Modeling and Analysis of Hybrid Systems Convex polyhedra

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2013

1 Convex polyhedra

2 Operations on convex polyhedra

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in d real variables. A bounded polyhedron is called polytope.

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in *d* real variables. A bounded polyhedron is called polytope.

Definition

A set S is called **convex**, if

$$\forall x, y \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.

Definition

A polyhedron in \mathbb{R}^d is the solution set to a finite number of linear inequalities with real coefficients in *d* real variables. A bounded polyhedron is called polytope.

Definition

A set S is called convex, if

$$\forall x, y \in S. \ \forall \lambda \in [0, 1] \subseteq \mathbb{R}. \ \lambda x + (1 - \lambda)y \in S.$$

Polyhedra are convex sets.

Depending on the form of the representation we distinguish between

- *H*-polytopes and
- \mathcal{V} -polytopes

Intersection of a finite set of halfspaces

Intersection of a finite set of halfspaces

Intersection of a finite set of halfspaces

Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T x \leq z\}$ for some $c \in \mathbb{R}^d$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

Definition (Closed halfspace)

A *d*-dimensional closed halfspace is a set $\mathcal{H} = \{x \in \mathbb{R}^d \mid c^T x \leq z\}$ for some $c \in \mathbb{R}^d$, called the normal of the halfspace, and a $z \in \mathbb{R}$.

Definition (\mathcal{H} -polyhedron, \mathcal{H} -polytope)

A *d*-dimensional \mathcal{H} -polyhedron $P = \bigcap_{i=1}^{n} \mathcal{H}_i$ is the intersection of finitely many closed halfspaces. A bounded \mathcal{H} -polyhedron is called an \mathcal{H} -polytope.

The facets of a *d*-dimensional \mathcal{H} -polytope are d - 1-dimensional \mathcal{H} -polytopes. $c_{\star}^{\intercal} \star \leq z_{\star}$ $c_{\star}^{\intercal} \star \leq z_{\star}$ $C_{\star}^{\intercal} \star \leq z_{\star}$

 $x_1 \in 1$ $\begin{pmatrix} \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \quad \boldsymbol{\xi} \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix}$ $\begin{pmatrix} \mathbf{1} & \mathbf{0} \end{pmatrix} \quad \boldsymbol{\xi} \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix}$

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i}\}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

• Each row of C is the normal vector to the *i*th facet of the polytope.

An \mathcal{H} -polytope

$$P = \bigcap_{i=1}^{n} \mathcal{H}_{i} = \bigcap_{i=1}^{n} \{ x \in \mathbb{R}^{d} \mid c_{i} \cdot x \leq z_{i} \}$$

can also be written in the form

$$P = \{ x \in \mathbb{R}^d \mid Cx \le z \}.$$

We call (C, z) the \mathcal{H} -representation of the polytope.

- Each row of C is the normal vector to the *i*th facet of the polytope.
- An \mathcal{H} -polytope P has a finite number of vertices V(P).

Convex hull of a finite set of points

Convex hull of a finite set of points

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x\}.$$

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded.

Definition (Convex hull)

Given a set $V \subseteq \mathbb{R}^d$, the convex hull conv(V) of V is the smallest convex set that contains V.

For a finite set $V = \{v_1, \ldots, v_n\}$, its convex hull can be computed by

$$conv(V) = \{ x \in \mathbb{R}^d \mid \exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}. \ \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \}.$$

Definition (\mathcal{V} -polytope)

A \mathcal{V} -polytope P = conv(V) is the convex hull of a finite set $V \subset \mathbb{R}^d$. We call V the \mathcal{V} -representation of the polytope.

Note that all \mathcal{V} -polytopes are bounded. Unbounded polyhedra can be represented by extending convex hulls with conical hulls.

Ábrahám - Hybrid Systems

Conical hull of a finite set of points

Conical hull of a finite set of points

If $U = \{u_1, \ldots, u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{ x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \ge 0 \}.$$
(1)

If $U = \{u_1, \ldots, u_n\}$ is a finite set of points in \mathbb{R}^d , the conical hull of U is defined by

$$cone(U) = \{ x \mid x = \sum_{i=1}^{n} \lambda_i u_i, \lambda_i \ge 0 \}.$$
(1)

Each polyhedra $P\subseteq \mathbb{R}^d$ can be represented by two finite sets $V,U\subseteq \mathbb{R}^d$ such that

$$P = conv(V) \oplus cone(U) .$$

If U is empty then P is bounded (e.g., a polytope).

- For each *H*-polytope, the convex hull of its vertices defines the same set in the form of a *V*-polytope, and vice versa,
- each set defined as a V-polytope can be also given as an H-polytope by computing the halfspaces defined by its facets.

The translations between the \mathcal{H} - and the \mathcal{V} -representations of polytopes can be exponential in the state space dimension d.

1 Convex polyhedra

2 Operations on convex polyhedra

$$\begin{array}{c} \begin{pmatrix} \lambda & \lambda & \lambda \\ \lambda & \lambda \\$$

 $\begin{pmatrix} \Lambda & 0 \\ 0 & 1 \\ -\Lambda & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} Y_{A} \\ Y_{L} \end{pmatrix} \begin{pmatrix} \zeta \\ 1 \\ 0 \\ 0 \end{pmatrix}$ $X_1 \leq 1$ ×2 <1 O E K1 O S X2

If we represent reachable sets of hybrid automata by polytopes, we need some operations like

- membership computation,
- intersection, or the
- union of two polytopes.

Operations: Membership

Membership for $p \in \mathbb{R}^d$:

• \mathcal{H} -polytope defined by $Cx \leq z$:

■ *H*-polytope defined by Cx ≤ z: just substitute p for x to check if the inequation holds.

- \mathcal{H} -polytope defined by $Cx \leq z$: just substitute p for x to check if the inequation holds.
- \mathcal{V} -polytope defined by the vertex set $V = \{ \sigma_1, \dots, \sigma_n \}$

- *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \;.$$

- *H*-polytope defined by *Cx* ≤ *z*: just substitute *p* for *x* to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x.$$

Alternatively:

- *H*-polytope defined by Cx ≤ z: just substitute p for x to check if the inequation holds.
- *V*-polytope defined by the vertex set *V*: check satisfiability of

$$\exists \lambda_1, \dots, \lambda_n \in [0, 1] \subseteq \mathbb{R}^d. \quad \sum_{i=1}^n \lambda_i = 1 \land \sum_{i=1}^n \lambda_i v_i = x \;.$$

Alternatively: convert the \mathcal{V} -polytope into an \mathcal{H} -polytope by computing its facets.

Intersection for two polytopes P_1 and P_2 :

• \mathcal{H} -polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$:

Intersection for two polytopes P_1 and P_2 :

• \mathcal{H} -polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.

• \mathcal{V} -polytopes defined by V_1 and V_2 :

Intersection for two polytopes P_1 and P_2 :

- \mathcal{H} -polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$: the resulting \mathcal{H} -polytope is defined by $\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} x \leq \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
- V-polytopes defined by V₁ and V₂: Convert P₁ and P₂ to H-polytopes and convert the result back to a V-polytope.

 \rightarrow take the convex hull of the union.

 \rightarrow take the convex hull of the union.

• \mathcal{V} -polytopes defined by V_1 and V_2 :

 \rightarrow take the convex hull of the union.

• \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.

• \mathcal{H} -polytopes defined by $C_1 x \leq z_1$ and $C_2 x \leq z_2$:

 \rightarrow take the convex hull of the union.

- \mathcal{V} -polytopes defined by V_1 and V_2 : \mathcal{V} -representation $V_1 \cup V_2$.
- *H*-polytopes defined by $C_1x \le z_1$ and $C_2x \le z_2$: convert to *V*-polytopes and compute back the result.

	\mapsto	conv	\oplus	\cap
$\mathcal V$ -polytope	easy	—	—	—
$\mathcal H$ -polytope	hard	—	—	—
$\mathcal V$ -polytope and $\mathcal V$ -polytope	—	easy	easy	hard
$\mathcal H$ -polytope and $\mathcal H$ -polytope	—	hard	hard	easy
$\mathcal V$ -polytope and $\mathcal H$ -polytope	—	hard	hard	hard

It could also be hard to translate a $\mathcal V\text{-}\mathsf{polytope}$ to an $\mathcal H\text{-}\mathsf{polytope}$ or vice versa.