
Modeling and Analysis of Hybrid Systems
Approximate analysis and minimization

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2013

Ábrahám - Hybrid Systems 1 / 17

Literature

Alur et al.: The algorithmic analysis of hybrid systems

Theoretical Computer Science, 138(1):3–34, 1995

Ábrahám - Hybrid Systems 2 / 17

Approximate analysis

Ábrahám - Hybrid Systems 3 / 17

If the (forward or backward) iterative technique does not terminate, we can
compute over-approximations of the sets

(I 7→∗) of states which are reachable from the initial states I
(forward analysis)
(7→∗ R) of states from which the region R is reachable
(backward analysis)

Two approaches:
Convex hull
Widening

Ábrahám - Hybrid Systems 4 / 17

If the (forward or backward) iterative technique does not terminate, we can
compute over-approximations of the sets

(I 7→∗) of states which are reachable from the initial states I
(forward analysis)
(7→∗ R) of states from which the region R is reachable
(backward analysis)

Two approaches:
Convex hull
Widening

Ábrahám - Hybrid Systems 4 / 17

Convex hull

Instead of computing the union of sets, compute the convex hull, i.e., the
least convex polyhedron containing the operands of the union.

x

y

0

1

2

3

4

1 2 3 4

Ábrahám - Hybrid Systems 5 / 17

Widening

To enforce the convergence of iterations, we can apply a widening
technique.
Basic idea: extrapolate the limit of a sequence of polyhedra (occurring in
the non-terminating fixpoint computation), in such a way that an upper
limit be always reached within a finite number of iterations.
Apply the widening for at least one location in each loop of the graph of
the hybrid automaton.

x

y

0

1

2

3

4

1 2 3 4
Ábrahám - Hybrid Systems 6 / 17

Minimization

Ábrahám - Hybrid Systems 7 / 17

The basic idea of abstraction

Ábrahám - Hybrid Systems 8 / 17

Abstraction refinement

Sometimes it is possible to define an abstraction which is a
bisimulation, e.g., for TCTL model checking of timed automata.
For harder (or undecidable) problems we can try to define an initial
abstraction and refine it as long as it leads to spurious
counterexamples.
Some abstraction refinement techniques:

Predicate abstraction
Counterexample-guided abstraction refinement (CEGAR)
Minimization

Ábrahám - Hybrid Systems 9 / 17

Abstraction refinement

Using abstraction refinement, there are three main issues that must be
resolved:

1 The algorithm should terminate after a finite number of iterations.
2 The resulting partition should consist of a finite number of equivalence

classes.
3 The steps of the algorithm should be constructive.

Resolving all three issues results in a decidable problem.

Ábrahám - Hybrid Systems 10 / 17

Minimization for linear hybrid automata

Since the reachability problem for linear hybrid automata is
undecidable, we cannot give any complete algorithm for computing a
finite abstraction (bisimulation), like in the case of timed automata.
Thus it is not a surprise, that reachability analysis does not always
reach a fixpoint.
To increase the chance to success, we can extend (e.g., forward)
reachability analysis with a minimization algorithm.
Given an initial condition and a safety specification, we could try to
construct a partitioning of the state space, by

specifying an initial partitioning into good and bad states (according to
the specification), and
refining this partitioning according to (forward) reachability until we
can draw conclusions wrt. to the validity of the specification.

To explain it more exactly, first we need some formalisms...

Ábrahám - Hybrid Systems 11 / 17

Definition
The next relation 7→ on regions is defined by

R 7→ R′ iff ∃σ ∈ R. ∃σ′ ∈ R. σ → σ′.

R’R

Ábrahám - Hybrid Systems 12 / 17

Definition
Let π be a partition of the state space Σ. A region R ∈ π is called stable
iff for all R′ ∈ π,

R 7→ R′ implies ∀σ ∈ R. {σ} 7→ R′.

R’R

Ábrahám - Hybrid Systems 13 / 17

Definition
split[π](R) :={

{R′, R \ R′} if ∃R′′ ∈ π. R′ = D−(T −(R′′)) ∩R ∧R′ 6= R,
{R} otherwise.

R’

R−R’ R’’R’’R

Ábrahám - Hybrid Systems 14 / 17

A partition π is a bisimulation iff every region R ∈ π is stable.
The partition π respects the region Rbad iff for every region R ∈ π,
either R ⊆ Rbad or R ∩Rbad = ∅.
Idea: The partitioning must respect the specification, and must be
stable for the regions reachable from regions containing some initial
states.
The specification holds iff in this abstraction there is no region
containing a bad state and being reachable from a region containing
some initial state.
In the following let I be the initial states and Rbad be the bad states.

Ábrahám - Hybrid Systems 15 / 17

π := {Rbad,Σ \ Rbad}; reach := {R ∈ π | R ∩ I 6= ∅}; stable := ∅;
while reach 6= stable do

choose R ∈ (reach \ stable); reach′ := split[π](R);

if reach′ = {R} then

stable := stable ∪ {R};
reach := reach ∪ {R′ ∈ π | R 7→ R′};

else

reach := (reach \ {R}) ∪ {R′ | R′ ∈ reach′ ∧R′ ∩ I 6= ∅};
stable := stable \ {R′ ∈ π | R′ 7→ R};
π := (π \ {R}) ∪ reach′;

fi

od

return there is R ∈ reach such that R ⊆ Rbad;

Ábrahám - Hybrid Systems 16 / 17

Lemma
The procedure returns TRUE iff I 7→∗ Rbad.

If the regions Rbad and I are linear, all regions that are constructed by
the procedure are linear.
The algorithm terminates iff the coarsest bisimulation has only a finite
number of equivalence classes.

Ábrahám - Hybrid Systems 17 / 17

