter.

The semantics of rectangular automata is derived from the semantics of hybrid automata as
follows.

Definition 6.3 (Semantics of rectangular automata). The operational semantics of a rect-
angular automaton H = (Loc, Var, Con, Lab, Edge, Act, Inv, Init) is given by the following two
rules:

(1, a, pre, post, jump,l') € Edge
v €pre v € post Yigjumpu,=uv; v € Inv(l’)
(Lv) 5 (I',0)

Rule discrete

t=0ANv=v)V(E>0AW —v)/t € Act(l)) V' € Inv(])
(Lv) 5 (1,2)

Rule time

The one-step transition is given by — = — U @, its transitive closure by —*. A path is a
sequence oy — 01 — 03 . ... starting in an initial state o9 = (bo,vg) with vy € Init(Ly) N Inv(fy).
A state is reachable iff there exists a path leading to it.

Note that, similarly to timed automata, the invariant sets of rectangular automata are convex.
Furthermore, though the time behaviour can be non-linear, for each non-linear time flow there is
a corresponding linear one leading to the same state in the same time. Thus for the time steps
we do not need to require the invariant to hold at each time point during the time step, but it
is sufficient to require that the invariant holds initially and after each step.

Lemma 6.1. For every multirectangular zone Z of a d-dimensional rectangular automaton H,

and every label lab € LabUR.,, the zones Post'®*(Z) = {(I',v') € Loc x RY | 3(1,v) € Z. (I,v) laf

(I',v")} and Pre'®(Z) = {(I,v) € Loc x R% | 3(I',v') € Z. (I,v) laf (I',v")} are multirectangular.

Proof. Tt suffices to prove the lemma for elementary regions of the form Z = ({I}, R) with R
rectangular. We distinguish between discrete and time steps.

For discrete steps assume lab = a € Lab. Let furthermore e = (I, a, pre, post, jump,l’) be an
edge. Then Post®(Z) = {lI'} x S with

R; N pre; Npost, N Inv(l"); if i & jump,
Si =14 post, N Inv(l'); if 1 € jump and R; N pre; # 0,
0 if i € jump and R; N pre; = 0.

Thus Post®(Z) is rectangular, and the union over all edges starting in [ with label a is a multi-
rectangular zone.

For time steps, if lab = 0 then Post’(Z) = Z. Thus assume lab = t € R with ¢t > 0. Let
L =inf(R;)+t-inf(Act(l);) and U = sup(R;) + ¢ - sup(Act(l);).
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Then Post'(Z) = {I} x S with

Inv(l); N [L,00) N (=00, U] if R; and Act(l), are closed,
Inv(l); N (L,00) N (—=00,U] if Ry or Act(l),are left-open and
S; = both are right-closed, and
Inv(l); N [L,00) N (—o0,U) if R; or Act(l),are right-open and
both are left-closed.

Thus Post'(Z) is a rectangular zone. O O

Note that the reachable zone of a rectangular automaton is in general an infinite union of
rectangular zones, and may thus be not multirectangular.

6.2 Decidability of Rectangular Automata

The reachability problem for initialized rectangular automata is decidable.
Lemma 6.2. The reachability problem for initialized rectangular automata is PSPACE complete.

The proof makes use of the fact that the reachability problem for timed automata is complete
for PSPACE. It defines a transformation of initialized rectangular automata to timed automata
thereby proving PSPACE completeness. The transformation is done in three steps:

Timed automaton

T

Initialized stopwatch automaton

T

Initialized singular automaton

T

Initialized rectangular automaton

In the following we describe these steps. Note that the transformation does not only prove
decidability, but also gives us a model checking algorithm for initialized rectangular automata,
since we can apply the previously discussed model checking algorithm to the resulting timed
automaton.

6.2.1 From Initialized Stopwatch Automata to Timed Automata

Let us start with the first step transforming an initialized stopwatch automaton into a timed
automaton.

Definition 6.4. o A rectangular automaton has deterministic jumps, if (1) Init(l) is empty
or a singleton for alll, and (2) the post-interval for each variable from the jump-set of each
edge is a singleton.

e A stopwatch is a variable with derivatives 0 or 1 only.
e A stopwatch automaton is a rectangular automaton with deterministic jumps and stopwatch
variables only.

Initialized stopwatch automata can be polynomially encoded by timed automata, as shown
below. This implies the decidability of initialized stopwatch automata. However, the reachability
problem for non-initialized stopwatch automata is undecidable.

54

Draft version, please do not distribute



CHAPTER 6. RECTANGULAR AUTOMATA

Lemma 6.3. The reachability problem for initialized stopwatch automata is PSPACE complete.

The encoding works as follows. First notice, that a timed automaton is a stopwatch automa-
ton such that every variable is a clock.
Assume that H is a d-dimensional initialized stopwatch automaton with location set Locy.

Let x be the set of rational constants used in the definition of H, and let k1 = kU {L}.

We define a d-dimensional timed automaton H’ with locations Locy: = Locy X n{j"“’d} .
Each location (I, f) of H' consists of a location ! of X and a function f : {1,...,d} — 1. Each
state ¢ = ((I, f),v) of H' represents the state a(q) = (I, u) of H, where u; = v; if f(i) = L, and
ui = £(0) if £() # L.

Intuitively, if the ith stopwatch of H is running (slope 1), then its value is tracked by the
value of the ith clock of H’; if the ith stopwatch is halted (slope 0) at value k € &, then this
value is remembered by the current location of H'.

Example 6.2. Consider the following initialized stopwatch automaton:

Ly 2 Lo
r=0Ny=0— 2=1g=0gp=0y=1
T <[2AFEL2AY<H

This automaton can be transformed to the following timed automaton:

6.2.2 From Initialized Singular Automata to Initialized Stopwatch Au-
tomata

Definition 6.5.

e A wvariable x; is a finite-slope variable if flow(l); is a singleton in all locations (.
e A singular automaton s a rectangular automaton with deterministic jumps such that every
variable of the automaton is a finite-slope variable.

Lemma 6.4. The reachability problem for initialized singular automata is PSPACE complete.

The proof is again based on automata transformation. Initialized singular automata can be
rescaled to initialized stopwatch automata as follows.

Let B be a d-dimensional initialized singular automaton with e-moves. We define a d-
dimensional initialized stopwatch automaton Cg with the same location set, edge set, and label
set as B.

Each state ¢ = (I,v) of Cp corresponds to the state 3(¢q) = (I, 3(v)) of B with 8 : R? — R?
defined as follows:

For each location ! of B, if Actp(l) = H;»i:l[ki7ki], then B(v1,...,vq4) = (b1 - v1,...,4q - vq)
WlthfZ :kz 1fk17é0, and& =1 lfkl :O;

[ can be viewed as a rescaling of the state space. All conditions in the automaton B occur
accordingly rescaled in Cp.

The reachable set Reach(B) of B is S(Reach(Cg)).

6.2.3 From Initialized Rectangular Automaton to Initialized Singular
Automaton

Lemma 6.5. The reachability problem for initialized rectangular automata is PSPACE complete.
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The proof is based on the translation of a d-dimensional initialized rectangular automaton H
into a (2n+1)-dimensional initialized singular automaton B, such that B contains all reachability
information about .

The translation is similar to the subset construction for determinizing finite automata.

The idea is to replace each variable ¢ of H by two finite-slope variables ¢; and ¢,: ¢ tracks
the least possible value of ¢, and ¢, tracks the greatest possible value of c.

Exercises

Exercise 6.1. A gas burner is a device to generate a flame to heat up products using a gaseous fuel.
We assume there is a gas burner, such that

(a) any leakage of it can be detected and stopped within 1 second, and

(b) it will not leak for at least 30 seconds after a leakage has been stopped or from beginning.

The gas burner also records the cumulative leakage time and the total elapsed time.

(1) Please model the gas burner by a rectangular automaton and try to keep it as simple as possible.

(2) Is it possible to have a 2-second leakage time in 70 seconds? If so, please give a sample execution.
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Chapter 7

Linear Hybrid Automata

In this chapter we discuss a further class of hybrid automata called linear hybrid automata.
Linear hybrid automata are time-deterministic hybrid automata whose definitions contain linear
terms, only. They are more expressive than timed or rectangular automata, and the reachability
problem for linear hybrid automata is in general undecidable. However, bounded reachability,
i.e., reachability within a fixed number of steps, is still decidable and can be efficiently computed.
Approximation and minimization techniques can be additionally used for the successful analysis
of linear hybrid automata.

We introduce linear hybrid automata in Section [7.I] Forward and backward analysis tech-
niques are discussed in the Sections and respectively. Approximation methods for linear
hybrid automata are described in Section [7.4] and we handle minimization in Section

The contents of this chapter are based on [ACHT95].

7.1 Syntax and Semantics

Definition 7.1. e A linear term over the set Var of variables is a linear combination of
variables in Var with integer (rational) coefficients.
e A linear formula over Var is a Boolean combination of (in)equalities between linear terms
over Var.
o A hybrid automaton is time deterministic iff for every location | € Loc and every valuation
v € V there is at most one activity f € Act(l) with f(0) = v. The activity f, then, is
denoted by fi[v], its component for x € Var by fF[v].

The restrictions on the syntax of linear hybrid automata affect the activities, the invariants,
and the discrete edges.

Definition 7.2 (Syntax of linear hybrid automata). A linear hybrid automaton is a time-
deterministic hybrid automaton with the following properties:

o Activities Act(l) are given as sets of differential equations & = k., one for each variable
x € Var, with k; an integer (rational) constant:

JEI(E) = v(@) + ko - 1.
e Invariants Inv(l) are defined by linear formulae ¢ over Var:
velw(l) iff vEY

o7
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y=10—2:=0

y=56—=x:=0

r=0ANy=0A2=0

<xr—>2:=0

Figure 7.2: Leaking gas burner

e For all edges, the transision relation is defined by a guarded set of nondeterministic assign-
ments:

Y = {x = [ag, fz] | x € Var},

where the guard v is a linear formula and oy, B, are linear terms. For the transition
relation p C V2 we have

(v, )yeu iff vEYAVzEe Var. v(ay) <V (z) <v(B).
Figures [7.1] and [7.2] give two examples for linear hybrid automata.
The semantics of linear hybrid automata is given by the semantics of hybrid automata,

specified by the following rules for discrete and time steps:

(l,a,u,l") € Edge (v,v')epn v € Inv(l')

Rule discrete

(Lv) S (')
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fedcll) FO)=v f(t)=v
t>0 YO<¢ <tf(t)eInv(l)

Rule tipe

(L,v) 5 (1,0)
For time-deterministic hybrid automata the time-step rule can be simplified using the follow-
ing predicate.

Definition 7.3. For time-deterministic hybrid automata we define the “time can progress” pred-

teate:
tep,[V](t) iff YO <t <t fi[v](¥') € Inv(l).

Thus for time-deterministic automata we can rewrite the time-step rule to

t>0 tep[v](¥)

/
Rule time

(Lv) 5 (1, AlVI©)

7.2 Forward Analysis

The reachability problem for linear hybrid automata is in general undecidable. However, bounded
reachability is still decidable. Despite of undecidability, for the general rechability analysis of
linear hybrid automata there exist incomplete algorithms. In this section we describe such a
technique, a forward analysis approach based on fixed-point computation.

In general, forward analysis techniques start from the initial state set Ry of a system, and
compute the state set R; reachable from Ry within one computation step. For the resulting set
the same computation is repeated, i.e., the state set Ry reachable in one transition step from R,
is computed. The algorithm terminates if after a number of steps no new states can be reached,
ie., if Ry C Ui:ol R; for some k > 0. Termination corresponds to finding the least fixed-point
for the one-step (forward) reachability starting from the initial set. After termination we can
check if all states in the determined reachable set satisfy the required property. Note that the
computation may in general not terminate if the state space is infinite.

The one-step reachability for continuous steps is described by the following notion of forward
time closure:

Definition 7.4. We define the forward time closure (P);" of P C V atl € Loc as the set of
valuations reachable from P by letting time progress:

Ve (P) iff v e P 3teRy,. tep[v](t) AV = filV](t).
We extend the definition to regions R = Uicroc(l, Ry) as follows:
<R>/ = UlGLOC(la <Rl>l/)

For the discrete steps, the corresponding one-step relation is formalized by postconditions:
We define the postcondition post,[P] of P with respect to an edge e = (I,a,u,l") as the set of
valuations reachable from P by e:

V' € post [P] iff FveP (v)epu.
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An extension to regions R = Ujcroc(l, Ry) is defined as follows:

post[R] = Ue=(l,a,u,l) € Edge (', post [ Ri]).

Note that, due to the 7-transitions, R C post[R]. Similarly, due to time steps of duration 0
we have R C (R)”".

Lemma 7.1. For all linear hybrid automata, if P CV is a linear set of valuations, then for all
l € Loc and e € Edge, both (P){" and post,[P] are linear sets of valuations.

The set of states reachable in a finite number of steps from the initial state set form the
reachable region of the automaton.

Definition 7.5. Given a region I C X, the reachable region (I —*) C X of I is the set of all
states that are reachable from states in I:

ce(Iw*) 4ff Fo'el o =*o.

The following lemma states, that if the forward analysis procedure terminates, then the result,
being the least fixed-point of the one-step relation, gives us the set of all reachable states.

Lemma 7.2. Let I = Ujcroc(l, I}) be a region of the linear hybrid automaton A. The reachable
region (I,—*) = Ujeroc(l, Ry) is the least fived-point of the equation

X = (IUpost[X])”

or, equivalently, for all locations | € Loc, the set Ry of valuations is the least fized-point of the
set of equations
X, = (LU U post.[Xy]);.
e=(l',a,u,l)EEdge

Example 7.1 (Example forward reachability computation). Consider the example au-
tomaton from Figure 77 and assume that bad states (I,v) are characterized by v(z) = v(y) + 2,
independently of the location. We represent the initial sets, activities, invariants, transition
relations and the bad states by linear real arithmetic formulas as follows:

Inite, (x,y) = xz=0Ay=0 Inite,(x,y) = false
fi(@y)t) = z+t fo(zy)) = =
fi@y)t) =y fo(zy)(t) = y+t
Mg, (3,y) = <yl e, (,y) = y<a+l
1ey e (Ty) = @ 1g e, (x,y) = @

y _ Y _

Hoyse, (T:Y) =y 1y e, (Ty) =y

Badg, (z,y) = xz=y+2 Bady,(z,y) = x=y+2

The forward reachability analysis computes the following state sets represented again as linear
real arithmetic formulas:

R) (z,y) = Initg, (z,y) Alnvg, (z,y) = z=0Ay=0Az<y+1
R),(x,y) = Inite,(z,y) Alnve,(z,y) = false
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R} (z,y)

R} (x,y)

R} (x,y)

R (x,y)

R} (z,y)

R} (2,y)

R} (x,y)

R}, (x,y)

R} (z,y)

Toi (R))

'yt Ry (¢ y ) At > 0N = fE (a9 ) () Ay = f (2, y) () A T, (2, y)

'yt 2 =0AY =0AY <y +1At>0Ns=2"+tAy=y Ae<y+1
—— —

. ’
elim. x elim. y’

Jt. 0 <1 > = = < 1
t. 0<IANt>0ANz=tANy=0Nz<y+
elim. t
x>0 Ny=0"Nz<y+1
T (RY,)
3’y t. RQQ(:C’,y’)/\tZ 0Nz = fé(m’,y’)(t)/\y:fé(as’,y’)(t)/\lnvgz(m,y)
false

D*(Ry,)
',y R}Q(x’,y’) N =pg ., (@ y) Ny = /ﬁéz%h(ac’,y’) A Invg, (z,y)
false
D*(Ry,)
3,y R}l (@', y ) Na = Mfl_ﬂb(gc’,y’) Ay ://ﬁél_mz(in’,y’) A Invg, (z,y)
'y 0Ny =0AY <y +1rnz=d ANy=y Ay<z+1
> < <
elim. «’

r2>20Ny=0"Nz<y+1Ay<z+1

elim. y’

+ RQ)
o (R,
'yt R (¢ Y ) At > 0N = fi (2, y) () Ay = f7 (@, y) () A Tnve, (2, y)
false
)
3z’ y' t. Ry (2, y' )Nt > 0Nz = f7 (2, y)(t) Ny = fli (', y") (&) A Invg, (z,y)
'yt >0NY =0/ <y +1AY <2’ +1At>0A
—
elim. y’
=z =9/ < 1
r=rv Ny=y +tANy<x+

elim. x’

JH.x>0Nxc<1IAN0<z+1At>0ANy=tAy<z+1
~—

elim. t

20N <1Ay>0ANy<zx+1

D*(R},)

Ja',y'. R?g (xlvy/) Nx = Mfg—)fl (.’I?l,yl) Ny = Mgg*}fl (m/7 y/) A Invy, (l‘, y)

'y 2 >0ND KIAY 20Ny <2/ +1Az=2ANy=y Ac<y+1
S~ ——

elim. ' elim.'y/
r>0Ne<1Ay>0ANy<z+1lAhz<y—+1

D (R},)

S0,y R () Aa = i @'y ANy = 1 (@' y) A Tovg, (2, )
false

+ R4)
o (R,
32yt Ry (2, ) Nt > 0N = f7 (2, ) () Ay = f (2, 9)(t) A Invg, (2,y)
Ja . >0ND <1IAY 0Ny <2/ +1A2 <y +1A
t>0A Az =2 +tAy =yrz<y+1
— —~—
elim. o’ elim. y’

Jd.x—t>0Nx—t<1Ay>0ANy<z—t+1Axz—t<y+1A
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t>0Ax<y+1
= dt. z>2t Ne—1<tANy>0Nt<z—y+1lAz—y—1<tA
~—— ———

upper bound lower bound upper bound lower bound

t>0 Na<y+1
~——
lower bound
= rv—1<a2Ahz—-1<z—-—y+1lAz—y—-1<zAz—y—1<z—y+I1A
0<zAN0Lz—y+1Ay>0Nz<y+1
= y<2AN0<zAy<z+1Ay>20ANx<y+1
R, (ry) = Ti(RL)
= 32yt Ry (2, )Nt = 0Na = fE (2 y) () Ay = L& y) () A Tnvg, (z,y)
= false

This computation sequence will mot terminate, since each new iteration reaches some new
states, but none of the computed sets intersect with the sets of bad states (which are actually not

reachable).

7.3 Backward Analysis

There is a similar backward approach for the fixed-point-based reachability analysis of linear
hybrid automata. Instead of starting from the initial set and computing successors like in the
forward approach, the backward search starts from a target set, defined as the set of states vio-
lating the property to be proved, and computes stepwise predecessors. The algorithm terminates
if it finds the least fixed-point for the reversed one-step relation, thereby determining the set of
states from which the target set can be reached. If the intersection of the resulting set with the
initial set is empty, the property holds, otherwise the property does not hold.

Analogously to the forward time closure for the time steps and the postcondition for discrete
steps in the forward approach, we define for the reversed steps a backward time closure for time
steps and a precondition for discrete steps.

Definition 7.6. We define the backward time closure <P>;/ of PCV atl € Loc as the set of
valuations from which it is possible to reach a valuation in P by letting time progress:

Ve (P iff Fve P 3te Ry, tep[V](t) Av = fil]().
We extend the definition to regions R = Uicroc(l, Ri) as follows:
(R)< = Ureroe(l, (R)Y)-

We define the precondition pre [P] of P with respect to an edge e = (l,a,u,l') as the set of
valuations from which it is possible to reach a valuation from P by e:

V' € pre, [P] iff JveP (V,v)eup.
For regions R = Ujeroc(l, R;) we define
pT@[R} = Ue:(l/,a”u,l)EEdge (ll7 pree[Rl])~

Note that, due to the 7-transitions, R C pre[R]. Similarly, due to time steps of duration 0
we have R C (R)<.
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Lemma 7.3. For all linear hybrid automata, if P CV is a linear set of valuations, then for all
l € Loc and e € Edge, both (P);/ and pre [P] are linear sets of valuations.

For a target state set we define its initial region as the set of states from which the target set
is reachable.

Definition 7.7. Given a region R C %, the initial region (—* R) C X of R is the set of all
states from which a state in R is reachable:

oce(="R) iff Fo'€R.o—"0.

The following lemma states that if the backward algorithm terminates, it determines the
states from which the target region is reachable.

Lemma 7.4. Let R = Ujeroc(l, Ry) be a region of the linear hybrid automaton A. The initial
region (—* R) = Uieroc(l, I}) of R is the least fized-point of the equation

X = (RU pre[X])¥

or, equivalently, for all locations | € Loc, the set I; of valuations is the least fized-point of the set
of equations
X, =(RU U pree[Xl/D‘l/.
e=(l,a,u,l’)EEdge

Example 7.2 (Example backward reachability computation). Consider again the example
automaton from Figure 77 and the same representations of intial sets, activities, tnvariants,
transition relations and bad states as in Example[7.1}

The backward reachability computation generates the following set representations:

R?l (z,y) = Badg (x,y) NInvg, (x,y) = ax=y+2r x<y+1 = false

R) (z,y) = Badg,(x,y) Anve,(z,y) = z=y+2Ay<z+1

R} (v,y) = T, (R})
= 32,9yt R(l?l (@' y )Nt = 0NZ = fF (z,y)(t) Ny = fl;yl (x,y)(t) A Inve, (z,y)
= false

R (x,y) = T, (R})

'yt Ry, (¢ Y ) At > 0N = [ (z,y) () Ay = [, (2,9)(t) A Inve, (2, y)
= Iyt =y +2At>0A2 = +tAy =yAr<y+1
— =

’
elim. x

= Jt.x+t=y+2At>0Az+t<y+1
—_———

elim. y’

elim. t

= y—z+2>20Nz4+y—z+2<y+1

= false

Already the first iteration does not yield any new state, i.e., the algorithm terminates. Since
none of the computed stes intersects with the initial state sets, no bad states can be reached from
any initial state. (Note that it is even not possible to reach a bad state from any good state.)
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N
A

Figure 7.3: Two sets (left) and their convex hull (right)

T

) ) Y )

xT x xT x

Figure 7.4: A sequence of three sets (left three pictures) and their widening (right)

7.4 Approximate Analysis

If the (forward or backward) iterative techniques does not converge, we can compute over-
approzimations of the sets

(I —*) of states which are reachable from the initial states I (forward analysis), or

e (—* R) of states from which the region R is reachable (backward analysis).

Below we discuss two approaches for over-approximation: the first one is based on building

convex hulls, and the second one is a widening technique.

1. Instead of computing the union of sets, we can compute their convex hull, i.e., the smallest

convex polyhedron containing the operands of the union (see Figure . Though this
set over-approximates the exact result, it may help the algorithms to terminate. On the
one hand, if with the over-approximation we can show the correctness of the property we
want to prove, then we are happy with the result: if the property holds even for the over-
approximation then if holds also for the over-approximated reachable set. On the other
hand, if the proof fails, then, due to the over-approximation, it does not mean that the
property does not hold: those states of the over-approximation that violate the property
may lie outside of the exact, over-approximated set and are thus perhaps not reachable. In
this case we must try to find a more accurate over-approximation.

. To enforce the convergence of iterations, we can apply a widening technique. The basic

idea is to extrapolate the limit of the state set sequence occurring in the non-terminating
fixed-point computation. The standard widening algorithm applies the widening for at
least one location in each loop of the hybrid automaton graph. Figure [7.4] illustrates the
widening technique.
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R R’

Figure 7.5: The next relation — on regions

7.5 Minimization

In this section we discuss another approach called minimization for the analysis of linear hybrid
automata, based on abstraction and abstraction refinement. We introduce a forward method but
it is also possible to define it for a backward search.

Assume a linear hybrid automaton and a safety property whose validity we want to check.
The property divides the state space of the hybrid automaton into a set of “good” states that
satisfy the property and a set of “bad” states that violate it. Let Rp,q denote the set of violating
states. To check the validity of the property we check if a state from Rp,q is reachable.

The abstraction is based on partitioning the state space of a linear hybrid automaton into a
finite set IT = {Rpqa, R1,..., Rn} of regions with Ryeq N R; =0 forall1 <i<n, R,NR; =0
foralll1 <i< j<mn,and ¥ = Rpq U U?Zl R;. Each such partitioning induces a LSTS being
an abstraction of the linear hybrid automaton. The abstract states of the LSTS are the regions
of the partitioning. The regions containing at least one concrete initial state are the abstract
initial states. There is a transition from a region R to a region R’ of the partitioning, denoted
by R+ R', iff from at least one state in R at least one state in R’ is reachable in one step. Since
we are only interested in the reachability of bad states, we define no successors for Rpqq. The
abstract transitions are formalized as follows:

Definition 7.8. The next relation — on regions is defined by
R—R iff R#Rpg N Ioc R F0'c€R.0c—0.

Figure [7.5] illustrates the next relation.

Such an abstraction in general over-approximates the behaviour of the concrete system: For
each reachable state of the concrete system the region of the abstraction that contains that state
is also reachable. However, there may be regions reachable in the abstraction that contain no
states reachable in the concrete system.

That implies on the one hand, that if Rp,s is not reachable in the abstraction then the
property holds for the concrete system. But on the other hand, from the reachability of Rp.q
in the abstraction we cannot conclude that the property does not hold for the original system.
However, we can define a sufficient condition under that the second implication also holds, i.e.,
a condition that assures that Rp,q is reachable in the abstraction if and only if the concrete
system violates the property. This condition is that all regions reachable in the abstraction have
at least one state reachable in the concrete system. The minimization algorithm starts with an
initial partitioning and splits regions of the partitioning iteratively until it satisfies that sufficient
condition. Note that, since the reachability problem for linear hybrid automata is not decidable,
the refinement loop does not always terminate. But in case it terminates, the abstraction is
finite, and we can answer the reachability question.
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R R’ R R’
@) Q

O O

Figure 7.6: Stability of regions: a stable region (left) and a non-stable one (right)

How can we be sure that a region R reachable in the abstraction contains at least one state
reachable in the concrete system? First we only know that all initial regions contain at least
one initial state by definition. Now assume a reachable region R that contains at least one state
o € R reachable in the concrete system, and assume a successor region R’ of R with R — R'.
From R — R’ we conclude that there is a state in R with a successor state in R’, however, we
do not know if this state is o. But, if all states in R have a successor state in R’, then also ¢ has
a successor state o/ € R, and from the reachability of o together with ¢ — ¢’ we can conclude
that there is at least one reachable state in R’.

Definition 7.9. Let I be a partitioning of the state space ¥ and let R, R’ € II. The region R is
called stable for R’ iff

R~ R implies Vo€ R. {o}+ R

We call R stable iff it is stable for all regions in II. We call 1 stable iff all reachable regions of
I are stable.

Figure [7.0] illustrates the stability of regions.

Now we come to the algorithm as specified by Figure [7.7] The set of initial states of the
concrete system is denoted by I, and Rp.q is the set of “bad” states. The algorithm stores the
current partitioning in II. Initially there are two regions in the patitioning: the region Rpqq
contains all “bad” states and the region 3\ Rpq the “good” states.

The algorithm uses two sets reach and completed. In the set reach we store those reachable
regions of the current partitioning for which we know that they contain at least one concrete
state that is reachable in the concrete system. In the set completed C reach we store regions from
which we know that their successor regions are all in reach, i.e., regions that currently cannot be
used to derive further in the concrete system reachable regions. Initially, reach contains those
regions of the initial partitioning that contain at least one concrete intial state. The set completed
is initially empty.

In each refinement step we determine a reachable region R € reach from that we already know
that it has at least one reachable state, but we do not yet know if all of its successor regions
contain reachable states, i.e., such that R is not in completed. For all those successor regions of
R for which R is stable we can conclude that also they contain at least one reachable state, thus
we put them into the reach set.

If, after that update, all successor regions of R are in reach, i.e., they all have at least one
reachable state, then we put R into the completed set.

Otherwise, if there is still a successor region R’ ¢ reach of R then R is not stable for R'.
We use such an R/, found at last, to split R into two parts, one containing all states with a
successor in R’ and a second part containing the rest. The splitting of a region is formalized by
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minimize(3, Rpqad) {
IT:= {Rpeq, X \ Rpaa}; reach:={R e |RNI #0}; completed := ;
while (Rpqq ¢ reach A reach # completed) {
choose R € (reach \ completed); S := 0;
for each (R’ € (IT \ reach) with R+ R') {
reach’ := split(Il, R, R');
if (reach’ = R) then reach := reach U {R'};
else S := reach’;
}
if (S =0) then completed := completed U { R};
else {
M= (I {R}US;
reach := (reach \ {R})U{S; € S| S;inI #0};
completed := completed \ {R' € I | 3S; € (S\reach). R’ — S;};
}
}

return R;.q € reach;

Figure 7.7: The minimization algorithm

the following definition:
Definition 7.10.

{R' R\ R"} if R" =pre[< R >“]NRAR"#0AR"+R,

. / .—
split(Il, R, k') = {{R} otherwise.

Figure [7.8] illustrates the splitting mechanism.

We split R according to the splitting result remembered in S = {57, 52}, and update the
partitioning. The reach set gets updated in that we remove R and add S;, i = 1, 2, if they contain
concrete initial states. Note that, though we know that there is a concrete state either in S7 or in
So that is reachable in the concrete system, we do not know which of both sets contains it. Thus
we can add S7 or Sy to reach only if they contain concrete initial states. Note also that all other
elements R’ # R in reach can stay in the set. Previous predecessors of R are now predecessors of
S7 and/or Sy. For such predecessors that are in completed we check if still all of their successors
are in reach, and remove them from completed if it is not the case. All other regions in completed
remain in the set.

We observe that, since “bad” regions do not have outgoing transitions in the abstract LSTS,
they are never split. Thus there is always a single “bad” region in the partitioning.

Before each iteration we check if one of the termination conditions hold: If Ry.q € reach then
the system violates the property. Otherwise, if Rpaq ¢ reach but reach = completed then Rpaq is
not reachable in the abstraction, and the property holds.
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Figure 7.9: Leaking gas burner

Note that if the regions Ry,q and I are linear, all regions that are constructed by the procedure
are linear.

Lemma 7.5. The procedure in Figure[7.7 returns TRUE iff I —* Rpqq.

Example 7.3. Assume the linear hybrid automaton shown in Figure[7.9 We want to prove that
0 <y always holds.
We have

Rpwa = (L1, y<0)U(l2,0 <Ay <0)
R = ((1,0<y)U(l,0<2A0<y)

The algorithm initializes

I = {Rbada Rl}
reach = {Ri}
completed = 0 .

Since Rpqq ¢ reach and reach # completed the main loop is entered. We choose the only
element Ry € reach. Its only successor region is Rp.q. We first compute the time predecessor of

Ryaa:

<Rbad>/ = <(€1,y<0)U(52,0§J;/\y<0)>/
(b, <0))7 U((l2,0 <z Ay <0))

To compute ((¢1,y < 0))< assume a time step resulting in a state from ({1,y < 0). Then the
control is in 1 also before the time step. For the valuation, if x and y denote the values before
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the time step, then after the time step the values change to x 4+t and y + 2t for some 0 < t, and
we know that y 4+ 2t < 0. We have to eliminate t from the equation set

0<tAy+2t<0,

i.e.,
0<tAt<—y/2

which yield ((¢1,y < 0))< = (¢1,y <0).

To compute ((¢2,0 < xz Ay < 0))< assume a time step resulting in a state from (€3,0 <
x Ay < 0). Then before the time step control is in ly. Let again x and y denote the variable
values before the time step. The time step changes the values to © —t and y — t for some 0 < t.
Due to the invariant 0 < x and 0 < x —t, and since the target state should be from Rp,q we have
y —t < 0. Eliminating t from the equation system

0<2NAN0<ax—tANO<tAy—1t<O0,

i.e.,
0<zAt<a2zANO<tAY<H,
we get 0 <z Ay <z Thus (l2,0 <z Ay <0) =(l,0<zAy<z).
Collecting the above information, (Rpea)< = (L1,y < 0)U (l2,0 <z Ay < z).
Now we compute the discrete step predecessor of this set.

pre[(Rpad)”] =
pre[(f1,y <0)U (l2,0 <z Ay < x)]
(l,y<)Ule,0<zAy<a)U{l,0<zAy<0)U({l,0<zAy<z) =

Tey Tegy edge from fs to £ edge from €1 to {2

L1,y <OVO<y<z)Ul, 0<zAy<0)V(0<y<ux))
The intersection of this predecessor set with Ry yields
[(l1,y<OVO<y<a)U, (0<zAy<0)V(0<y<z)N
(61,0 < y) U (£2,0 Sz AO < )]
(01,0<y<a)U(l2,0<y<ux)
= RQ.

pre[{Rpad) | N Ry =

We define
R3 ZZRl\RQ = (él,ngSy)U(ﬁz,O <zA0<yAz < y)'
Thus we have split(I1, Ry, Rpaq) = {R2, Rs}. The corresponding updates result in

I = {Rpad, 12, R3}
reach = {Rs}
completed =

In the next iteration the termination conditions are still not met thus we execute the loop
once more. For Rsg € reach we have no successor regions, thus the region does not get split and
the update results in

I = {Rpad, Ro, R3}
reach = {R3}
completed = {Rs}.
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In the next iteration we detect that the termination condition reach = completed holds.
Since Rpqq ¢ Teach, the algorithm returns that the property holds.

The minimization of linear hybrid automata is a special case of a more general approach
frequently used for the reachability analysis of general hybrid systems. The general approach
defines an initial partitioning of the state space and refines it by region splitting until it becomes
fine enough to prove or violate the requested safety property. The different instances of this
general approach use different methods to determine the regions to be split and the splitting
itself.

Exercises
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Chapter 8

(General Hybrid Automata

In the previous chapter we have seen an approach for the reachability analysis of hybrid systems
with linear behavior based on fixed point computation. There we represented the reachable sets
by conjunctions of linear constraints. In this chapter we discuss the general language of hybrid
automata and corresponding reachability analysis techniques, and especially other representation
techniques for their state sets.

8.1 Syntax and Semantics of Hybrid Automata

In an LTS the values of the variables may change instantaneously by taking a discrete transition
from one location to another. Hybrid automata extend LTSs: Additionally to such discrete state
changes, while control stays in a location, times passes by, and the values of variables change
continuously according to some continuous functions. The combination of the discrete and the
continuous behaviour leads to the term “hybrid”.

Definition 8.1 (Syntax of hybrid automata). A hybrid automaton H is a tuple (Loc, Var, Con, Lab, Edge #ct, Inv, Ini
where

e (Loc, Var, Con, Lab, Edge, Init) is an LTS with real-valued variables Var, V the set of all
valuations v : Var — R, and ¥ = Loc X V' the set of states,

o Act is a function assigning a set of activities f : Ry, — V to each location which are Act
time-invariant meaning that f € Act(l) implies (f +t) € Act(l) where (f+t)(t') = f(t+1¢)
for allt’ € Ry, and

e a function Inv assigning an invariant Inv(l) CV to each location | € Loc. Inv

Compared to LTS, we have two new components: the activities and the invariants attached
to the locations. The activities describe the continuous state changes in the locations when time
passes by. The invariants restrict this behaviour such that time can evolve only as long as the
invariant of the current location is satisfied. The control must leave the location before the
invariant gets violated using a discrete transition. Also entering a location by a discrete step is
only possible if the target location’s invariant is satisfied after the step.

The execution of a hybrid automaton starts in a state oo = (g, 1) € Init from the initial
set. The invariant Inv({y) of the initial location o must be satisfied by the initial valuation vy,
ie., vy € Inv(fy) must hold. Now two things can happen:

1. Time can pass by in the current location £y, and the values of the variables evolve according
to a function f : Ry, — V from Act({y). The function f must satisfy f(0) = vy, i.e., it
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assigns the initial valuation to the time point 0. After ¢ time units the variables’ values are
given by v1 = f(t), i.e., the system reaches the state (¢p,11).

However, the control may stay in ¢y only as long as the invariant Inv(£y) of £y is satisfied.
Le., t time can pass by only if VO < ¢’ <t we have f(t) € Inv({p).

2. A discrete state change can happen if there is an enabled edge from £y, i.e., if there is a
(Lo, a,u,t1) € Edge and a valuation vy € V such that (vg,v1) € u. The invariant of the
target location must be satisfied after the step, i.e., v4 € Inv(¢1) must hold.

From the state resulting from such a time or discrete step the system can again take either a
time or a discrete step as described above.

Definition 8.2 (Semantics of hybrid automata). The semantics of a hybrid automaton
H = (Loc, Var, Con, Lab, Edge, Act, Inv, Init) is given by an operational semantics consisting of
two rules, one for the discrete instantaneous steps and one for the continuous time steps.

1. Discrete step semantics

(ya,(v,V'),l') € Edge V' € Inv(l")
(L,v) = (I',V)

Rul €discrete

2. Time step semantics

fedctl) fO)=v fO)=v t=>0 [f([0,t])C Inv(l)

An execution step

of H is either a discrete or a time step. A path (or run or excecution) m of H is a sequence
o0 = 01 = 02... with vy € Inv(ly) and o; — o441 for all i > 0. We use Il (o) (or short II(o))
to denote the set of all paths of H starting in o. A state o of H is reachable iff there is a run of
H starting in an initial state of H and leading to o.

As it is the case for LTS, the operational semantics of hybrid automata define their induced
state transition system. In the hybrid setting the set of reachables states is in general uncountable,
as time progress leads to continuous behaviour.

Usually, the activities of a hybrid automaton are given implicitly by differential equations,
the activities being their solutions. E.g., ©# = 1 specifies a set of activities f : R,, — V with
f(t)(xz) =t + c for some ¢ € R being the value of z at time point 0.

Furthermore, valuation sets like the invariants of the locations are usually specified by formu-
lae of the first-order logic over the reals (without quantifiers). E.g., © > 0 specifies the valuation
set {v € Vlv(z) > 0}.

Finally, similarly to LTSs, also hybrid automata are often given in a graphical representation.
We illustate the modeling by hybrid automata on our previous examples of the bouncing ball,
the thermostat, and the water-level monitor. In the graphical representations in the following
we omit the 7-transitions, non-synchronizing labels, trivial invariants, etc..

Example 8.1. Assume the following graphical visualization of a hybrid automaton:
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a:x >3

The formal definition is as follows:

o Loc = {l1,05},
o Var = {x},
e Con(ly) = Con(ls) = {x},
e Lab = {r,a},
e Fdge =
{ (b, a, {nv) e V2 | v(z) 2370 (2) = v(2)}, L),
(bo, a, {(v,V)) € V? |V (x) =0}, 1),
(br, 7, {(n,V) €V | v=1"}, £y),
(b2, 7, {(r, ) € V2 v =0}, b)) },
o Act(ly) ={f Ry =V | Ic € RVt € Ryy.f(t)(z) = 2t + ¢},
Act(le) ={f Ry =V | e e RVt € Ry,.f(t)(x) = =2t + ¢},
o Inv(ty) ={v eV |v(z) <4},
Inv(ly) ={v eV | v(z) > 0},
o Init ={({1,v) € ¥ | v(z) = 0}.

Note that the activity sets for both locations are time-invariant. The instances of the discrete
rule of the semantics for the two non-t discrete transitions are:

v(iz) >3 V()

v(z) (V(x)>0)

= 01—
(61 V) i> (52 I/) Ruz‘edlis_grite
Viiz)=0 (V(x)<4
D=0 W2 .,
(62,1/) — gl,l/)

The antecedents in parenthesis are implied by the other antecedents and are thus not needed.
Since the only variable x is in the control variable sets of both locations, the T-transitions do not
allow any state change:

l € Loc
(l,v) = (L,v)

-
Rul Caiscrete

For the time steps we have the following rule instances:

Viie)<4 t>0 vVi(x)=v(r)+2t

- Rulel:
(él,l/) Bay (6171/ Uleyime
! >0 t>0 vV = —
V() V(@) =v(@) =2 o,

time
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The following picture visualizes the behavior of the system by depicting the possible values for
x at each point in time:

Example 8.2. Assume another hybrid automaton:

The formal definition is as follows:

e Loc = {21,52},
o Var = {IE,’y},
e Con(fy) = Con(ls) = {z,y},
e Lab={r,a},
e Fdge =
{ (t, a, {(n, V) eV |v=1"1 6),
(2, a, {(n,v) € V? | v =0}, ),
(b, 7, {(r, V) e V2 v =0}, ),
(bo, 7, {1, V) eV |v=1V"}, 6) ),
o Act(ly) ={f Ry =V | Jeg,cy e RVEER,.f(t)(x) =t +cu A f(E)(y) = ¢y}
Act(ly) ={f Ry = V| Jeg,cy ERVEERL,.f(t)(x) =cu A f(E)(y) =t + ¢y},
o Inv(ly) ={reV |v(zx)<v(y)+1},
Inv(ly) ={v eV |v(y) <v(z)+1},
o Init ={({1,v) € X | v(z) =0Av(y) =0}.

The behaviour can be visualized as follows by depicting the reachable (x,y) value pairs (without
representing the time):
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x > 22

r <18

Figure 8.1: The hybrid automaton model of the thermostat

Example 8.3 (Thermostat). Assume again the thermostat from Ezample . The modeling
hybrid automaton is depicted on Figure [8.]

In location £, the heater is on and the temperature raises according to the differential equation
& = K(h —x). The location’s invariant © < 23 assures that the heater turns off at latest when
the temperature reaches 23°C. Analogously for the location £,g, where the heater is off.

Control may move from location £, to Lo,g, switching the heater off, if the temperature is
at least 22°C, and from Lyg to £,y if the temperature is at most 18°C. The temperature x does
not change by jumping from Lo, to Log or from Log to Lon. Initially, the heater is on and the
temperature is 20°C.

Note that this model is non-deterministic. E.g., in location £y, if the temperature is between
22°C' and 23°C, both time progress and switching the heater off are possible.

Example 8.4 (Water-level monitor). The hybrid automaton model for the water-level mon-
itor Example[2.9 is depicted in Figure [8.3

The automaton has two locations representing the control modes for refilling the first tank in
£y or refilling the second tank in £5. The water levels in the tanks are represented by the variables
x1 and xo, being initially larger than r1 resp. ro height units, i.e., wnitially x1 > r1 A X2 > 19
holds.
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Ty >1r1 Nxg > 1o Ty >1ri Nxg > 1o

T2 <1 /

1 <71

Figure 8.2: The hybrid automaton model of the water-level monitor

Both tanks are leaking; the first tank looses vi height unit per time unit by leaking, the second
tank vo. When refilling a tank, w height unit per time unit is refilled. That means, the activities
in {1 are represented by the differential equations 1 = w — vy and o3 = —vs9, and analogously
for £s. In order to increase the water level when refilling a tank we assume w > vy and w > vs.

The invariant To > ro of £1 assures that the first tank is getting refilled only as long as there
is enough water in the second tank (water level at least ro). The hose will switch to refilling the
second tank when the water level xo Teaches ro. This is done by taking the discrete transition
from £y to €5. Note that the transition’s condition allows to switch only if x5 is at most ro, and
the invariant assures that xo is at least ro, such that the transition will be taken by the exact
value ro of xo. Refilling the second tank works analogously.

Note also that the discrete transitions can be taken only if the target location’s invariant
x1 > 11 18 not violated. It can be shown that both invariants are globally valid, and thus the
discrete transitions are never blocked by the invariants.

Example 8.5 (Bouncing Ball). The hybrid automaton model of the bouncing ball from Ezxam-
ple 1s depicted on Figure . Initially the height of the ball x1 is larger or equal 0 (height O
corresponds to the earth and positive height above the earth) and its speed xo is positive, stating
that the ball is initially raising.

The automaton has a single location £y. Time progress in this location corresponds to the
raising and falling of the ball. The differential equation &1 = xo defines xo as the derivative of
the height, i.e., the ball’s speed, and 9 = —g with g the gravity constant defines the speed change
due to gravity.

The ball can raise and fall only as long as it has a non-negative height as stated by the invariant
x1 > 0. After raising and reaching the highest point, it starts falling and reaches the earth when
1 = 0 and 2 < 0. Then it bounces, represented by the single discrete transition. Note that
the bounce is forced by the invariant. The bounce changes the speed’s direction and reduces its
absolute value due to some loss of kinetic energy during bouncing as denoted by xo = —cxs.
After bouncing, x1 is still 0 but xo is now positive, and the ball raises again.

For the ease of modeling, also hybrid systems can be modeled componentwise. The resulting
global system is given by the parallel composition of the different components. The parallel
composition of hybrid automata extends the definition of the parallel composition for LTSs as
follows.
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1 =0Ax9<0
X9 = —CX2

212 0A22>0

Figure 8.3: The hybrid automaton model of the bouncing ball

Definition 8.3 (Parallel composition of hybrid automata). Let

Hi = (Locy, Var, Cony, Laby, Edge,, Acty, Invy, Inity) and
Ho = (Loca, Var, Cons, Labs, Edge,, Acta, Invy, Inits)

be two hybrid automata. The parallel composition or product Hi||Ha of H1 and Ha is defined
to be the hybrid automaton

H = (Loc, Var, Con, Lab, Edge, Act, Inv, Init)
with
e The LTS part (Loc, Var, Con, Lab, Edge, Init) equals the parallel composition
(Locy, Var, Cony, Laby, Edgey, Inity)||(Loca, Var, Cons, Labs, Edge,, Inits)

of the LTS parts of the components,
[ ] Act(€1,€2) = ACtl(él) n Actz(gg) fOT all (61762) € LOC, and
o Inv(ly,0s) = Invy(41) N Inva(ls) for all (£1,42) € Loc.

8.2 Approximative State Set Representations

The reachability problem for hybrid automata is in general undecidable. Nevertheless, incomplete
algorithms exist for reachability analysis, which allow to check safety properties of the systems.
Most algorithms compute over-approximations of the reachability relation. Generally there are
two kinds of approaches:

1. We can build a finite abstraction of the state space, and compute reachability for the
abstract system. We have already seen a typical example for this approach: the region
automata construction for timed automata. As this abstraction is based on bisimula-
tion, it is not over-approximating. Another example is the on-the-fly refinement of the
predicate abstraction during the fixed-point computation of the last chapter. This ab-
straction is in general over-approximating. Spurious counterexamples can be eliminated by
(counterexample-guided) abstraction refinement (realized by splitting the abstract states).
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Input: Set Init of initial states.
Algorithm:
R := Init;
R := 0
while (R"™ #£ (){
R = RU R"™Y;
R™™ .= Reach(R"")\R;
}

Output: Set R of reachable states.
Figure 8.4: General reachability computation algorithm

2. An alternative approach is to compute reachability for the original system, without ab-
straction, but over-approximating the set of reachable states.

In this chapter we deal with the latter approach. The general forward reachability computa-
tion procedure can be specified by the algorithm depicted on Figure Note that if the state
space is infinite, then this algorithm does not always terminate.

In order to implement the above algorithm, we must solve two problems:

1. We must be able to store the current reachable sets R and R"", and build their union,
intersection, etc.

2. We must be able to compute Reach(P) for a set P.

Note that in general the reachable sets cannot be represented exactly, as for general hybrid
automata even the reachability relation due to a single time step can be undecidable. We solve
the above problems by

1. over-approximating the reachable sets by sets having certain geometric forms, such that
the needed operations can be done efficiently, and

2. over-approximate Reach(P) in each step in the above procedure.

In this chapter we discuss the first point, and introduce representations of state sets. After-
wards, in the next chapter we discuss methods for the over-approximation of Reach(P). Putting
the two together, we can implement the algorithm on Figure To get an intuition, an ex-
ample reachability approximation using the reachability algorithm for some hybrid automaton
is visualized on Figure The exact continuous behavior is depicted on the left, while the
approximation is drawn on the right.

The geometry chosen to represent reachable sets has a crucial effect on the practicability of
the whole procedure. Usually, the more complex the geometry,

1. the more costly is the storage of the sets,

2. the more difficult it is to perform operations like union and intersection, and
3. the more elaborate is the computation of new reachable sets, but

4. the better the approrimation of the set of reachable states.

Choosing the geometry has to be a compromise between these impacts. The representation
should allow efficient computation of the operations for
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]

,J
|

Figure 8.5: An example reachability approximation for a hybrid automaton

membership relation,
union,

intersection,
subtraction,

test for emptiness.

In the remaining part of this chapter we have a closer look at representation by

e orthogonal polyhedra in Section [8-3] and
e convex polyhedra in Section

Exercises

Exercise 8.1. Show that the parallel composition of hybrid automata is commutative and associative.
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X = [0,6]2

Figure 8.6: An example domain

J
()' -t

2-dimensional grid: 4+ (] (]
3T o o

{2,5} x {1,3,4}
1+ o ([ J
2 5 6 ¢

Figure 8.7: An example grid

8.3 Orthogonal Polyhedra

The content of this section is based on the publications [BMP99] and [SKO03].

8.3.1 Definition

As state space domain we consider a bounded subset X = [0,m]? C R? (m € N_,) of the reals
(can be extended to X = R%). Elements of X are denoted by z = (z1,...,z4), the zero vector
by 0, and the unit vector by 1. For our running example we define the domain X = [0, 6]2,

depicted on Figure

Definition 8.4. A d-dimensional grid associated with the domain X = [0,m]? C R% (m € N.,)
is a product of d subsets of {0,1,...,m —1}.

An example grid is depicted on Figure

Definition 8.5. The elementary grid associated with X = [0,m]¢ C R? (m € N.,) is G =
{0,1,...,m —1}¢ C N

An example elementary grid is depicted on Figure [8.§] The grid admits a natural partial order
with (m —1,...,m — 1) on the top and 0 as bottom, as show on Figure

The set of subsets of the elementary grid G forms a
Boolean algebra (2%,N, U, ~) under the set-theoretic operations
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G=1{0,...,5}) x {0,...,5}

3

<9<0<0<0<0
V V \ V \

G=H0,...,5} x{0,...,5} <0< 0-0-0<0
V V V V \
<9<0<0<0<0
V Vv V V V
<9< 0<0<0<0
Y Vv V V V
<9<0<0<0<0
V

Vv V

1 2 3 4

vV vV

J

Figure 8.9: The partial order on the grid points of an elementary grid

e AUB
e ANB
e ~A=G\4

for A, B C G € N%. An example cut of two subsets is shown on Figure m

Definition 8.6 (Elementary box). The elementary box associated with a grid point x =
(@1,...,2q) 18 B(x) = [x1,21 + 1] X ..., X[xg, 24+ 1]. The set of elementary bozes is denoted by
B.

An example of an elementary box of a grid point is shown on Figure [8.11

Definition 8.7 (Orthogonal polyhedra). An orthogonal polyhedron P is a union of elemen-
tary boxes, i.e., an element of 2B.

An example of an orthogonal polyhedron is shown on Figure [3.12]
The set of orthogonal polyhedra forms a Boolean algebra (28,1, 1, =) with the operations

e ALULB=AUB
o AN B = cl(int(A) N int(B))
o —A=cl(X\A)

where

e int is the interior operator yielding the largest open set int(A) contained in A, and
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J J J

6 6 T 6

51 51 5

40 4+ 4

31 ° 31 ° 3

21 @ 21 @ 210

1 1+ 1

3 ————— ¢ ————— ¢ —
123456° 123456° 123456710

{(0,4),(1,2),3,3)}y N {(1,2),(5,3)} = {(1,2)}

Figure 8.10: An example cut of two subsets of an elementary grid

5 —+
B((2,4)) =[2,3] x [4,5] 4T .

2 3 i

Figure 8.11: The elementary box of a grid point

{B((2,4)} U {B((3,4))} U

(BEAUBEIU 41
{B((2.2)} U o1
(B((2,1))) 1t

® 1 2 3 456 ¢

Figure 8.12: An example orthogonal polyhedron
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AN B = cl(int(A) Nint(B))

) )L
1 -

P

Note: ([1,2] x [1,2]) N —[2,2] x [1,2]

Figure 8.13: An example for the cut of two orthogonal polyhedra

e cl is the topological closure operator yielding the smallest closed set cl(A) containing A.

For the operations M and —A we need the interior and closure operations in order to be closed
under orthogonal polyhedra, i.e., for the result being an orthogonal polyhedra. Intuitively, we
use the standard set operations but want to compute the cut and negation not in terms of points
but in terms of elementary boxes.

Figure [8.13] gives an example for M. Without the interior operation the result would be the
line between the two elementary boxes. With the interior operation the result is the empty set.

Figure[8.14]gives an example for the negation. Without building the closure of the set negation
the result would be an open set.

The bijection between G and B which associates every elementary box with its leftmost
corner generates an isomorphism between (2%,M,U,~) and (2B,M,1J,—). Thus we can switch
between point-based and box-based terminology according to what serves better the intuition,
as illustrated on Figure [8.15)

8.3.2 Representation

We need an representation of orthogonal polyhedra that allows efficient computation. The rep-
resentations we consider are based on the vertices of orthogonal polyhedra. Below we give some
definitions we need for the definition of a vertex.

Definition 8.8 (Color function). Let P be an orthogonal polyhedron. The color function
c¢: X — {0,1} is defined by

o(z) = { 1 if xis a grid point and B(x) C P

0 otherwise

forallx € X.
If ¢(x) = 1 we say that x is black and that B(z) is full.
If ¢(x) = 0 we say that x is white and that B(x) is empty.
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-A= Cl(N A)

ﬁ([0’2} X [073]) =
cl(~ ([0,2] x [0,3])) =
el((2,3] x 10,3])) = [2,3] x [0, 3]

Note: ~ ([0,2] x [0,3]) = (2,3] x [0, 3]

Figure 8.14: An example for the negation of an orthogonal polyhedron

5 6 ¢

I

1 2 3

Figure 8.15: Bijection between G and B
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Figure 8.16: The coloring function for an orthogonal polyhedron

Figure 8.17: The predecessors of a grid point

Note that ¢ almost coincides with the characteristic function of P as a subset of X. It differs
from it only on right-boundary points. The coloring for an example orthogonal polyhedron is
shown in Figure [8.16]

The following definitions capture the intuitive meaning of a facet and a vertex and, in par-
ticular, that the boundary of an orthogonal polyhedron is the union of its facets.

Definition 8.9 (i-predecessor). The i-predecessor of a grid point x = (x1,...,24) € X is

27 = (1, mi 1,1 — L,wig1,...,2q). We use 299~ to denote (x'7)/~. When x has no

i-predecessor, we write L for the predecessor value.
The above definition is illustrated in Figure 817}
Definition 8.10 (Neighborhood). The neighborhood of a grid point x is the set
N@)={z; —1,z1} x ... x {zqg— 1,24}

(the vertices of a box lying between x — 1 and x). For every i, N(z) can be partitioned into left
and right i-neighborhoods

N (@) ={z1 — Lo} x ... x {o; — 1} x {24 — 1,24}
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and

Ni(z) ={zy — Lo} x ... x {z;} x {wg — 1,24}

Definition 8.11 (i-hyperplane). An i-hyperplane is a (d — 1)-dimensional subset H; ., of X
consisting of all points x satisfying r; = z.

The above definition is illustrated in Figure [8.18

.
t
NG---@--—-O--—-—-@-———

Figure 8.18: An i-hyperplane of X

Note that the facets of orthogonal polyhedra are d — 1-dimensional polyhedra, and as such,
they are subsets of i-hyperplanes. For the definition of facets we make use of the fact that the
coloring changes on facets. Thereby we need to pay attention to white vertices lying on the
boundaries to the “right”. For example, the orthogonal polyhedron in Figure [8:16) has white grid
points on the top and at the right that belong to facets or are vertices.

Definition 8.12 (i-facet). An i-facet of an orthogonal polyhedron P with color function c is
Foa(P) = clfa € Hylo(a) # e(a'™)}
for some integer z € [0, m).

Definition 8.13 (Vertex). A vertex is a non-empty intersection of d distinct facets. The set
of vertices of an orthogonal polyhedron P is denoted by V (P).

In Figure [8:I9] the vertices of an orthogonal polyhedron are marked red.

Definition 8.14 (i-vertex-predecessor). An i-vertex-predecessor of a grid point x = (x1,...,24) €

X is a vertex of the form (z1,...,Ti—1,2,Tit1,...,2q) for some integer z € [0, x;]. When z has
no i-vertex-predecessor, we write L for its value.

The first i-vertex-predecessor of x, denoted by x*<, is the one with the mazimal z.

Figure [B:20] shows the first i-vertex-predecessors of some points for our example orthogonal
polyhedron.

A representation scheme for 2B (2%) is a set € of syntactic objects such that there is a
surjective function ¢ from £ to 2B, i.e., every syntactic object represents at most one polyhedron
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Figure 8.20: The first i-vertex-predecessors of some points and an orthogonal polyhedron

and every polyhedron has at least one corresponding object. If ¢ is an injection we say that the
representation is canonical, i.e., every polyhedron has a unique representation.

There are different representation schemes we could consider. A naive way would be an
explicit representation consisting of the enumeration of the color values on every grid point, i.e.,
a d-dimensional zero-one array with m® entities. However, such a representation would be both
for storage and computation very inefficient.

Another possibility would be a Boolean representation, specifying an orthogonal polyhedron
as a Boolean combination of inequalities of the form z; > 2. Note that this representation is
non-canonical.

In this section we consider the following vertex-based representations:

o Vertex representation: An orthogonal polyhedron P is represented by the set {(z, c(z)) | x is a vertex of P},
i.e., the vertices of P along with their color. This representation is canonical.
Note that the vertices alone would not yield a unique representation scheme. Figure B:21]
shows two orthogonal polyhedra having the same vertex sets but assigning different colors
to the vertices.
Note also that not every set of points and colors is a valid representation of a polyhedron.
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Figure 8.21: Two vertex representations agreeing on the vertices but having different vertex
colors

e Neighborhood representation: An orthogonal polyhedron is represented by its vertices along
with the colors of all the 2¢ points in the neighborhoods of the vertices.

e Extreme vertex representation: This representation keeps the vertices and the parity of the
number of black points in the neighborhood of the vertices. In fact, it suffices to keep only
vertices with odd parity.

Why we choose the above representations, especially in the case of the neighborhood and the
extreme vertex representations, will become clear in the following when we define the algorithms
for the required operations on orthogonal polyhedra. We do not discuss all needed operations.
Instead, we describe the algorithms for the membership problem and for the computation of the
intersection of two orthogonal polyhedra, only.

8.3.3 Membership Problem

Next we discuss how to solve the membership problem for orthogonal polyhedra, based on the
three different representation schemes suggested above. Given a representation of a polyhedron
P and a grid point z, the membership problem is the problem to determine c(x), that is, whether
B(z) C P.

Membership Problem for the Vertex Representation
We make use of the following observations:
e A point z is on an i-facet iff
3z’ € Ni(x). c(2'"7) # c(z)).
e A point z is a vertex iff
Vie{l,...,d}. I’ € N'(). c(a"7) # c(2').
e A point z is not a vertex iff

Jie{1,...,d}. Vo' € N'(z). c(2""7) = c(z).
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Given an orthogonal polyhedron in vertex representation, we can compute the color of a
non-vertex grid point recursively, using the following lemma:

Lemma 8.1 (Color of a non-vertex). Let  be a non-vertexr. Then there exists a direction
je{1,...,d} such that

(8.1) Vo' € N9 (x)\{z}. c(z"77) = e(2).
Let j be such a direction. Then c(z) = c(x/7).

Proof. A point x is not a vertex iff there is a dimension in that the point is not on a facet, i.e.,

(8.2) Ji e {1,...,d}. V2’ € N'(2). c(a'7) = c(z).

Thus j always exists. Assume a j satisfying[8.1] and an 4 satisfying If i = j, then the case is
straightforward. Otherwise, if i # j, for i we have c(z°~) = ¢(z) and ¢(z%~) = ¢(277). For j we
have ¢(2%~) = c¢(z°7). By the transitivity of “=" we get c(z) = c(z77).

J

O
O

Consequently we can calculate the color of a non-vertex x based on the color of all points in
N (x) —{x}: just find some j satisfying the conditions of the above lemma and let ¢(z) = ¢(277).

Theorem 8.1. For a domain X = [0,n]¢, the membership problem for vertex representation can
be solved in time O(n¢d2?) using space O(n?).

Proof. We start at x and recursively determine the membership of all the 2¢ — 1 points in
N (z)\{z}. Termination of the recursion is guaranteed because we go down in the partial order
on 26 and either encounter vertices or reach the origin. We must recursively determine the color
of at most n? grid points. For each of them we must check at most d dimensions if they satisfy
the condition of the lemma on the color of a non-vertex. Checking the condition in a dimension
invokes 29~ — 1 color comparisons. O O

However, this algorithm is not very efficient, because in the worst-case one has to calculate
the color of all the grid points between 0 and . We can improve it using the notion of an induced
grid: let the i-scale of P be the set of the i-coordinates of the vertices of P, and let the induced
grid be the Cartesian product of its i-scales. The induced grid is the smallest (coarsest) grid
containing all the vertices. Every rectangle in the induced grid has a uniform color. Calculating
the color of a point reduces to finding its closest “dominating” point on the induced grid and
applying the algorithm to that grid in O(n?d2?) time, where n is the number of grid points in
the induced grid. The approach is illustrated in Figure [8.22

——— Draft version, please do not distribute



CHAPTER 8. GENERAL HYBRID AUTOMATA

’

T

Figure 8.22: Membership problem on an induced grid

Membership Problem for the Neighborhood Representation

The solution of the membership problem for the neighborhood representation is based on pro-
jection.

Definition 8.15 (i-slice and i-section). Let P be an orthogonal polyhedron and z an integer
in [0,m).

o The i-slice of P at z is the d-dimensional orthogonal polyhedron J; ,(P) = PM{z|z < z; <
z+1}.
o The i-section of P at z is the (d—1)-dimensional orthogonal polyhedron J; ,(P) = J; ,(P)N

H; .

The membership of x = (x1,...,xq) can be reduced to membership in J; ., (P), which is a
(d — 1)-dimensional problem: a z is contamed in an orthogonal polyhedron P iff it is contained
in the i-section of P at x;. By successively reducing dimensionality for every i we obtain a point
whose color is that of z.

For the computation of an i-section of an orthogonal polyhedron P we first observe that the
vertices of the i-section are points x in the corresponding i-hyperplane that lie on a facet of P
in each dimension j # i. l.e., a point = in the corresponding i-hyperplane is a vertex of the
i-section iff (1) 2 has a first i-vertex-predecessor y = 2~ # L such that (2) for each dimension
j # i there is a j-facet to the right of y in dimension 7. The second condition assures that this
facet intersects with the i-hyperplane.

The neighborhood representation provides us with the vertices and the colors of their neigh-
bors. This coloring information can be used to determine in which directions (relative to the
vertex) the faces defining the vertex lie and thus to check the second condition.

Let us take as an example the two-dimensional case. Figure lists all 16 possible neigh-
borhood colorings of a grid point x for d = 2. The colorings in the first row define non-vertex
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grid points, whereas the second and third rows contain vertices. Let ¢ be the horizontal and j the
vertical dimension. For the vertices, i.e., the points in the second and third rows, we can observe
that there is a j-facet to the right of z (i.e., to the right in dimension ¢) iff the color of z differs
from the color of 277, i.e., the grid point below z (the point to the left from x in dimension j).
This is the case for all grid points in the third row, whereas the grid points of the second row do
not fulfill this condition.

5 \ma

Figure 8.23: Possible neighborhood colorings in the two-dimensional case

We can use this information to define a projection operation. We introduce an O(nlogn)
membership algorithm for the neighborhood representation, based on successive projections of
P into polyhedra of smaller dimension.

We use the following lemma to calculate the neighborhood representation of an i-section.

Lemma 8.2 (Vertex of a section). Let P be an orthogonal polyhedron and let P’ be its i-
section at x; = z. A point x is a vertex of P’ iff y = £~ # L and for every j # i there exists
' € Ni(y) NN (y) such that c(z"77) # c(x').

Moreover, when this condition is true, the neighborhood of x relative to J; . (P) is given by Ni(y).

Proof. Assume x is a vertex of P’. Then there is a facet of P orthogonal to ¢ that goes through
x. This is possible only if there is a vertex '~ =y = (21,...,%i_1,2, Tis1,- .-, 2q) left to z in
the dimension i. The vertex y lies on a facet in all dimensions j # 4, implying the existence of
an 2’ € N'(y) NN (y) such that ¢(z'77) # c(2'). Finally, since the facet goes from y to the right
in i through x, we have that c(N%(y)) = c(N(x)).

Assume conversely y = 2 exists and it satisfies the condition. Then c¢(N(x)) = c(N(y)),
because otherwise, by the above reasoning, there would be a vertex between x and y. Hence x
satisfies the condition. O

O

The resulting projection algorithm is illustrated on an example in Figure

Theorem 8.2 (Membership problem for the neighborhood representation). The mem-
bership problem for the neighborhood representation can be solved in time
O(nd*(logn + 29)).

Proof. For a d-dimensional orthogonal polyhedron P with n vertices we can determine those
vertices y which are 2 for some x € H; . in O(ndlogn) steps.

There are most n such points. With the above lemma we can determine in O(d2?) time
whether one such point is a vertex of the section. Hence it takes O(nd(logn + 2%)) to get rid of
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Pl = jl,zl(P) \72,$2(P/)

Figure 8.24: Solving the membership problem by projection for the neighborhood representation

one dimension.
This is repeated d times until P is contracted into a point. O O

A similar algorithm with the same complexity can be used to calculate the color of all the
points in a neighborhood of x. The algorithm takes double slices (d-dimensional thick sections of
width two) of P, and successively reduces P into the neighborhood of x. This variation of the
algorithm is used for doing Boolean operations.

Membership Problem for the Extreme Vertex Representation

The extreme verter representation can be viewed as a compaction of the neighborhood repre-
sentation. Instead of maintaining all the neighborhood of each vertex, it suffices to keep only
the parity of the number of black points in that neighborhood — in fact it suffices to keep only
vertices with odd parity.

Definition 8.16 (Extreme point). We use parity(z) to denote the parity of the number of
black points in the neighborhood N () of a grid point . The grid point x is said to be extreme

if parity(x) = 1.
Lemma 8.3. An extreme point is a vertex.

Proof. By induction on the dimension d. The base case d = 1 is immediate. For d > 1, choose
i € {1,...,d}. Exactly one of N~ (x) and N(z) contains an odd number of black points. Assume
w.l.o.g. that it is N?(z). By induction hypothesis z is a vertex in J; »,,(P). Le., for every j # i
there exists 2’ € N7(x) such that c¢(2”7~) # ¢(2’). Since one cannot have c(z’) = c(2’") for all
' € N'(z), x is a vertex of P.

The converse is not true, i.e., vertices in general need not be extreme.

An extreme vertex representation consists in representing an orthogonal polyhedron by the
set of its extreme vertices. (Additionally, the color of the origin is stored in a bit. From this
information the colors of all extreme vertices can be inferred.)

Note that for d = 1 all vertices are extreme and hence the vertex and extreme vertex repre-
sentations coincide. Figure [8.25] gives some two-dimensional representation examples, where the
extreme vertices of the objects are marked red. For the objects in the left and in the middle all
vertices are extreme. For the object in the right all 4 vertices in the middle are not extreme.

The membership problem is solved again by projection. To define a projection operation we
need again a rule to determine which points of an i-section are extreme vertices of the projection.
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0O O O O 0O 0O O O O

o O O O O

Figure 8.25: Examples for the extreme vertex representation

Let us again first give an intuition in the two-dimensional case for the role of the parity of
a vertex in the projection. The last two lines in Figure [B:23] list all possible neighborhoods of
vertices of a two-dimensional orthogonal polyhedron. All but the last two vertices are extreme.
Note that these last two cases are the only ones representing vertices where two facets meet each
other.

Intuitively, the basic idea for the solution of the membership problem for the extreme vertex
representation is the following: We again use projection. Given a point x on the i-hyperplane,
we count its extreme i-vertex-predecessors to determine if z is an extreme vertex of the i-section.
If there is an even number 2n of such vertices, than we can conclude that n facets started and
ended at those vertices but there is no “open” facet to the left in ¢ and thus the considered point
x does not lie on any facet that goes orthogonal through the i-hyperplane. Consequently, z is
not a vertex of the i-section. Otherwise, if there is an odd number of such extreme i-vertex-
predecessors, we can conclude that there is a facet going orthogonal through the i-hyperplane
and z lies on that a facet. Furthermore, since the first i-extreme-vertex-predecessor of x lies on
facets in all other dimensions j # i, it holds also for z, and thus x is a vertex of the i-section.

Lemma 8.4 (Extreme vertices of a section). Let P be an orthogonal polyhedron and let
P’ =7, .(P). A point z is an extreme vertex of P' iff it has an odd number of extreme i-vertez-
predecessors.

8.3.4 Computing the Intersection

We assume two polyhedra P; and P, with n; and no vertices, respectively. The intersection of P;
and P, may have vertices of P; and P, as well as some new vertices, as illustrated in Figure

Lemma 8.5. Let x € G be a vertex of Py N\ Py. Then for every dimension i, x is on an i-facet
of Py or on an i-facet of Ps.

That means, each “new” vertex of the intersection, not being a vertex of P; or P, must
lie in each dimension 7 on an i-facet of one of the intersecting polyhedra. Since in all three
representations we have information about the vertices but not explicitely about the facets, the
computation of the intersection of facets must be based on the available information about the
vertices.

Lemma 8.6. Let x be a vertex of Py N Py which is not an original vertez.
Then there exists a vertex y, of Py and a vertex yo of Py such that x = max (y1,y2), where max
is applied componentwise.
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Figure 8.26: Extreme vertices of sections

Note that due to symmetry, we could also use the minimum instead of the maximum in the
above lemma.

Thus the candidates for being vertices of P; N Py are restricted to members from the set
V(P)UV(P)U{z|Fy € V(P1). Jy2 € V(P2). © = max (y1,y2) },

whose number is not greater then ny + no + nins.
Figure [8:28] shows those candidates for the example intersection of Figure 8:27]
The algorithm for computating the intersection of two polyhedra P, and P, works as follows:

e Initialize V(P1) UV (P2) as the set of potential vertices of the intersection.
e For every pair of vertices calculate their max and add it to the potential vertex set.
e For each point in the potential vertex set:

— Compute the color of its neighborhood in both P; and Ps.
— Calculate the intersection of the neighborhood coloring pointwise.
— Use the vertex rules to determine, whether the point is a vertex of the intersection.

Remember the vertex rule: A point z is a vertex iff
Vi€ {1,...,d}. 32’ € Ni(z). c(z"7) # ().

Figure [8:29 shows the computation for our example. The first picture shows the candidates.
The next 4 rows illustrate the check of 4 of the candidates. The last row shows the result.
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G O

Figure 8.27: The intersection of two orthogonal polyhedra

T
[ 11
l l

Figure 8.28: Vertex candidates of an intersection of two orthogonal polyhedra

The algorithm for the intersection computation works similarly for all 3 representations. The
only difference occurs in the computation of the colors for the neighborhood of the candidates
and in the storage of the result.

Exercises
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Figure 8.29: Example intersection computation
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8.4 Convex Polyhedra

After orthogonal polyhedra next we discuss state set representation by convex polyhedra. Some
polyhedra are depicted in Figure [8.30

Figure 8.30: Polyhedra

Definition 8.17. A (convex) polyhedron in R is the solution set to a finite number of inequal-
ities with real coefficients in d real variables. A bounded polyhedron is called polytope.

In the following we restrict ourselves to convex polytopes. An extension to convex polyhedra
is possible, but a bit more involved.

We introduce two representation forms for convex polytopes. Defining a polytope by its facets
yields an H-representation, whereas the V-representation stores the vertice

Definition 8.18 (Closed halfspace). A d-dimensional closed halfspace is a set H = {x € R? |
c-x < 2z} for some c € R?, called the normal of the halfspace, and a z € R.

Definition 8.19 (H-polyhedron, H-polytope). A d-dimensional H-polyhedron P = (\/_, H;
is the intersection of finitely many closed halfspaces. A bounded H-polyhedron is called an H-
polytope.

The facets of a d-dimensional H-polytope are d — 1-dimensional H-polytopes.
An H-polytope

n

P = ﬁ% = [([zeR'|c o<z}

=1 i=1

can also be written in the form
P={zcR|Cr <z}

We call (C, z) the H-representation of the polytope. Each row ¢; of C' is the normal vector to
the ith facet of the polytope. Note that each H-polytope P has a finite number of vertices which
we denote by V(P).

Definition 8.20. A set S is called convex, if
Ve,y € S.VA € [0,1] CR. dxz+ (1 - Ny € S.

‘H-polyhedra are convex sets.

14 stays for halfspace and V for vertex.
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Definition 8.21 (Convex hull). Given a set V. C R, the convex hull CH(V) of V is the
smallest convex set that contains V.

For a finite set V = {v1,...,v,} the convex hull can be computed by

CH(V)={zeR*|3\,... . 0, €[0,]] CRL D N =1AD> Aw; =a}.
i=1 i=1

Definition 8.22 (V-polytope). A V-polytope P = CH(V) is the convex hull of a finite set
V C R%. We call V the V-representation of the polytope.

Note that all V-polytopes are bounded. Note furthermore that both representations are in
general not canonical as they may be non-redundant: The H-representation may contain redun-
dant subsumed inequations, and the V-representation may contain redundant inner points that
are not vertices. This implies that there may be different representations of a single polyhe-
dron. Such superfluous data do not pose theoretical problems, but of course increase the effort of
computations. Redundant information can be removed by solving (a set of) linear programms.

For each H-polytope, the convex hull of its vertices defines the same set in the form of a
V-polytope, and vice versa, each set defined as a V-polytope can be also given as an H-polytope
by computing the halfspaces defined by its facets. This is stated by Motzkin’s theorem. However,
the translations between the H- and the V-representations of polytopes can be exponential in
the state space dimension d.

Given a convex polytope, the sizes of the H- and V-representations can strongly differ. For
example, on the one hand the d-dimensional cube

{x=(21,...,2q) eRT VI <i<d —1<ux <1}

has 2d facets and 2¢ vertices. On the other hand, the d-dimensional crosspolytope

d
{x = (z1,...,74) €ER? | Z|xl| <1}
i=1

has 2d vertices and 2¢ facets.
If we represent reachable sets of hybrid automata by polytopes, we again need certain oper-
ations on convex polytopes. In the following we discuss

e the membership problem,
e the intersection, and the
e the union of two polytopes.

As we will see, the computations have different complexities in the different representations.
Many operations are easily solvable in one of the representation and hard in the other one
and vice versa. One could think of converting polytopes for each needed operation into the
representation for which the operation is cheap (indeed this is sometimes done). However, note
that the conversion can have exponential costs.

e The membership problem can be solved in linear time in d in the H-representation. Given
an H-polytope defined by Cz < z and a point p € R?, to check if p is contained in the
polytope just substitute p for x in C'x < z to check if the inequation holds.
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For the V-representation we have to solve a linear programming problem. Given a V-
polytope defined by the vertex set V', we have to check satisfiability of

I, A €0 CRE DY TN =1AY Avj=a.
i=1

i=1

Alternatively we can also convert the V-polytope into an H-polytope by computing its
facets and check membership for the H-representation.

e The intersection for two polytopes P; and P, in the H-representation is again cheap: Given

an H-polytope defined by Cix < z; and Cyx < 29, their intersection is represented by the
‘H-polytope with ( g; ) z < ( 2 ) Note that the resulting representation is in general
not minimal.
Again, the intersection computation for the V-representation is more complex (NP-hard);
we do not discuss it here. Assume two V-polytopes P; and P, having the vertex sets V;
respectively V5. We can convert the polytopes to H-polytopes, compute their intersection,
and convert the result back to a V-polytope.

e For the union, note that the union of two convex polytopes is in general not a convex
polytope. The standard way to make the union computation closed under convex polytopes
is to take the convex hull of the union.

This time the computation for the V-representation is more efficient. Assume two V-
polytopes defined by the vertex sets V3 and V,. The V-representation of their union is
given by V3 UV;. Note again that the representation is not redundant (however, it can be
made minimal with additional effort).

To compute the union of two H-polytopes defined by Ciz < z; and Cox < z5 is more com-
plex (NP-hard), and we do not handle it here. Alternatively we can convert the polytopes
to V-polytopes, compute the union, and compute back the result.

Exercises
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