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We had a look at state set approximations by
m convex polyhedra,
and at the basic operations
m testing for membership,
m intersection, and
E union

on these.
Thus we can

m approximate state sets and

m compute with them.

How is all this used in the reachability analysis procedure?
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General reachability procedure

Input: Set Init of initial states.

Algorithm:
R"Y := Init;
R:=0;
while (R #£ (){

R = RU R"™Y;

Rhew . (Rnew)\R;

Output: Set R of reachable states.

‘What is “Reach”?‘
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What is “Reach’?

For hybrid systems, independently of the exact definition of “Reach”, it will
involve the following computations:

Given a state set R, compute
m the set of states reachable from R by a flow (i.e., time transisiton),

—

and

v
m the set of states reachable from R by a jump (i.e., discrete transition).

Computing the jump successors, i.e., the flow pipe, of a set can be done
with the operations we already introduced.

The harder part is computing the flow successors. So let's have a look at
that...

Abraham - Hybrid Systems 5/ 19



[




Approximating a flow pipe

Consider a dynamical system with state equation
@ = f(x(t)). %=1
x €lab7  aleR (Q)
x: Axs 84
= Lx(«D)

2
X
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Approximating a flow pipe

Consider a dynamical system with state equation

& = f(x(t)).

We assume f to be Lipschitz continuous.
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Approximating a flow pipe

Consider a dynamical system with state equation
&= f(z(t)).
We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [...].".
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Approximating a flow pipe

Consider a dynamical system with state equation

&= f(z(t)).
We assume f to be Lipschitz continuous.

Wikipedia: “Intuitively, a Lipschitz continuous function is limited in how
fast it can change: for every pair of points on the graph of this function,
the absolute value of the slope of the line connecting them is no greater
than a definite real number [...].".

Lipschitz continuity implies the existence and uniqueness of the solution to
an initial value problem, i.e., for every initial state x( there is a unique
solution z(t, zo) to the state equation.
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Approximating a flow pipe

The set of reachable states at time ¢ from a set of initial states X is
defined as
Ri(Xo) = {xf | Fxo € Xo. x5 = 2(t,20)}.
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Approximating a flow pipe

The set of reachable states at time ¢ from a set of initial states X is
defined as
Ri(Xo) = {xf | Fxo € Xo. x5 = 2(t,20)}.

The set of reachable states, the flow pipe, from X in the time interval
[t1,t2] is defined as

R[tl,tz] (XO) = UtE[tl,tQ}Rt<X0>‘
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Approximating a flow pipe

The set of reachable states at time ¢ from a set of initial states X is
defined as
Ri(Xo) = {xf | Fxo € Xo. x5 = 2(t,20)}.

The set of reachable states, the flow pipe, from X in the time interval
[t1,t2] is defined as

R[tl,tz] (XO) = UtE[tl,tQ}Rt<X0>‘

~—————

We describe a solution which approximates the flow pipe by a sequence of

convex polytopes. .
N X =Ax Q I3 u)
/ x = X
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to

POLY (C,d) = {z | Cx < d}.
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to
POLY (C,d) = {z | Cx < d}.

m Each row of C is the normal vector to the ith face of the polytope.
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to

POLY (C,d) = {z | Cx < d}.

m Each row of C is the normal vector to the ith face of the polytope.

m A polytope P has a finite number of vertices V(P), which are points
in P that cannot be written as a strict convex combination of any
other two points in P.
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Definition (Convex polytope)

Let POLY (C,d) denote the convex polytope defined by the pair
(C,d) € R™*"™ x R™ according to

POLY (C,d) = {z | Cx < d}.

m Each row of C is the normal vector to the ith face of the polytope.

m A polytope P has a finite number of vertices V(P), which are points
in P that cannot be written as a strict convex combination of any
other two points in P.

m Given a finite set of points I, the convex hull CH(T") of T is the
smallest convex set that contains I".
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Problem statement for polyhedral approximation of flow pipes

Given
m a set X of initial states which is a polytope, and

m a final time ¢,

compute a polyhedral approximation ﬁ[o,tf}(Xo) to the flow pipe
Ro,;1(Xo) such that

Rio,)(X0) € Rio,t,)(Xo)-
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Flow pipe segmentation

Since a single convex polyhedra would strongly overapproximate the flow
pipe, we compute a sequence of convex polyhedra, each approximating a
flow pipe segment.

150
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments

[0./151], [tl,tg], ceey [t]v,l,tf}

with t; =7 - tﬁf
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments
[07 tl]; [tla t?]a 0oog [thlatf}
. ot
with ¢; =i - .
We generate an approximation ﬁ[tl,tg](XO) for each flow pipe segment:

Rt 2 (X0) € Rigy 1) (X0)-

ECO,-(* )
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Segmented flow pipe approximation

Let the time interval [0, %] be divided into 0 < N € N time segments

[07t1]7 [tlatQ]a 0oog [thlatf}

with t; =7 - tﬁf
We generate an approximation ﬁ[tl,tg](XO) for each flow pipe segment:
Rits 42)(X0) € Rty 12)(X0)-

The complete flow pipe approximation is the union of the approximation of
all N pipe segments:

R[Oatf]<X0) c ﬁ[ovtf}(XO) - U ﬁ[tk—l-,tk](Xo)
k=1,.,N
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
m Evolve vertices: Compute the set of points reachable from the vertices
of Xp in time t;_1 and in time ¢;.

V

b
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps:
m Evolve vertices: Compute the set of points reachable from the vertices
of Xp in time t;_1 and in time ¢;.
m Determine hull: Compute the convex hull of those points.
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Approximation of a flow pipe segment

The approximation of the flow pipe for the time segment [tx_1, tx]
(k€ {1,...,N}) consists of the following steps: P
m Evolve vertices: Compute the set of points reachable from the vertices
of Xp in time t;_1 and in time ¢;.
m Determine hull: Compute the convex hull of those points.
m Bloat hull: Enlarge the hull until it contains all points of the flow pipe
segment.

V

b
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we

begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we
begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.

In particular, we compute the sets V;, | (Xo) and V;, (Xo) where

Vi(Xo) = {z(t,v) | v e V(Xp)}.
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1. Evolve vertices

To gain some geometrical information about the flow pipe segment, we

begin with taking sample points at times ¢;_; and ¢, from the trajectories
emanating from the vertices of Xj.

In particular, we compute the sets V;, | (Xo) and V;, (Xo) where
Vi(Xo) = {a(t,v) | v e V(Xo)}.

Each point in the above sets can be obtained

m by analytic solution of the state equation and computing the value, or
m by simulation.
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex

hull which serves as an initial approximation to the flow pipe segment
Ritr_1.1)(Xo), denoted by

(b[tk—l-,tk](XO) = CH(%k—l (XO) U Wk (X()))
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex

hull which serves as an initial approximation to the flow pipe segment
Ritr_1.1)(Xo), denoted by

(b[tk—l-,tk](XO) = CH(%k—l (XO) U Wk (X()))

Note that @, , ;,1(Xo) may not contain the whole flow pipe segment
Rite 1,62 (Xo0)-
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2. Determine hull

We use the evolved vertices in V;, _,(Xo) and V}, (Xo) to form a convex
hull which serves as an initial approximation to the flow pipe segment
Rity_1,t,](X0), denoted by

(b[tk—l-,tk](XO) = CH(%k—l (XO) U Wk (X()))

Note that @, , ;,1(Xo) may not contain the whole flow pipe segment
Rite 1,62 (Xo0)-

Let (Cp,ds) be the matrix-vector pair defining the convex hull, i.e.,

O, 1(Xo) = POLY (Cs,ds).
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3. Bloat hull

m The normal vector on each face of the polytope points outward.
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3. Bloat hull

m The normal vector on each face of the polytope points outward.

m We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
flow pipe segment.
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3. Bloat hull

m The normal vector on each face of the polytope points outward.

m We use the normal vectors to the faces of this convex hull as a set of
direction vectors to bloat the convex set until it contains the whole
- -_—
flow pipe segment.

m Given: POLY (Co,ds).
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3. Bloat hull

m The normal vector on each face of the polytope points outward.
m We use the normal vectors to the faces of this convex hull as a set of

direction vectors to bloat the convex set until it contains the whole
flow pipe segment.

m Given: POLY(C’@,.

m We want: Ry, |4, (Xo) € POLY (Ca,|d)).
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3. Bloat hull

m We compute d as the solution to the following optimization problem:

ngn volume[POLY (Co ,_(d ) (1)

s.t. R[tkfl,tk](XO) g POLY(C(I),d)

Abraham - Hybrid Systems 16 / 19



3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tkfl,tk](XO) g POLY(C(I),d)

m The ith component d} of the optimum d* can be found by solving

max clx  st.oax€ Rity_ 1.t (Xo0)- (2)

xT =
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
s.t. R[tkfl,tk](XO) g POLY(C(I),d)

m The ith component d} of the optimum d* can be found by solving

max clx  st.oax€ Rity_ 1.t (Xo0)- (2)
p :
m or, equivalently,
max (,;fpzn(t,:ro)) s.t. M, t € [tp_1,tx]- (3)
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3. Bloat hull

m We compute d as the solution to the following optimization problem:
mc}n volume[POLY (Cy, d)] (1)
sit. Riy,4(Xo) € POLY (Cy,d).

m The ith component d} of the optimum d* can be found by solving

max clx = s.t.x € Rity_ 1.t (Xo0)- (2)
o ,

m or, equivalently,

mai( C?.ﬁ(t,l‘o) s.t. xp € Xo, te] tk 1tk 3
o,

m Solution (z§,t") to 3 — /
Solution z(t*, x{) to2 —
Solution df = clz(t*,z}) to 1.
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m Van der Pol equation:
.CfCl = X9
By = —0.2(2 — 1)y — z1.

m Intial set: Xy = {(z1,22) | 0.8 <z1 <1Azy=0}.
m Time: ¢ty = 10.
m Segments: 20
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Other geometries for approximation

m Van der Pol equation with a third variable being a clock.

m Approximation
with convex polyhedra and with oriented rectangular hull:

t — i, .
| kol R — By L S ——
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Partitioning the initial set

Var der Pol system with initial set Xo = {(x1,22) | 5 < 1 <45Az9 = 0}.

01 01
0.05 XO 005 Xo
or or
-0.05F 005
-01 0.1
=< < —
0.5 015
~02 -02F
0.25 —0.25
-03 -03F
o 50 0 s 0 15 20 2 30 35 40 45 50
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