Modeling and Analysis of Hybrid Systems Reachability analysis for hybrid automata

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems RWTH Aachen University

SS 2012

General forward reachability computation

Input: Set Init of initial states. Algorithm:

 $R^{\mathsf{new}} := \mathsf{Init};$

 $R := \emptyset;$

while $(R^{\text{new}} \neq \emptyset)$ $R := R \cup R^{\mathsf{new}};$

 $R^{\mathsf{new}} := \mathsf{Reach}(R^{\mathsf{new}}) \backslash R;$

Output: Set R of reachable states.

Output: Set
$$R$$
 of reachable \mathbb{R}^{n} $\times \mathbb{R} = \mathbb{R}^{n}$ $\times \mathbb{R$

Reach (x>0 xy>> x x=2y)= x=0 R = x>0 xy>0 x x=2y

Reachability computation

■ When applied to hybrid automata, there is a problem with this procedure:

How to compute Reach(P) for a set P?

Reachability computation

■ When applied to hybrid automata, there is a problem with this procedure:

How to compute Reach(P) for a set P?

- Generally there are two kinds of approaches:
 - 1 CEGAR (CounterExample-Guided Abstraction Refinement):
 - Build a finite abstraction of the state space.
 - Compute reachability for the abstract system.
 - $lue{}$ Spurious counterexamples ightarrow abstraction refinement.
 - 2 Compute an over-approximation of Reach(P) in the above procedure.

Reachability computation

■ When applied to hybrid automata, there is a problem with this procedure:

How to compute Reach(P) for a set P?

- Generally there are two kinds of approaches:
 - 1 CEGAR (CounterExample-Guided Abstraction Refinement):
 - Build a finite abstraction of the state space.
 - Compute reachability for the abstract system.
 - \blacksquare Spurious counterexamples \to abstraction refinement.
 - **2** Compute an over-approximation of Reach(P) in the above procedure.
- We have seen an example for (1) for timed automata.
- We have seen another example for (1) for minimization with on-the-fly refinement during the fixed-point computation.
- Let us now have a closer look at (2).

Computing reachability

We need to solve two problems:

Continuous dynamics

Given a dynamical system defined by $\dot{x}=f(x)$, where x takes values from \mathbb{R}^d , and given $P\subseteq\mathbb{R}^d$, calculate (or over-approximate) the set of points in \mathbb{R}^d reached by trajectories (solutions of $\dot{x}=f(x)$) starting in P.

Discrete steps

Given a discrete transition of a hybrid system with state space \mathbb{R}^d , and given $P\subseteq\mathbb{R}^d$, calculate (or approximate) the set of points in \mathbb{R}^d reachable by taking a discrete transition starting in P.

Reachability approximation for hybrid automata

State set representation

- The geometry chosen to represent reachable sets has a crucial effect on the efficiency of the whole procedure.
- Usually, the more complex the geometry,
 - 1 the more costly is the storage of the sets,
 - 2 the more difficult it is to perform operations like union and intersection, and
 - 3 the more elaborate is the computation of new reachable sets, but
 - 4 the better the approximation of the set of reachable states.
- Choosing the geometry has to be a compromise between these impacts.

Representation requirements

The geometry should allow efficient computation of the operations for

- membership relation,
- union,
- intersection,
- subtraction,
- test for emptiness.

State set representation

Approaches:

- Convex polyhedra
- Orthogonal polyhedra
- Oriented rectangular hulls
- Zonotopes
- Support functions
- Ellipsoids
- ...