
Modeling and Analysis of Hybrid Systems
What’s decidable about hybrid automata?

Prof. Dr. Erika Ábrahám

Informatik 2 - Theory of Hybrid Systems
RWTH Aachen University

SS 2013

Ábrahám - Hybrid Systems 1 / 23



Literature

Henzinger et al.: What’s decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94–124, 1998

Ábrahám - Hybrid Systems 2 / 23



Motivation

The special class of timed automata with TCTL is decidable, thus
model checking is possible.
What about more expressive model classes for hybrid systems?

Ábrahám - Hybrid Systems 3 / 23



What is decidable about hybrid automata?

Two central problems for the analysis of hybrid automata:
Safety: The problem to decide whether something “bad” can happend
during the execution of a system.
Liveness: The problem to decide whether there is always the possibility
that something “good” will eventually happen during the execution of
a system.

Both problems are decidable in certain special cases, and undecidable in
certain general cases.

Ábrahám - Hybrid Systems 4 / 23



What is decidable about hybrid automata?

A particularly interesting class:

all conditions, effects, and flows are described by rectagular sets.

Definition

A set R ⊂ Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose endpoints are rationals.
The set of rectangular sets in Rn is denoted Rn.

Ábrahám - Hybrid Systems 5 / 23



What is decidable about hybrid automata?

A particularly interesting class:
all conditions, effects, and flows are described by rectagular sets.

Definition

A set R ⊂ Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose endpoints are rationals.
The set of rectangular sets in Rn is denoted Rn.

Ábrahám - Hybrid Systems 5 / 23



What is decidable about hybrid automata?

A particularly interesting class:
all conditions, effects, and flows are described by rectagular sets.

Definition

A set R ⊂ Rn is rectangular if it is a cartesian product of (possibly
unbounded) intervals, all of whose endpoints are rationals.
The set of rectangular sets in Rn is denoted Rn.

Ábrahám - Hybrid Systems 5 / 23



Rectangular automaton

Definition
A rectangular automaton A is a tuple
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var = {x1, . . . , xn},
a function Con : Loc → 2Var assigning controlled variables to locations,
finite set of synchronization labels Lab,
finite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a flow function Act : Loc → Rn,
an invariant function Inv : Loc → Rn,
initial states Init : Loc → Rn.

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states

Is the state space rectangular?

Ábrahám - Hybrid Systems 6 / 23



Rectangular automaton

Definition
A rectangular automaton A is a tuple
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var = {x1, . . . , xn},
a function Con : Loc → 2Var assigning controlled variables to locations,
finite set of synchronization labels Lab,
finite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a flow function Act : Loc → Rn,
an invariant function Inv : Loc → Rn,
initial states Init : Loc → Rn.

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states

Is the state space rectangular?

Ábrahám - Hybrid Systems 6 / 23



Rectangular automaton

Definition
A rectangular automaton A is a tuple
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var = {x1, . . . , xn},
a function Con : Loc → 2Var assigning controlled variables to locations,
finite set of synchronization labels Lab,
finite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a flow function Act : Loc → Rn,
an invariant function Inv : Loc → Rn,
initial states Init : Loc → Rn.

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states

Is the state space rectangular?

Ábrahám - Hybrid Systems 6 / 23



Rectangular automaton

Definition
A rectangular automaton A is a tuple
H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

finite set of locations Loc,
finite set of real-valued variables Var = {x1, . . . , xn},
a function Con : Loc → 2Var assigning controlled variables to locations,
finite set of synchronization labels Lab,
finite set of edges Edge ⊆ Loc × Lab ×Rn ×Rn × 2{1,...,n} × Loc,
a flow function Act : Loc → Rn,
an invariant function Inv : Loc → Rn,
initial states Init : Loc → Rn.

States: σ = (l, ~x) ∈ (Loc × Rn) with ~x ∈ Inv(l)

State space: Σ ⊆ Loc × Rn is the set of all states

Is the state space rectangular?

Ábrahám - Hybrid Systems 6 / 23



Rectangular automaton

Flows: first time derivatives of the flow trajectories in location l ∈ Loc
are within Act(l)

Jumps: e = (l, a, pre, post , jump, l′) ∈ Edge may move control from
location l to location l′ starting from a valuation in pre, changing the
value of each variable xi to a nondeterministically chosen value from
post i (the projection of post to the ith dimension), such that the
values of the variables xi /∈ jump are unchanged.

Ábrahám - Hybrid Systems 7 / 23



Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump. x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Init(l0)

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 8 / 23



Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump. x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Init(l0)

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 8 / 23



Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump. x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Init(l0)

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 8 / 23



Operational semantics

(l, a, pre, post, jump, l′) ∈ Edge

~x ∈ pre ~x′ ∈ post ∀i /∈ jump. x′i = xi ~x′ ∈ Inv(l′)

(l, ~x)
a→ (l′, ~x′)

Rule Discrete

(t = 0 ∧ ~x = ~x′) ∨ (t > 0 ∧ (~x′ − ~x)/t ∈ Act(l)) ~x′ ∈ Inv(l)

(l, ~x)
t→ (l, ~x′)

Rule Time

Execution step: → =
a→ ∪ t→

Path: σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Inv(l0)

Initial path: path σ0 → σ1 → σ2 . . . with σ0 = (l0, ~x0), ~x0 ∈ Init(l0)

Reachability of a state: exists an initial path leading to the state

Ábrahám - Hybrid Systems 8 / 23



Example rectangular automaton

l1
ẋ ∈ [1, 2]
x ≤ 6

x = 0
l4

ẋ ∈ [1, 2]
x ≤ 4

l3
ẋ ∈ [−4,−2]

l2
ẋ ∈ [−4,−2]

d

x ≥ 0

cx = 0→ x := [−2,−1]

b

x ≤ −2→ x := [0, 4]

a x ≥ 2→ x := 4

Ábrahám - Hybrid Systems 9 / 23



Remarks

If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.
A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.

Ábrahám - Hybrid Systems 10 / 23



Remarks

If we replace rectangular sets with linear sets, we obtain linear hybrid
automata, a super-class of rectangular automata.
A timed automaton is a special rectangular automaton.

This class lies at the boundary of decidability.

Ábrahám - Hybrid Systems 10 / 23



Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition
A rectangular automaton A is initialized, if for every edge
(l, a, pre, post , jump, l′) of A, and every variable index i ∈ {1, . . . , n} with
Act(l)i 6= Act(l′)i, we have that i ∈ jump.

The reachability problem becomes undecidable if one of the restrictions is
relaxed.

Ábrahám - Hybrid Systems 11 / 23



Decidability

The reachability problem is decidable for initialized rectangular automata:

Definition
A rectangular automaton A is initialized, if for every edge
(l, a, pre, post , jump, l′) of A, and every variable index i ∈ {1, . . . , n} with
Act(l)i 6= Act(l′)i, we have that i ∈ jump.

The reachability problem becomes undecidable if one of the restrictions is
relaxed.

Ábrahám - Hybrid Systems 11 / 23



Initialized rectangular automaton

l1
ẋ ∈ [1, 2]
x ≤ 6

x = 0
l4

ẋ ∈ [1, 2]
x ≤ 4

l3
ẋ ∈ [−4,−2]

l2
ẋ ∈ [−4,−2]

d

x ≥ 0

cx = 0→ x := [−2,−1]

b

x ≤ −2→ x := [0, 4]

a x ≥ 2→ x := 4

This rectangular automaton is initialized.

Ábrahám - Hybrid Systems 12 / 23



What we already know

A timed automaton is a special rectangular automaton such that
for each edge, posti is a single value for each i ∈ jump and
every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations l and
variables x.

Lemma
The reachability problem for timed automata is complete for PSPACE.

Ábrahám - Hybrid Systems 13 / 23



What we already know

A timed automaton is a special rectangular automaton such that
for each edge, posti is a single value for each i ∈ jump and
every variable is a clock, i.e., Act(l)(x) = [1, 1] for all locations l and
variables x.

Lemma
The reachability problem for timed automata is complete for PSPACE.

Ábrahám - Hybrid Systems 13 / 23



Decidability results

Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton

Ábrahám - Hybrid Systems 14 / 23



Decidability results

Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton

Ábrahám - Hybrid Systems 14 / 23





Decidability results

Timed automaton
↑

Initialized stopwatch automaton

Ábrahám - Hybrid Systems 15 / 23



Initialized stopwatch automata

A stopwatch is a variable with derivatives 0 or 1 only.
A stopwatch automaton is as a timed automaton but allowing
stopwatch variables instead of clocks.
Initialized stopwatch automata can be polynomially encoded by timed
automata.

Lemma
The reachability problem for initialized stopwatch automata is complete for
PSPACE.

However, the reachability problem for non-initialized stopwatch automata is
undecidable.

Ábrahám - Hybrid Systems 16 / 23



Proof idea:

Notice, that a timed automaton is a stopwatch automaton
such that every variable is a clock.
Assume that C is an n-dimensional initialized stopwatch automaton. Let
κC be the set of constants used in the definition of C, and let
κ− = κC ∪ {−}.
We define an n-dimensional timed automaton DC with locations
LocDC

= Locc × κ1,...,n− . Each location (l, f) of DC consists of a location l
of C and a function f : {1, . . . , n} → κ−. Each state q = ((l, f), ~x) of DC

represents the state α(q) = (l, ~y) of C, where yi = xi if f(i) = −, and
yi = f(i) if f(i) 6= −.
Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of DC ; if the ith stopwatch is halted
(slope 0) at value k ∈ κC , then this value is remembered by the current
location of DC .

Ábrahám - Hybrid Systems 17 / 23



Proof idea: Notice, that a timed automaton is a stopwatch automaton
such that every variable is a clock.
Assume that C is an n-dimensional initialized stopwatch automaton. Let
κC be the set of constants used in the definition of C, and let
κ− = κC ∪ {−}.
We define an n-dimensional timed automaton DC with locations
LocDC

= Locc × κ1,...,n− . Each location (l, f) of DC consists of a location l
of C and a function f : {1, . . . , n} → κ−. Each state q = ((l, f), ~x) of DC

represents the state α(q) = (l, ~y) of C, where yi = xi if f(i) = −, and
yi = f(i) if f(i) 6= −.
Intuitively, if the ith stopwatch of C is running (slope 1), then its value is
tracked by the value of the ith clock of DC ; if the ith stopwatch is halted
(slope 0) at value k ∈ κC , then this value is remembered by the current
location of DC .

Ábrahám - Hybrid Systems 17 / 23



Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton

Ábrahám - Hybrid Systems 18 / 23



Initialized singular automata

A variable xi is a finite-slope variable if flow(l)i is a singleton in all
locations l.
A singular automaton is as a stopwatch automaton but allowing
finite-slope variables instead of stopwatches.
Initialized singular automata can be polynomially encoded by
initialized stopwatch automata.

Lemma
The reachability problem for initialized singular automata is complete for
PSPACE.

Ábrahám - Hybrid Systems 19 / 23



Proof idea:

Let B be an n-dimensional initialized singular automaton. We
define an n-dimensional initialized stopwatch automaton CB with the same
location set, edge set, and label set as B.
Each state q = (l, ~x) of CB corresponds to the state β(q) = (l, β(~x)) of B
with β : Rn → Rn defined as follows:
For each location l of B, if ActB(l) = Πn

i=1[ki, ki], then
β(x1, . . . , xn) = (l1 · x1, . . . , ln · xn) with li = ki if ki 6= 0, and li = 1 if
ki = 0;
β can be viewed as a rescaling of the state space. All conditions in the
automaton B occur accordingly rescaled in CB.
We have:

The reachable set of Reach(B) of B is β(Reach(CB)).

Ábrahám - Hybrid Systems 20 / 23





Proof idea: Let B be an n-dimensional initialized singular automaton. We
define an n-dimensional initialized stopwatch automaton CB with the same
location set, edge set, and label set as B.
Each state q = (l, ~x) of CB corresponds to the state β(q) = (l, β(~x)) of B
with β : Rn → Rn defined as follows:
For each location l of B, if ActB(l) = Πn

i=1[ki, ki], then
β(x1, . . . , xn) = (l1 · x1, . . . , ln · xn) with li = ki if ki 6= 0, and li = 1 if
ki = 0;
β can be viewed as a rescaling of the state space. All conditions in the
automaton B occur accordingly rescaled in CB.
We have:

The reachable set of Reach(B) of B is β(Reach(CB)).

Ábrahám - Hybrid Systems 20 / 23



Decidability results

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton

Ábrahám - Hybrid Systems 21 / 23



Lemma
The reachability problem for initialized rectangular automata is complete
for PSPACE.

Ábrahám - Hybrid Systems 22 / 23



Proof idea:

An n-dimensional initialized rectangular automaton A can be
translated into a 2n-dimensional initialized singular automaton B, such
that B contains all reachability information about A.
The translation is similar to the subset construction for determinizing finite
automata.
The idea is to replace each variable c of A by two finite-slope variables cl
and cu: the variable cl tracks the least possible value of c, and cu tracks
the greatest possible value of c.

Ábrahám - Hybrid Systems 23 / 23



Proof idea: An n-dimensional initialized rectangular automaton A can be
translated into a 2n-dimensional initialized singular automaton B, such
that B contains all reachability information about A.
The translation is similar to the subset construction for determinizing finite
automata.
The idea is to replace each variable c of A by two finite-slope variables cl
and cu: the variable cl tracks the least possible value of c, and cu tracks
the greatest possible value of c.

Ábrahám - Hybrid Systems 23 / 23


