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Abstract

In this thesis we present a new approach for model checking Parametric Markov
Chains (PMCs). In PMCs certain transition probabilities are left open by
introducing parameters instead of concrete values. Model checking PMCs
for unbounded reachability probabilities then yields a rational function as a
probability bound for reaching the set of target states. These rational functions
can be instantiated for a range of parameter values or analyzed further. Our
algorithm extends an existing approach for model checking DTMCs and is
implemented in the tool COMICS. Further, we developed our own data structure
to simplify rational functions more efficiently. We demonstrated the applicability
of our methods on a number of case studies.
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1 Introduction

Modeling and analysis of stochastic processes is mostly achieved by using Markov Chains. The
underlying graph structure of such a Markov Chain is a good visualization of the stochastic model
and consists of states and transitions where every transition has a probability. Thus, for every
finite run on states of the graph we multiply the corresponding transition probabilities and get a
resulting probability for this run. Considering the set of all finite runs, we are able to compute the
probability of reaching a specific target state by starting at an initial state. Determining these
probabilities is the task of Unbounded Reachability Analysis, where we are interested in the total
probability of eventually reaching one state from a set of target states.

Let us consider the example of two cowboys, “Lucky Luke” and “Joe Dalton”, dueling in the
Wild West at High Noon similar to the one in [8]. Both cowboys have a gun and try to shoot their
opponent. However, there is a certain probability of missing the target. For example Luke hits
his target in nearly every case and therefore has a probability of only 0.1 to miss his opponent.
Joe, on the other hand, is often a bit nervous and hence misses the target with probability 0.4. As
Luke shoots faster than his shadow he has the first shot in 3 of 4 duels. After that, the two shoot
alternating. As nearly everything is in disfavor against Joe, we are interested in the probability of
him surviving the duel, i. e., Joe hitting Luke first.

This scenario can be modeled by use of a Markov Chain as depicted in Figure 1.1.

start

lukeaim

joeaim

joedead

lukedead

0.75

0.25

0.1

0.9

0.4

0.6

1

1

Figure 1.1: Duel between two cowboys

Starting in the start-state, with probability 0.25 we reach the state joeaim indicating that Joe
Dalton has the first shot. Then he hits Luke with a probability of 0.6 modeled by the transition
to the target state lukedead, where we can only take the self-loop. Multiplying every probability
along this path we get 0.25 · 0.6 = 0.15 which is the probability of the event “Joe starts and kills
Luke with his first shot”. However, this is not the only possible event, where Joe survives the duel.
For example, both cowboys could miss their first shot and Joe kills Luke with his second shot.
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1 Introduction

Therefore we have to consider every finite run in this graph, which starts in start and eventually
reaches lukedead.

This problem can be solved using model checking. Several different algorithms were developed
for model checking Markov Chains. For example, matrix-vector multiplication is used in the
tools PRISM [18] and MRMC [17]. In this thesis we use the SCC-based model checking approach
presented in [1]. Their idea is to abstract underlying graph structures, mainly strongly connected
subsets. Intuitively, they search for cycles in the graph and then abstract these cycles in a bottom-
up manner. Thus, they eliminate all cycles in the graph but preserve the reachability property,
i. e., no relevant information is lost. Applying this algorithm to our example, we get the resulting
graph depicted in Figure 1.2.

start

joedead

lukedead

0.796875

0.203125

Figure 1.2: Result after model checking

Now we have the probabilities of surviving the duel for both cowboys. Joe only survives the
duel in approximately 1 of 5 cases and therefore he should maybe prefer to yield.

In this example we had specific probabilities for the hit rate of both cowboys. However, we could
also leave these probabilities open and analyze the surviving rate of Joe according to different hit
rates. Thus, we introduce two parameters pluke and pjoe for the probability of both cowboys to
miss the target. Then we get a Parametric Markov Chain as visualized in Figure 1.3.

We show in this thesis that the SCC-based model checking algorithm for Markov Chains can
be extended to handle also Parametric Markov Chains. Applying this adapted algorithm to our
cowboy example, we get the result show in Figure 1.4.

Now we want Joe to survive the duel in at least 3 of 4 cases and are interested in the conditions
for the miss rates of both cowboys to ensure Joe’s surviving. Therefore we require the probability
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joedead

lukedead

0.75

0.25

pluke

1− pluke
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1

Figure 1.3: Duel between two cowboys with parametric hit rates

of reaching the state lukedead to be at least 0.75 and solve the following inequation:

0.75pluke − 0.25pjoe − 0.75plukepjoe + 0.25

1− plukepjoe
≥ 0.75

⇐⇒ 0.75pluke − 0.25pjoe − 0.75plukepjoe + 0.25

1− plukepjoe
≥ 0.75− 0.75plukepjoe

1− plukepjoe

⇐⇒ 0.75pluke − 0.25pjoe − 0.5

1− plukepjoe
≥ 0

⇐⇒ 0.75pluke − 0.25pjoe − 0.5 ≥ 0

⇐⇒ pluke ≥
1

3
pjoe +

2

3

As a result, the miss rate of Luke has to be at least
2

3
to ensure the surviving of Joe in 3 of 4 cases.

As this example illustrates, there is a wide range of applications for modeling real-world problems
in Markov Chains and analyzing them by model checking. In general, Markov Chains are often
used to model non-determinism by use of probabilities. Thus, instead of having to deal with
non-deterministic models, we encode this non-determinism using uniformly distributed probabilities.
In our example the non-deterministic choice of the first shooter is determined by probabilities with
certain weights. Further on, unpredictable events can be modeled by Markov Chains as well. For
example, the loss of a message in an unreliable channel can be modeled with probabilities.

Furthermore, Parametric Markov Chains, which we consider in this thesis, allow us to leave
certain probabilities open. Therefore, the probability of an event to happen does not need to be fixed
while modeling, but can be instantiated later. This allows for greater flexibility where certain parts
of a Markov Chain can be left unclear and later be instantiated with a range of possible values. For
Parametric Markov Chains, we only have to run the model checking algorithm once, but in the end
we can instantiate every parameter with a range of values and therefore we get probability bounds
for a set of similar Markov Chains. Thus, we avoid model checking a Markov Chain for every possi-
ble parameter instantiation. In this approach the user is in the focus, because he can interactively
determine which parameter values he is interested in. As seen in the example, not only the result-
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start

joedead

lukedead

−0.75pluke + 0.25pjoe − 0.25plukepjoe + 0.75

1− plukepjoe

0.75pluke − 0.25pjoe − 0.75plukepjoe + 0.25

1− plukepjoe

Figure 1.4: Result after model checking the parametric model

ing probability bound can be important, but also the parameter range for a given probability bound.

Some work on model checking of Parametric Markov Chains has been done before. The main
approach, which we are aware of, uses state elimination [13] and was first introduced in [5] and
then later refined in [11]. Here, the main idea is to consider the probabilities of the Parametric
Markov Chain as letters in a Finite State Automaton. Then, the state elimination algorithm for
gaining a regular expression from an automaton is used. The states are successively eliminated to
get finally a rational function for the probability of reaching a target state from an initial state.
The author of [11] states that an exponential blowup of the resulting function can be avoided in
most cases by simplifying the rational function in every elimination step.

This thesis is structured as follows. We start by giving an introduction to the topic of Markov
Chains and rational functions in Chapter 2. Then we give an overview about related work, which
has been done in this area before, in Chapter 3. In Chapter 4 we present our approach for
model checking Parametric Markov Chains by using an SCC-based approach and further prove its
correctness. An example showing all steps of our algorithm concludes the chapter. We implemented
our algorithm in the COMICS tool [16]. Details on the implementation are given in Chapter 5 along
with some benchmarks to compare our approach with the state elimination technique implemented
in PARAM [10]. Finally, we give a conclusion in Chapter 6 and give an outlook to future work
based on this approach.
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2 Preliminaries

We first introduce the main concepts for the topic of Parametric Markov Chains. Intuitively, a
Markov Chain is a transition system with probability distribution for the successor states of every
state. We therefore have probabilities attached to the edges. That means, for Markov Chains the
next state is stochastically determined by the probabilities of the transitions. Consider for example
the Markov Chain depicted in Figure 2.1.

sstart

shead

stail

0.4

0.6

1

1

Figure 2.1: Toss of an unfair coin

This Markov Chain is a model for a coin toss with an unfair coin. Starting in state sstart, we
reach the state shead with probability 0.4, i. e., “head” occurs with probability 0.4. The state stail,
indicating that “tail” occurs, can be reached with probability 0.6. We cannot predict for a coin toss
whether we end in state shead, i. e., whether “head” occurs. We can only say that this happening
is not so probable as seeing “tail”.

In this thesis we extend the common Markov Chain model to also handle rational functions.
So instead of having real numbers as probabilities on the edges we also allow rational functions
with parameters in it. Therefore we can left open several probabilities in our system and later
instantiate them with different values. This allows for greater flexibility in the model and also
some aspects do not have to be specified but can be left open instead.

For our later algorithm especially the concept of strongly connected components (SCCs) is very
important. These SCCs yield to a set of states which we then abstract to reduce the state size of
our Markov Chain and to easily gain a model checking result. We therefore also introduce SCCs
here.

We now introduce the basic concepts that are used in this thesis. The definitions are similar to
the ones used in [11] and [14].

2.1 Rational Function

We start with introducing rational functions which will encode our probabilities.

Definition 1 (Rational Function). Let V = {x1, ..., xn} be a finite set of variables with domain R.

13



2 Preliminaries

A polynomial g over V can be composed according to the following grammar:

g := c | x | g + g | (g) · (g)

with g being a polynomial, c ∈ R, x ∈ V where + is the standard addition and · the standard
multiplication.
A rational function f over V is a fraction built by the standard division of two polynomials g1, g2
over V as

f =
g1
g2

with g2 6= 0.

g2 6= 0 means that g2 is not reducible to 0.

Example 1 (Rational Function). For variables p, q ∈ V, p+ q 6= 0 we have polynomials

f := p2 + 2pq + q2 g := (p3 + 1)(p+ q)

and a rational function

h :=
f

g
=

p2 + 2pq + q2

(p3 + 1)(p+ q)
=

p+ q

p3 + 1
.

Using an evaluation we instantiate the variables in a rational function to gain real values for
them.

Definition 2 (Evaluation). Let R[x1, ..., xn] be the set of polynomials over the set of variables
V = {x1, ..., xn}. We denote by FV : R[x1, ..., xn] → R the set of rational functions with input
R[x1, ..., xn] and output R and by dom(f) the domain of a function f . An evaluation u is a function
u : X → R for a subset X ⊆ V . The evaluation u is called total if X = V . For a rational function
f ∈ FV and an evaluation u, we denote by f [X/u] the function obtained by substituting each
x ∈ (X ∩ dom(u)) with its evaluation u(x).

Example 2 (Evaluation). For the rational function h from Example 1, an evaluation u with
u(p) = 2, u(q) = 0.5 and a set of variables X1 := {p} we get

h[X1/u] =
2 + q

23 + 1
=

2 + q

9
.

For X2 := {p, q} we get

h[X2/u] =
2 + 0.5

9
=

5

18
≈ 0.2778.

2.2 Finite State Automaton

We go on with the introduction of a Finite State Automaton (FSA).

Definition 3 (FSA). A Finite State Automaton A is a tuple A = (Q,Σ, δ, q0, F ) with

• Q: a finite set of states

• Σ: a finite set of symbols called the alphabet

• δ : Q× Σ→ 2Q: the transition function

• q0 ∈ Q: the initial state

• F ⊆ Q: a finite set of accepting states.

14



2.3 Discrete-time Markov Chain

FSAs recognize exactly the set of regular languages. Regular languages can also be expressed by
regular expressions which we now define.

Definition 4 (Regular Expression). A regular expression R for an alphabet Σ is defined as:

• ε is a regular expression

• a ∈ Σ is a regular expression

• Let ra, rb ∈ R be regular expressions, then

– ra · rb (concatenation) is a regular expression

– ra | rb (alternation) is a regular expression

– r∗a (Kleene star) is a regular expression

For every FSA A the equivalent regular expression RA can be constructed by use of the state-
elimination algorithm [13]. However, as shown in [9] for a FSA with n states, the size of the
resulting regular expression explodes: nO(log(n)).

2.3 Discrete-time Markov Chain

We introduce the well-known concept of Discrete-time Markov Chains (DTMC) to model stochastic
behavior in a transition system as explained before. In case of DTMCs we only have rational
numbers as probabilities, which we will later extend to rational functions.

The set of atomic propositions AP intuitively is the set of possible “behaviors” occurring in the
transition system. If a state has a certain “behavior”, it is labeled with the corresponding atomic
proposition. For example the atomic proposition “error” could be used to indicate states where
an erroneous behavior happens. Model checking then could yield a probability of reaching such
unwanted states.

Definition 5 (DTMC). Let AP be a set of atomic propositions.
A Discrete-time Markov Chain (DTMC) is a tuple D = (S, I,P , L) with

• S: a non-empty finite1 set of states

• I : S → [0, 1]: the initial distribution with
∑
s∈S

I(s) = 1

• P : S × S → [0, 1]: the transition probability matrix with ∀s ∈ S :
∑
s′∈S

P(s, s′) = 1

• L : S → 2AP : the state labeling function.

The transition probabilities must be within the interval [0, 1] to be valid. Further on, the outgoing
probability of every state must sum up to 1.

Example 3 (DTMC). Consider the example DTMC Dex depicted in Figure 2.2.

Here we have a set of nine states and no labels. We have a single initial state s1 and therefore
an initial distribution with I(s1) = 1 and I(si) = 0 for 2 ≤ i ≤ 9. The initial distribution can also
be written as a vector: (

1 0 0 0 0 0 0 0 0
)T
.

1There are also DTMCs with countable but infinitely many states. However, we do not consider them here.
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Figure 2.2: Example DTMC Dex

The transition probabilities are shown on every transition. For example it is P(s4, s2) = 0.6 and
P(s4, s5) = 0.4. So the outgoing probabilities of state s4 sum up to 1 = 0.6 + 0.4. The transition
probability matrix is: 

0 0.4 0.2 0 0 0.4 0 0 0
0 0 0.8 0 0 0.2 0 0 0
0 0 0 1 0 0 0 0 0
0 0.6 0 0 0.4 0 0 0 0
0 0 0 0 1 0 0 0 0

0.2 0 0 0 0 0 0 0.8 0
0 0 0 0 0.2 0.5 0 0.3 0
0 0 0 0 0 0 0.7 0 0.3
0 0 0 0 0 0 0 0 1


From now on we also use the characterization DTMC for the underlying directed graph G = (S,E)

of a DTMC D. Here the set of vertices in the graph is the set of states S in D. In the underlying
directed graph there is a transition from state s ∈ S to state s′ ∈ S iff P(s, s′) > 0 in the DTMC
D. The set of edges E of G can be defined as

E = {(s, s′) | s, s′ ∈ S,P(s, s′) > 0}.

We consider the concept of paths within a set of states K, i. e., runs of the DTMC through
these states. In the following definitions we assume DTMCs with a single initial state, i. e.,
|{s ∈ S | I(s) > 0}| = 1. Note that each DTMC can be transformed to this form by adding a new
unique initial state with transitions to the former initial states. The notation is D = (S, sI ,P , L).

Definition 6 (Paths). Assume a DTMC D = (S, I,P , L) and a state set K ⊆ S. A finite path of
D in K is a finite sequence π = s1...sn of states with si ∈ K, 1 ≤ i ≤ n where for every 1 ≤ i ≤ n−1
there exists a transition from si to si+1, i. e., P(si, si+1) > 0.

16



2.4 Probabilities

Similarly, an infinite path of D in K is an infinite sequence π = s1s2s3... of states with si ∈ K
and P(si, si+1) > 0 for all i ∈ N. The infinite loop in a state s is denoted by sω.

The set of paths of D in K is denoted by PathsK . It consists of all finite paths PathsKfin and

infinite paths PathsKinf in K:

PathsK = PathsKfin ] PathsKinf .

For states s, t ∈ K we denote by PathsKfin(s) the set of all finite paths in K starting in s,

PathsKfin(s, t) the set of all finite paths in K starting in s and ending in t, and similarly PathsKinf (s)
for all infinite paths in K starting in s.

Example 4 (Paths). A path in the previous Example 3 could be πex = s1s2s3s4s5 which is a finite
path. The path π2 = s1s2s3s4s5s5s5... is an infinite path with prefix πex. It is πex ∈ PathsSfin(s1)

and π2 ∈ PathsSinf (s1).

A state t ∈ S is reachable from a state s ∈ S iff PathsSfin(s, t) 6= ∅. A set of states K ⊆ S is

called absorbing in D iff ∃s ∈ K such that ∀s′ ∈ S \K : PathsSfin(s, s′) = ∅, i. e., from at least one
state in K only states in K are reachable. K is called bottom iff every state in K is absorbing. A
state s is called bottom iff {s} is bottom.

We now define strongly connected subsets and strongly connected components:

Definition 7 (Strongly connected subset). A set K ⊆ S is called strongly connected in a DTMC
D = (S, I,P , L) iff ∀s, t ∈ K it is PathsKfin(s, t) 6= ∅.

In other words in a strongly connected subset for every pair of states s, s′ there exists a path π
from s to s′ only visiting states in K

Definition 8 (SCC). A strongly connected component (SCC) K ⊆ S of a DTMC D = (S, I,P , L)
is a strongly connected subset of S such that for all strongly connected subsets K ′ ⊆ S of D with
K ⊆ K ′ we have K = K ′.

Example 5 (SCC). Some strongly connected subsets of the state space S of Dex from Example
3 are K1 = {s7, s8} and K2 = {s2, s3, s4}. The only strongly connected component of Dex is the
state set KSCC = {s1, s2, s3, s4, s6, s7, s8}. The states s5 and s6 are bottom states, because they
only have self-loops.

2.4 Probabilities

After introducing paths in a DTMC we now want to define the probabilities for paths. Before this
we have to define probability spaces. For more details we refer to [2].

Definition 9 (σ-algebra). A σ-algebra is a pair (Outc,E) with

• Outc: a non-empty set called “outcomes”

• E ⊆ 2Outc: called “events” which contains the empty set and is closed under complement
and countable union:

– ∅ ∈ E

– E ∈ E =⇒ E = Outc \ E ∈ E

– E1, E2, ... ∈ E =⇒
⋃
i≥1

Ei ∈ E

E also is closed under countable intersections as⋂
i≥1

Ei =
⋃
i≥1

Ei.

Next we define a probability measure where we give every event a certain probability to encode
the likelihood of this event to happen.

17



2 Preliminaries

Definition 10 (Probability measure). A probability measure on (Outc,E) is a function Pr : E→
[0, 1] with Pr(Outc) = 1. Additionally for pairwise disjoint events E1, E2, ... with Ei ∈ E for all
i ≥ 1 it should hold:

Pr(
⊎
i≥1

Ei) =
∑
i≥1

Pr(Ei).

In total we get a probability space.

Definition 11 (Probability space). A probability space is a triple (Outc,E,Pr) with a σ-algebra
(Outc,E) and Pr a probability measure on this σ-algebra.

An example should make this concept clearer.

Example 6. Consider the example from Figure 2.1. Here we have two possible outcomes “heads”
and “tails” for the coin toss: Outc = {heads, tails}. The σ-algebra is the powerset of Outc:
E = 2Outc. For this unfair coin the probability measure is given by

Pr(∅) = 0,Pr({heads}) = 0.4,Pr({tails}) = 0.6,Pr({heads, tails}) = Pr(Outc) = 1.

We now introduce the cylinder set of all infinite paths starting with the same finite path, i. e.,
having the same prefix.

Definition 12 (Cylinder set). For a DTMC D and a finite path π = s1...sn ∈ PathsSfin , the
cylinder set of π in D is defined as

Cyl(π) = {π′ ∈ PathsSinf | π is prefix of π′}.

By use of the cylinder set we can now define the concrete σ-algebra for a DTMC D, where the
cylinder sets are the “events”.

Definition 13 (σ-algebra of a DTMC). For a DTMC D = (S, sI ,P , L) and a state s ∈ S we
define the associated σ-algebra ED as the smallest σ-algebra that contains all cylinder sets Cyl(π)
for all finite paths π ∈ PathsSfin(s).

Then there exists a unique probability measure Pr on ED. This measure now gives us the
probabilities for paths.

Definition 14 (Probabilities). For a DTMCD D = (S, sI ,P , L) the probability of a finite path
π ∈ PathsDfin , π = s1...sn is the product of all its transition probabilities:

PrDfin(π) = Πn−1
i=1 P(si, si+1).

For the associated cylinder set Cyl(π) the probability is given as

PrD(Cyl(π)) = PrDfin(π).

Let s ∈ S and R ⊆ PathsDfin(s) be a set of finite paths and R′ ⊆ R the set of paths which are
prefix-free in R. A path π is prefix-free in R iff for every path π′ ∈ R, π is not a prefix of π′. Then
the probability is

PrDfin(R) =
∑
π∈R′

PrDfin(π).

For simplicity the superscript D is left out, if it is clear from the context.

Example 7 (Probabilities). For the finite path of Example 4 we get the following probability:
Prfin(πex) = P(s1, s2) · P(s2, s3) · P(s3, s4) · P(s4, s5) = 0.4 · 0.8 · 1 · 0.4 = 0.128. The cylinder
set of πex is Cyl(πex) = {s1s2s3s4sω5 }. We then get the probability of the cylinder set of πex as:
Pr(Cyl(πex)) = Prfin(πex) = 0.128.
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2.5 Probabilistic Computation Tree Logic

We now give a few remarks on special cases for probabilities. As stated in [2], the following
property holds

Property 1 (Behavior for bottom SCCs). For each state s in a (finite) DTMC D it holds that

Pr({π ∈ PathsDinf (s) | the set of infinitely often visited states along π is a bottom SCC in D}) = 1

(2.1)

Therefore with probability 1 every infinite run in D eventually reaches a bottom SCC and visits
all states there infinitely often.

We also have a special case for the probability of a set of paths containing a cycle in a DTMC D.

Property 2 (Probability of cycle). Assume a DTMC D = (S, sI ,P , L), states s1, ..., sn ∈ S with
s1...sns1 ∈ PathsDfin and a path π′ ∈ PathsDfin(s1). For the set of paths

P := {π = (s1...sn)kπ′ ∈ PathsDinf (s1) | k ≥ 0}

with

ploop := Pr(s1...sns1) ∈ (0, 1)

the probability of all these paths can be expressed as:

Pr(P ) =

∞∑
k=0

Pr((s1...sn)kπ′)

=

∞∑
k=0

pkloop · Pr(π′)

= Pr(π′) ·
∞∑
k=0

pkloop

geometric series
= Pr(π′) · 1

1− ploop

Because of ploop ∈ (0, 1), the geometric series converges and the infinite sum can be computed.

2.5 Probabilistic Computation Tree Logic

After introducing Markov Chains and how to compute probabilities for certain paths, we are now
interested in creating conditions for the atomic propositions which should hold in the states on
a path. Instead of considering all possible paths in a DTMC D we only want to consider those,
which fulfill certain conditions. As explained in the beginning, we could only be interested in those
paths which eventually lead to a erroneous state. By using probabilities we cannot be certain if
specific events always occur, but we can get the probability for an event to happen. To express
conditions on paths we use Probabilistic Computation Tree Logic (PCTL) [12] which is based on
Computation Tree Logic (CTL).

Definition 15 (PCTL). Let AP be a set of atomic propositions.
PCTL state formulas are formed according to the following grammar:

Φ ::=true (boolean)

| a (Atomic proposition a ∈ AP )

| Φ ∧ Φ (Conjunction)

| ¬Φ (Negation)

| PJ(φ) (Probabilistic operator with an interval with rational bounds J ⊆ [0, 1] ⊆ R)
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PCTL path formulas are formed according to the following grammar:

φ ::=© Φ (Next)

| ΦUΦ (Until)

| ΦU≤nΦ (Bounded until with n ∈ N)

Other syntactic sugar can easily be derived:

Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) (Disjunction)

♦Φ = true UΦ (Eventually)

♦≤nΦ = true U≤nΦ (Bounded Eventually with n ∈ N)

P≤p(�Φ) = P≥1−p(♦¬Φ) (Always)

The satisfaction relation |= for PCTL formulas and a DTMC D is defined as follows:

Definition 16 (Satisfaction relation |=). Assume a DTMC D = (S, sI ,P , L), a state s ∈ S, a path
π = s0s1s2... ∈ PathsDinf , PCTL state formulas Φ1,Φ2 and PCTL path formula φ. We then have:

D, s |= a ⇐⇒ a ∈ L(s) (2.2)

D, s |= ¬Φ ⇐⇒ D, s 6|= Φ (2.3)

D, s |= Φ1 ∧ Φ2 ⇐⇒ D, s |= Φ1 and D, s |= Φ2 (2.4)

D, s |= PJ(φ) ⇐⇒ Pr(s |= φ) = Pr({π ∈ PathsDinf (s) | D, π |= φ}) ∈ J (2.5)

D, π |=©Φ ⇐⇒ s1 |= Φ (2.6)

D, π |= Φ1UΦ2 ⇐⇒ ∃0 ≤ j : (D, sj |= Φ2 ∧ (∀0 ≤ k < j : D, sk |= Φ1)) (2.7)

D, π |= Φ1U
≤nΦ2 ⇐⇒ ∃0 ≤ j ≤ n : (D, sj |= Φ2 ∧ (∀0 ≤ k < j : D, sk |= Φ1)) (2.8)

It is Sat(Φ) = {s ∈ S | D, s |= Φ}. We define D |= Φ iff D, sI |= Φ.

As seen in Equation 2.2, a state s satisfies an atomic proposition a iff this atomic proposition is
an element of the labeling for this state. The satisfiability of conjunction and negation should be
intuitively clear.

The probabilistic operator as in Equation 2.5 is satisfied iff the probability of all infinite paths
starting in s and satisfying the formula φ is in the interval J . This operator is the main difference
to plain CTL, because here the stochastic nature of the DTMC plays a role.

A “next” formula as in Equation 2.6 is satisfied for a path π iff the next state on this paths, i. e.,
the successor of the starting state s0, satisfies the formula Φ.

An “until”formula of the form in Equation 2.7 is satisfied for a path π iff eventually Φ2 is satisfied
for some state sj on the path. All predecessors of sj have to satisfy Φ1. For “bounded until” as in
Equation 2.8, the state sj has to occur within n steps.

Example 8 (PCTL). For the DTMC in Figure 2.2 and the set {1, ..., 9} of atomic propositions
with L(si) = {i}, 1 ≤ i ≤ 9 we have the PCTL formula Φex = P≥0.5(♦5), i. e., the probability of
eventually reaching the state s5 is greater or equal than 0.5. If we only want to consider the upper
half of the graph, the PCTL formula would be Φ2 = P≥0.5((1 ∨ 2 ∨ 3 ∨ 4) U 5).

For our approaches we restrict the PCTL formulas to only “unbounded until” properties, i. e.,
the “next” and “bounded until” operators are left out.

2.5.1 Transformation of DTMCs for PCTL Formulas

For model checking formulas of the form Φ = PJ(Φ1UΦ2) on a DTMC D = (S, sI ,P , L) we
transform D into a DTMC D′ = (S, sI ,P

′, L′) by applying three steps:
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1. Generate a labeling for Φ1 and Φ2: every state s ∈ S satisfying Φ1 gets the additional label
L′(s) := L(s) ∪ {Φ1}. Checking the satisfiability of a formula Φ1 on state s as s |= Φ1 may
invoke a recursive model checking of the subformula on D’. We label similarly with Φ2.

2. Make all states satisfying Φ2 absorbing in D’, because they are the target states to be reached.
Further more, make all states satisfying ¬Φ1 ∧ ¬Φ2 absorbing in D’, because paths visiting this
state do not satisfy the “until”-formula.

3. Compute the probability of reaching a state satisfying Φ2 from an initial state in the DTMC D’.

The main part of the model checking algorithm is Step 3. Here we only have to make a reachability
analysis, that means only check the formula

Φtrans = PJ(♦Φ2) (2.9)

on the transformed DTMC D’. We therefore only need to consider model checking for reachability
formulas of the form given in Equation 2.9. From now on we only consider transformed DTMCs,
which we denote by D.

2.6 Parametric Markov Chain

Now we extend DTMCs to Parametric Markov Chains (PMC) by allowing rational functions
instead of real numbers as probabilities. Except for this difference, the definition of a PMC is
similar to the one for a DTMC.

Definition 17 (PMC). A Parametric Markov Chain (PMC) is a tuple M = (S, I,P , V , L) with

• S: a set of states

• I : S → FV : the initial distribution with
∑
s∈S

I(s) = 1

• P : S × S → FV : the parametric transition probability matrix with

∀s ∈ S :
∑
s′∈S

P(s, s′) = 1

• V = {x1, ..., xn}: the finite set of parameters with domain R

• L : S → 2AP : the state labeling.

As for DTMCs, in the following we assume that there is a single initial state sI ∈ S with
I(sI) = 1.

Notice that we cannot yet make restrictions on the probabilities to be within [0, 1]. Now we have
rational functions with parameters as probabilities and we cannot ensure such restrictions to hold
for every possible evaluation. We therefore later define evaluations which satisfy these restrictions.

Example 9 (PMC). Consider the example PMC Mex depicted in Figure 2.3.
This PMC is very similar to the DTMC from Example 3. We added two parameters p and q,

hence V = {p, q}. Further on, we replaced some probabilities with these parameters. For example
we now have transition probabilities P(s4, s2) = q and P(s4, s5) = 1 − q. This still sums up to
1 = q + (1− q). Notice that for every parameter introduced on an outgoing transition of a state s
we must have a dependent parameter on another outgoing transition of this state s to gain a total
outgoing probability of 1. In this example we therefore also have the transition probability 1− q
additional to the probability q.

For an evaluation u and a PMC M we get an induced PMC Mu by substituting each variable
in dom(u) with its evaluation.
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Figure 2.3: Example PMC Mex

Definition 18 (Induced PMC for evaluation). By using an evaluation u we obtain a new PMC
Mu = (S, Iu,Pu, V , L) with

• S as before

• Iu : S → FV \dom(u) such that ∀s ∈ S : Iu(s) := I(s)[dom(u)/u]

• Pu : S × S → FV \dom(u) such that ∀s, s′ ∈ S : Pu(s, s′) := P(s, s′)[dom(u)/u]

• Vu : V \ dom(u)

• L as before.

By using a total evaluation u with domain dom(u) = V we substitute each variable and therefore
obtain concrete values for each probability instead of rational functions. We then have an induced
DTMC Du and can check, if this DTMC is well-defined according to Definition 5.

Example 10 (Induced PMC for evaluation). The DTMC Dex from Example 3 is an induced
DTMC for the example PMC Mex from Example 9 by using the evaluation uex with uex(p) = 0.7
and uex(q) = 0.6.

We now define the set of probabilities ProbM ⊆ FV for a PMC M as

ProbM := {I(s) | s ∈ S} ∪ {P(s, s′) | s, s′ ∈ S}

and similarly ProbMu for an evaluation u.

Definition 19 (Well-defined evaluation). A total evaluation u on a PMC M is called well-defined
iff the following two conditions are satisfied:
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• Every probability is in the interval [0, 1]:

∀f ∈ ProbMu : f [dom(u)/u] ∈ [0, 1].

• Every rational function f , which is not 0, does not evaluate to 0:

∀f ∈ ProbMu : f 6= 0 =⇒ f [dom(u)/u] 6= 0.

The first condition ensures well-defined probabilities, which are within [0, 1], and is necessary.
The second condition could be omitted, but then transitions in a PMC could fall away, because
their probability is 0. We then have varying structures of our underlying graph for different
evaluations. This would affect the model checking result, because certain paths now could not
reach the target state anymore, because of left out transitions. Further on, in our algorithm we
search for SCCs. Therefore the underlying graph structure must stay unmodified and we require
this second condition to be satisfied.

Example 11 (Well-defined evaluation). It is easy to see that the evaluation uex from the previous
Example 10 is well-defined, because uex(p) = 0.7, uex(1−p) = 0.3, uex(q) = 0.6 and uex(1−q) = 0.4
are within the interval (0, 1]. Every other probability without a parameter also satisfies these
conditions.

We define transitions and paths for PMCs similarly to DTMCs. In a PMCM there is a transition
from state s ∈ S to state s′ ∈ S iff Pu(s, s′) > 0 for all well-defined evaluations u. Paths now are
defined accordingly to DTMCs.

The probability of a finite path π ∈ PathsMfin , π = s1...sn is defined as

PrMfin(π) = Πn−1
i=1 P(si, si+1).

Now PrMfin(π) is a rational function. Because of P(si, si+1) being transitions we have P(si, si+1) ∈
(0, 1] for every i = 1, ..., n− 1 and therefore PrMfin(π) ∈ (0, 1] as well. Using cylinder sets we can

define PrM(π) for infinite paths π as seen before in Definition 14.
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3 Related Work

Some work has already been done on model checking Parametric Markov Chains. We will now
give a short overview about the related work in this area and the ideas and algorithms developed
so far to tackle this problem.

3.1 Model Checking by Symbolic State Elimination

The first approach in this area, that we are aware of, was done by Conrado Daws from the University
of Nijmegen in 2004. Daws presented his idea in “Symbolic and Parametric Model Checking of
Discrete-Time Markov Chains” [5].

First of all Daws derives a finite state automaton A from a given DTMC.

Definition 20 (Derived Finite State Automaton). Let D = (S, sI , P, L) be a DTMC, then a FSA
A = (Q,Σ, δ, q0, F ) is derived with

• Q = S

• Σ = {p/q | ∃i, j ∈ S : P(i, j) =
p

q
> 0, p, q ∈ N}

• δ : Q× Σ→ 2S : δ(p, a) = {q ∈ S | P(p, q) = a

• q0 = sI : the initial state

• F ⊆ Q.

By applying this main idea DTMCs can be represented by FSAs, because rational numbers are
encoded as elements of the alphabet Σ.

Daws encodes “next” and “until” formulas by using the final states of a FSA similarly to final
states in DTMCs. This can be done using similar approaches as shown in the transformation in
Section 2.5.1.

By using probabilities as elements of the alphabet Σ, paths in a DTMC can now be represented as
regular expressions in the FSA. Daws wants to get a regular expression representing all paths from
the initial state to one of the final states. He shows that this regular expression can be obtained by
using the state-elimination algorithm from [13]. The idea here is to successively eliminate states
by merging in- and outgoing transitions of this state to one transition omitting this state. In this
process the new transitions contain regular expressions instead of only letters of the alphabet. An
example of this algorithm is given later in Example 12.

The resulting regular expression then can be evaluated to get the probabilities again for satisfying
the given formula. This can be done using the evaluation function val.

Definition 21 (Evaluation of Regular Expressions). Let R(Σ) be the set of regular expressions
over the alphabet Σ.
Let p/q ∈ Σ and r, s be regular expressions. The evaluation function val : R(Σ)→ Q is defined as:

val(p/q) :=
p

q

val(r|s) := val(r) + val(s)

val(r.s) := val(r) · val(s)

val(r∗) :=
1

1− val(r)

25
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It is intuitive for the first three rules that we get the correct evaluated probability. For the last
rule we have to see that in the DTMC the transition with probability r can be taken from zero up
to infinitely many times. Therefore the probability can be expressed as

∞∑
i=0

ri
(geometric series)

=
1

1− r
.

Until then Daws only uses rational numbers as probabilities. However, he shows that his concept
of using a symbolic representation can be extended easily to parametric probabilities. The alphabet
Σ only has to be extended to use parameters as well. The evaluation function is extended as
follows:

Definition 22 (Extended Evaluation). Let 〈Q〉X be the set of polynomials on the set of parameters
X with coefficients in Q. A regular expression r is associated with a pair (Pr, Qr) of polynomials
on X.
Let p/q ∈ Σ and r, s be regular expressions with associated pairs (Pr, Qr) and (Ps, Qs). The
extended evaluation function val : R(Σ)→ 〈Q〉X × 〈Q〉X is defined as:

val(p/q) :=
p

q

val(x) := x

val(r) :=
Pr
Qr

val(r|s) :=
PrQs +QrPs

QrQs

val(r.s) :=
PrPs
QrQs

val(r∗) :=
Qr

Qr − Pr

Daws shows that also Parametric Markov Chains can be handled by his approach and model
checking PMCs is possible. Nevertheless, the state-elimination algorithm can lead to exponentially
large regular expression as stated in [9].

3.2 Model Checking by State Elimination using Rational
Functions

Ernst Moritz Hahn, Holger Hermanns and Lijun Zhang from the Saarland University extended the
approach of Daws in 2009 and presented their ideas in “Probabilistic Reachability for Parametric
Markov Models” [11].

Instead of using a symbolic representation as in [5] where the probabilities are letters of the
alphabet, Hahn et al. use rational functions during the whole process. This allows for simplifying
the rational functions during each step of the state-elimination algorithm.

Example 12. We give the example from their publication in Figure 3.1 to visualize the process of
eliminating a state s.

By eliminating the state s, the in- and outgoing transitions of this state are merged. The
corresponding probabilities now are composed on this merged transition.

The resulting rational function can be simplified during each elimination step and therefore the
authors state, that the exponential blow up can be avoided in most cases.

This approach was also implemented in the tool PARAM [10]. One detail of the implementation
is the sharing of rational functions to store every occurring rational function only once. Also
cancellation has to be done only once for each rational function. A lookup table of arithmetic
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s1 s s2 s1 s2
pa

pd

pc

pb
pa

1

1− pc
pb + pd

Figure 3.1: Eliminating state s

operations with their operands and their result has also been implemented to not compute this
operation multiple times. As stated by the authors, this feature is only useful when using
bisimulation.

3.3 Model Checking DTMCs using SCCs

Our approach for PMCs builds upon on the SCC-based approach for model checking DTMCs
which was presented by Erika Ábrahám, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen and
Bernd Becker from RWTH Aachen University and Albert-Ludwigs-University Freiburg in “DTMC
Model Checking by SCC Reduction” [1]. In this section we only give an intuitive overview about
this approach, the details are explained later in Chapter 4 for PMCs.

The main idea in this approach is the bottom-up abstraction of strongly connected subsets. They
therefore first search for SCCs in the whole graph. These SCCs can be divided into three different
types of states. They first have input states which have incoming transitions from states outside
the SCC. Then there are output states which are not part of the SCC but have an incomming
transition from a state in the SCC. Last the inner states are all states in the SCC which are not
input states.

Then they recursively search for strongly connected subsets in the set of inner states and therefore
get a hierarchical structure of connected subsets in the original graph. Starting on the bottom level,
they now “abstract” this connected subset to simplify it but preserve the reachability properties.
As seen in Figure 3.2(a) they do not have any connected subsets in the inner states anymore,
because the search has terminated on the lowest level. Therefore, all paths starting in an input
state eventually reach an output state. Every cycle in this strongly connected subset has to visit
one of the input states on every cycle run. In the end, the “direct” path from an input state to
an output state is taken. Therefore every path consists of finitely many cycle runs and lastly the
“direct” path to an output state as seen in Figure 3.2(b). Thus, instead of considering the whole
strongly connected subset, they only have to consider all cycles on an input state and all “direct”
paths.

Knowing that every path eventually reaches an output state with probability 1 as seen in Property
1, they also do not have to consider the cycles anymore, but instead scale the outgoing transitions
to sum up to 1. This can be seen in Figure 3.2(c).

In the end they have only a few “abstracted” transitions from input states to output states and
do not have to consider the whole strongly connected subset anymore. Applying this algorithm
recursively they can abstract the whole graph and in the end the model checking result can be
read from every transition.
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Figure 3.2: Abstraction
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4 SCC-Based Model Checking for PMCs

We introduce our algorithm for model checking PMCs. This algorithm is based on the SCC-based
model checking algorithm first presented in [1]. We use this algorithm and extend it to additionally
handle Parametric Markov Chains.

4.1 Preprocessing

Before model checking the PMC M = (S, I,P , V , L) we first have to check its consistency. We
therefore only consider well-defined evaluations of the rational functions as in 19. We gain the
following constraints which have to hold for every well-defined total evaluation u. Furthermore, we
check whether the PMC is well-defined in the sense that it has valid probability distributions.

Constraint 1. The probability of every edge must be greater than 0:
∀s, s′ ∈ S : P(s, s′) 6= 0 =⇒ P [X/u](s, s′) > 0

Constraint 2. The outgoing probability of each state must be 1:

∀s ∈ S :
∑
s′∈S

P(s, s′) = 1.

These constraints later can be used in the model checking algorithm to gain finer restrictions on
our parameters. This is useful for the synthesis of the PMC and the analysis of the model checking
probability.

Example 13 (Constraints). For the PMC of Example 9 we gain constraints like

q > 0, 1− q > 0, p > 0, 1− p > 0.

4.2 Path Abstraction

According to [1] and [14], we extend the path abstraction for DTMCs as explained in Section 3.3
to paths consisting of rational functions in PMCs.

We first compute the inner strongly connected subsets of a graph in a bottom-up way. We
then abstract these strongly connected subsets, i. e., we reduce every subset to its input states.
Intuitively, for every nested strongly connected subset in our PMC we generate so-called “abstract”
transitions from every input state sin to every output state sout of this subset which carry the
whole probability mass of all paths from sin to sout . Therefore we do not consider the struc-
ture inside the strongly connected subset anymore and abstract this structure by these abstract
transitions. This approach successively leads to a smaller acyclic graph and finally we only have
transitions from the input states to the output states where we can easily get the probabilities by
reading the abstract transitions. The whole process is visualized in Figure 3.2 of the previous section.

We first define some helpful concepts.
For a set of states K ⊆ S in the PMC M we define the input states of K as

InpM(K) = {s ∈ K | ∃s′ ∈ S \K : P(s′, s) > 0} ∪ {s ∈ K | I(s) > 0}

and the output states as

OutM(K) = {s ∈ S \K | ∃s′ ∈ K : P(s′, s) > 0}.
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The inner states of K are

K \ InpM(K).

We skip the index M if it is clear from the context.
We define the PMC Mind induced by a set of states K, i. e., only states in K ∪OutM(K) are

considered.

Definition 23 (Induced PMC). For a PMC M = (S, I,P , V , L) and a non-absorbing subset
K ⊆ S of states MK

ind = (SK
ind , I

K
ind ,P

K
ind , V

K
ind , L

K
ind) is the induced PMC with:

• SK
ind = K ∪OutM(K)

• IK
ind(s) > 0 ⇐⇒ s ∈ InpM(K), for all s ∈ SK

ind

• PK
ind(s, t) =


P(s, t), if s ∈ K, t ∈ SK

ind

1, if s = t ∈ OutM(K)
0, otherwise

• V K
ind = V

• LK
ind(s) = L(s),∀s ∈ SK

ind

We do not restrict the input probabilities IK
ind (s) for a state s, but only ensure them to be greater

than 0. This is similar to the PRISM language [18], where there are also initial states but no input
probabilities.

Example 14 (Induced PMC). For the PMC of Example 9 and the subset K := {6, 7, 8} the
induced PMC MK

ind is depicted in Figure 4.1.
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Figure 4.1: Induced PMC MK
ind

Now we want to abstract this induced PMC M to get a new abstracted PMC MK
abs =

(SK
abs , I

K
abs ,P

K
abs , V

K
abs , L

K
abs) where only the input and output states, but no inner states of K, are

left. We construct this abstract PMC bottom-up and therefore we require K to have no cycles on
inner states.
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4.2 Path Abstraction

Definition 24 (Abstract PMC). For a PMCM = (S, I,P , V , L), state set K ⊆ S and the induced
PMCMK

ind = (SK
ind , I

K
ind ,P

K
ind , V

K
ind , L

K
ind ) we define the abstract PMCMK

abs = (SK
abs , I

K
abs ,P

K
abs , V

K
abs , L

K
abs)

as

• SK
abs = InpM(K) ∪OutM(K)

• IK
abs(s) = IK

ind(s), ∀s ∈ SK
abs

• PK
abs(sin , sout) =



pK
abs(sin , sout)∑

s′out∈Out(MK
ind )

pK
abs(sin , s

′
out)

, if sin ∈ InpM(K),

sout ∈ OutM(K)

1, if sin = sout ∈ OutM(K)
0, otherwise

with

pK
abs(sin , sout) = Prfin({π = sins1...snsout ∈ Paths

MK
ind

fin (sin , sout) | (4.1)

1 ≤ i ≤ n : si 6= sin ∧ si 6= sout ∧ si ∈ K}).

• V K
abs = V K

ind

• LK
abs(s) = LK

ind(s), ∀s ∈ SK
abs .

Example 15 (Abstract PMC). For the induced PMC MK
abs of Example 14 the abstract PMC

MK
abs is depicted in Figure 4.2. The computation of the abstract transitions probabilities will be

explained later.
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Figure 4.2: Abstracted PMC MK
abs

For an induced PMC MK
ind an abstract transition pK

abs(sin , sout) carries the probability mass of
all finite paths starting in sin , ending in sout and not visiting sin in between. Every finite path
from sin to sout consists of cycles from sin to sin and finally a path from sin to sout not visiting
sin again. Therefore every finite path can be composed by cycling finitely many times and then
taking the “direct” path from sin to sout . This was pictured in Figure 3.2(b) in Section 3.3.

The Subset K contains the states of a non-bottom SCC and has therefore no absorbing states.
Then every path finally reaches an output state sout with probability 1. We therefore only consider
the probabilities of “direct” paths from input states to output states and scale these probabilities
to sum up to 1 again.

We scale every transition by the total outgoing probability∑
sout∈OutM(K)

pK
abs(sin , sout). (4.2)

Thus, for every state sin , the sum of all rational functions attached to outgoing transitions is 1
and we have a valid PMC.

31



4 SCC-Based Model Checking for PMCs

4.3 Correctness of the Path Abstraction

This construction is correct and does not change the reachability properties. This is stated in the
following theorem:

Theorem 1. For a PMC M = (S, I,P , V , L), a non-absorbing state set K ⊆ S, the induced PMC
MK

ind = (SK
ind , I

K
ind ,P

K
ind , V

K
ind , L

K
ind) and its abstraction MK

abs = (SK
abs , I

K
abs ,P

K
abs , V

K
abs , L

K
abs) it

holds:

1. The input states of MK
ind and MK

abs coincide.

2. ∀sin ∈ InpM(K), sout ∈ OutM(K):

Pr
MK

ind

fin (Paths
MK

ind

fin (sin , sout)) = Pr
MK

abs

fin (Paths
MK

abs

fin (sin , sout)).

Proof. The first statement directly follows from the construction of the abstract PMC.
For the second statement, K is not absorbing and therefore the probability of eventually reaching
an output state of K is 1 as explained before. The probability of a self loop on sin is:

pK
abs(sin , sin) = 1−

∑
t∈OutM

K
ind (K)

pK
abs(sin , t). (4.3)

This self-loop in MK
abs is the abstract transition for all cycles in MK

ind which go through sin .
Therefore it is

pK
abs(sin , sin) = Prfin({sins1...snsin ∈ Paths

MK
ind

fin (sin , sin) | si ∈ K \ {sin}, 1 ≤ i ≤ n}. (4.4)

We define

Rin ={sins1...snsin ∈ Paths
MK

ind

fin | sj ∈ K \ {sin}, 1 ≤ j ≤ n}

Rout ={sins1...snsout ∈ Paths
MK

ind

fin | sj ∈ K \ {sin}, 1 ≤ j ≤ n}

Then it is:

Pr
MK

ind

fin (Paths
MK

ind

fin (sin , sout))

= Pr
MK

ind

fin (

∞⋃
i=0

{π1 · ... · πi · πi+1 | πj ∈ Rin , 1 ≤ j ≤ i; πi+1 ∈ Rout})

=

∞∑
i=0

Pr
MK

ind

fin ({π1 · ... · πi · πi+1 | πj ∈ Rin , 1 ≤ j ≤ i; πi+1 ∈ Rout})

=

∞∑
i=0

(Pr
MK

ind

fin (Rin))i · Pr
MK

ind

fin (Rout)

4.4
=

∞∑
i=0

(pK
abs(sin , sin))i · Pr

MK
ind

fin (Rout)

geometric series
=

1

1− pK
abs(sin , sin)

· Pr
MK

ind

fin (Rout)

4.3
=

1∑
t∈OutM(K)

pK
abs(sin , t)

· Pr
MK

ind

fin (Rout)

4.1
=

1∑
t∈OutM(K)

pK
abs(sin , t)

· pK
abs(sin , sout)

def.
= PK

abs(sin , sout)

= Pr
MK

abs

fin (Paths
MK

abs

fin (sin , sout))
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As a result, the second statement of the theorem is correct and our abstraction is valid.

4.4 Model Checking Algorithm

Now we give an algorithm for model checking PMCs.

For a PMC M we apply Model check (Algorithm 1). First we search for the set C of SCCs in
S. For every SCC K we now search for its inner strongly connected subsets in K \ InpM(K), i. e.,
we only consider inner states of K. This goes on recursively until there is no strongly connected
subset anymore.

Algorithm 1

Model check(PMC M)
begin

Determine the set C of all non-trivial SCCs of M ; (1)

while C 6= ∅ do (2)

Choose connected subset K ∈ C; (3)

C := C \ {K}; (4)

M := Abstract(M,K); (5)

end while (6)

Let K be the set of all non-absorbing states of M ; (7)

M := Abstract(M,K); (8)

Return M ; (9)

end

Then we can compute the abstraction MK
abs bottom-up, i. e., first we abstract the innermost

subset which has no inner strongly connected subsets and therefore no inner cycles. This is done by
Abstract (Algorithm 2). We gain a first abstraction of this innermost graph which is acyclic and
can now consider the outer graph. This goes on until we have the abstraction of M on the highest
level. Here we have no cycles anymore, because every SCC was abstracted. Then we abstract
S \ {s ∈ S | s is absorbing} and MK

abs remains with abstract transitions from the input states of
M to the absorbing states.

Algorithm 2

Abstract(PMC M , non-absorbing subset K)
begin

C := set of all non-trivial maximal strongly connected subsets (1)

K ′ of M with K ′ ⊆ K \ InpM (K); (2)

while C 6= ∅ do (3)

Choose K ′ ∈ C; (4)

C := C \K ′; (5)

M := Abstract(M,K ′); (6)

end while (7)

Abstract M and gain MK
abs (8)

Return M ; (9)

end

One problem still remains: how can we compute the abstract transition probabilities PK
abs in Line

8 of Abstract (Algorithm 2)? Here we have to consider the input states InpM (K) = {s1in , ..., snin}
and output states OutM (K) = {s1out , ..., s

m
out}. We distinguish three cases for the number of input

and output states.
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a) Single output (n ≥ 1, m = 1):
As the strongly connected Subset K is not absorbing, all paths entering K will leave it eventually
as seen in Property 1. That means, the probability of reaching the output state s1out from an
input state siin is 1:

PK
abs(siin , s

1
out) = 1, 1 ≤ i ≤ n. (4.5)

The time complexity of this computation is constant: O(1).

Because of constructing the constraints before, we do not loose any information about our
parameters by setting this probability to 1.

b) Single input/multiple output (n = 1, m ≥ 1):
To define the abstraction, we need to determine the probabilities pK

abs(s1in , s
i
out) again for all

1 ≤ i ≤ m. Note that K \ InpM (K) has no non-trivial strongly connected subsets. Therefore
the set

Riout = {s1ins1...snsiout ∈ PathsMfin(s1in , s
i
out) | sj ∈ K \ {sin}, 1 ≤ j ≤ n}

contains finitely many loop-free paths. The probability

pK
abs(s1in , s

i
out) = PrMfin(Riout)

can be determined by computing

pK
abs(s, siout) =


1, if s = siout∑

s′∈succ(s),s′ 6=s1in

PK
ind(s, s′) · pK

abs(s′, siout), otherwise

We can compute the probabilities of the abstraction:

1. Compute the probability of all outgoing paths pK
abs(s1in , s

i
out) for all 1 ≤ i ≤ m.

2. Compute the probabilities from the input state to a output state:

PK
abs(s1in , s

i
out) =

pK
abs(s1in , s

i
out)∑m

i=1 p
K
abs(s1in , s

i
out)

for all 1 ≤ i ≤ m

Computing pK
abs(s1in , s

i
out ) takes polynomial time for each 1 ≤ i ≤ m depending on the previous

abstracted Subset M : O(pol1(M)). Therefore the first step has a time complexity of O(m ·
pol1(M)). The time of the second step depends on the shape and degree of the rational functions
and is polynomial again: O(pol2(M,V )). We finally get a polynomial time complexity for all
three steps: O(polall(M,V )).

c) Multiple input/multiple output (n ≥ 1, m ≥ 1):
We could use the approach of b) to compute the abstraction for every input state. We would
use a copy of the induced PMC for each input state where the other input states become inner
states. Finally all abstractions on the copies lead to the whole abstraction. However this would
cost too much time, because it has a time complexity of O(n · polall(M,V )).

Instead we encode the paths in the induced PMC as a linear equation system: for each state
s ∈ K∪OutM (K) we introduce a new variable zs for the linear equation system. These variables
are independent from the parameters.

Now we can encode the outgoing transitions for every state s ∈ K as:

zs =
∑

s′∈K∪OutM (K)

P(s, s′) · zs′ . (4.6)
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The probability for each finite path s1...sn in the induced PMC can now be expressed recursively
by considering the probability of the first transition P(s1, s2) and the remaining probability zs2 .

Next we eliminate the variables for every inner state s ∈ K \ InpM (K) by substituting variables
for inner states with their right hand side of Equation 4.6. We have no cycles on inner states
and therefore this substitution terminates eventually. Thus we get an equation for every input
state siin as

zsiin =
∑

s′∈InpM (K)∪OutM (K)

(csiin ,s′ · zs′).

By eliminating zsiin from every right-hand side of the equations we finally can express every
input state by use of the output states:

zsiin =

m∑
j=1

csiin ,s
j
out
· zsjout

. (4.7)

This elimination is possible, because every path eventually reaches one of the output states as
stated in Property 1.

As a result we have a solution for each csiin ,s
j
out

= PK
abs(siin , s

j
out), which is the probability we

needed.

Now we can also compute the abstract probabilities and therefore we refine the Abstract function
from the previous Algorithm 2 and get the new Algorithm 3.

Algorithm 3

Abstract(PMC M , non-absorbing subset K)
begin

C := set of all non-trivial maximal strongly connected subsets (1)

K ′ of M with K ′ ⊆ K \ InpM (K); (2)

while C 6= ∅ do (3)

Choose K ′ ∈ C; (4)

C := C \K ′; (5)

M := Abstract(M,K ′); (6)

end while (7)

if |OutM (K)| = 1 then (8)

M := MK
abs by applying method a); (9)

else if |InpM (K)| = 1 then (10)

M := MK
abs by applying method b); (11)

else (12)

M := MK
abs by applying method c); (13)

end if (14)

Return M ; (15)

end

4.5 Example

We now show an execution of the Model check algorithm on the PMC from Example 9. Here the
main concepts of the algorithm and the ideas behind it will become clearer.

Strongly Connected Subsets in the Example We first have to determine the set C of all non-
trivial strongly connected subsets of M recursively. This is denoted in Figure 4.3.
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0.2

0.5

0.3 p
1− p
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S2.1
S2

S1
S

Figure 4.3: Strongly connected subsets of the example PMC

Abstraction of S2.1 The abstraction is bottom-up, i. e., we start with the abstraction of the
strongly connected Subset S2.1. The induced PMC of Subset 2.1 is visualized in Figure 4.4.

We have one input state s1in = 8 and three output states s1out = 5, s2out = 6, s2out = 9. We then
apply Case b) and first compute the probabilities of all outgoing paths piout for 1 ≤ i ≤ 3. That
yields

p1out = pout(5)=p · 0.2
p2out = pout(6)=p · 0.5
p3out = pout(9)=1− p.

Next pin is computed as

pin = 1/(0.2p+ 0.5p+ 1− p) =
1

1− 0.3p
.

Finally we can compute the abstract probabilities:

PS2 .1
abs (s1in , s

1
out) = PS2 .1

abs (sin(8), sout(5))=
0.2p

1− 0.3p

PS2 .1
abs (s1in , s

2
out) = PS2 .1

abs (sin(8), sout(6))=
0.5p

1− 0.3p

PS2 .1
abs (s1in , s

3
out) = PS2 .1

abs (sin(8), sout(9))=
1− p

1− 0.3p
.

These abstract probabilities yield the abstraction of S2.1 as seen in Figure 4.5.
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Figure 4.4: Induced PMC M S2 .1
ind of Subset 2.1

5

6 S2.1 9

1

1

0.2p

1− 0.3p

0.5p

1− 0.3p

1− p
1− 0.3p

1

Figure 4.5: Resulting abstract PMC M S2 .1
abs

Abstraction of S2 We have abstracted the Subset S2.1 and therefore now have no cycles here
anymore. We can now abstract the next strongly connected Subset S2 which is depicted in Figure
4.6.

Here the input state is s1in = 6 and there are again three output states s1out = 1, s2out = 5,
s2out = 9. Case b) can be applied again and we get piout as:

p1out = pout(1) = 0.2

p2out = pout(5)= 0.8 · 0.2p

1− 0.3p
=

0.16p

1− 0.3p

p3out = pout(9)= 0.8 · 1− p
1− 0.3p

=
0.8− 0.8p

1− 0.3p
.

The scale factor pin is

pin = 1/(0.2 +
0.16p

1− 0.3p
+

0.8− 0.8p

1− 0.3p
) = 1/(

0.2− 0.06p+ 0.16p+ 0.8− 0.8p

1− 0.3p
) =

1− 0.3p

1− 0.7p
.
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1
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1
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0.2p

1− 0.3p

0.5p

1− 0.3p 1− p
1− 0.3p

1

Figure 4.6: Induced PMC M S2
ind of Subset 2

and we get the abstract probabilities:

PS2
abs(s1in , s

1
out) = PS2

abs(sin(6), sout(1)) =
0.2− 0.06p

1− 0.7p

PS2
abs(s1in , s

2
out) = PS2

abs(sin(6), sout(5)) =
0.16p

1− 0.3p
· 1− 0.3p

1− 0.7p
=

0.16p

1− 0.7p

PS2
abs(s1in , s

3
out) = PS2

abs(sin(6), sout(9))=
0.8− 0.8p

1− 0.3p
· 1− 0.3p

1− 0.7p
=

0.8− 0.8p

1− 0.7p
.

The resulting abstracted PMC can be seen in Figure 4.7.

1
5

S2 9

1
1

0.2− 0.06p

1− 0.7p

0.16p

1− 0.7p

0.8− 0.8p

1− 0.7p
1

Figure 4.7: Resulting abstract PMC M S2
abs

Abstraction of S1 Next we start to abstract the strongly connected Subset S1 as seen in Figure
4.8.

Here we now have two input states s1in = 2 and s2in = 3 as well as two output states s1out = 5
and s2out = 6. Because of multiple input states we have to apply the Case c).

So we construct a linear equation system to solve for the abstract probabilities. We introduce
the new variables z2, z3, z4, z5, z6. For every state in S1, that means for 2, 3, 4, we create a linear
equation as follows:

z2 = 0.8 · z3 + 0.2 · z6 (4.8)

z3 = 1 · z4 (4.9)

z4 = q · z2 + (1− q) · z5. (4.10)

This linear equation systems is solved for every input state, i. e., for 2 and 3.
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2 3

4 5

6

0.8

0.2

1q

1− q

1

1

Figure 4.8: Induced PMC M S1
ind of Subset 1

We begin with z2:

z2
4.8
=0.8 · z3 + 0.2 · z6
4.9
=0.8 · z4 + 0.2 · z6

4.10
= 0.8 · (q · z2 + (1− q) · z5) + 0.2 · z6
=0.8q · z2 + (0.8− 0.8q) · z5 + 0.2 · z6

⇐⇒ z2 − 0.8q · z2 =(0.8− 0.8q) · z5 + 0.2 · z6

⇐⇒ z2 =
1

1− 0.8q
· (0.8− 0.8q) · z5 +

1

1− 0.8q
· 0.2 · z6.

Next we solve for z3:

z3
4.9
=z4

4.10
= q · z2 + (1− q) · z5
4.8
=q · (0.8 · z3 + 0.2 · z6) + (1− q) · z5
=0.8q · z3 + (1− q) · z5 + 0.2q · z6

⇐⇒ z3 − 0.8q · z3 =(1− q) · z5 + 0.2q · z6

⇐⇒ z3 =
1

1− 0.8q
· (1− q) · z5 +

1

1− 0.8q
· 0.2q · z6.

Finally we can easily read the abstract probabilities as the coefficients before the variables:

PS1
abs(s1in , s

1
out) = PS1

abs(sin(2), sout(5))=
0.8− 0.8q

1− 0.8q

PS1
abs(s1in , s

2
out) = PS1

abs(sin(2), sout(6))=
0.2

1− 0.8q

PS1
abs(s2in , s

1
out) = PS1

abs(sin(3), sout(5))=
1− q

1− 0.8q

PS1
abs(s2in , s

2
out) = PS1

abs(sin(3), sout(6))=
0.2q

1− 0.8q
.

These abstract probabilities yield the abstraction of S1 as seen in Figure 4.9.
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1− 0.8q

1

1

Figure 4.9: Resulting abstract PMC M S1
abs

Final Abstraction Now we make the final abstraction. Here the initial state 1 is the input state
s1in = 1. We further have two absorbing states which are the output states s1out = 5 and s2out = 9.
The PMC before the last abstraction is show in Figure 4.10.
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0.8− 0.8q

1− 0.8q
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1− 0.8q

1− q
1− 0.8q

0.2q

1− 0.8q

0.2− 0.06p

1− 0.7p

0.16p

1− 0.7p

0.8− 0.8p

1− 0.7p

Figure 4.10: PMC M S
indbefore final abstraction
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We again apply Case b) and get:

p1out = pout(5)

= 0.4 · 0.16p

1− 0.7p
+ 0.4 · ( 0.2

1− 0.8q
· 0.16p

1− 0.7p
+

0.8− 0.8q

1− 0.8q
) + 0.2 · ( 0.2q

1− 0.8q
· 0.16p

1− 0.7p
+

1− q
1− 0.8q

)

=
0.16p

1− 0.7p
(0.4 +

0.08

1− 0.8q
+

0.04q

1− 0.8q
) +

0.32− 0.32q

1− 0.8q
+

0.2− 0.2q

1− 0.8

=
0.16p

1− 0.7p
· 0.4− 0.32q + 0.08 + 0.04q

1− 0.8q
+

0.52− 0.52q

1− 0.8q

=
0.16p

1− 0.7p
· 0.48− 0.28q

1− 0.8q
+

0.52− 0.52q

1− 0.8q

p2out = pout(9)

= 0.4 · 0.8− 0.8p

1− 0.7p
+ 0.4 · 0.2

1− 0.8q
· 0.8− 0.8p

1− 0.7p
+ 0.2 · 0.2q

1− 0.8q
· 0.8− 0.8p

1− 0.7p

=
0.8− 0.8p

1− 0.7p
· (0.4 +

0.08

1− 0.8q
+

0.04q

1− 0.8q
)

=
0.8− 0.8p

1− 0.7p
· 0.4− 0.32q + 0.08 + 0.04q

1− 0.8q

=
0.8− 0.8p

1− 0.7p
· 0.48− 0.28q

1− 0.8q
.

We then compute pin :

pin = 1/(p1out + p2out)

= 1/(
0.16p

1− 0.7p
· 0.48− 0.28q

1− 0.8q
+

0.52− 0.52q

1− 0.8q
+

0.8− 0.8p

1− 0.7p
· 0.48− 0.28q

1− 0.8q
)

= 1/(
0.48− 0.28q

1− 0.8q
· 0.8− 0.64p

1− 0.7p
+

0.52− 0.52q

1− 0.8q
)

=
(1− 0.8q)(1− 0.7p)

(0.48− 0.28q) · (0.8− 0.64p) + (0.52− 0.52q)(1− 0.7p)
.

Finally we compute the abstract probabilities:

PS
abs(s1in , s

1
out) = PS

abs(sin(1), sout(5)) = pin · p1out

=
0.16p · (0.48− 0.28q) + (1− 0.7p) · (0.52− 0.52q)

(0.48− 0.28q) · (0.8− 0.64p) + (0.52− 0.52q)(1− 0.7p)

=
0.0768p− 0.0448pq + 0.52− 0.52q − 0.364p+ 0.364pq

0.384− 0.3072p− 0.224q + 0.1792pq + 0.52− 0.52− 0.364p+ 0.364pq

=
−0.2872p− 0.52q + 0.3192pq + 0.52

−0.6712p− 0.744q + 0.5432pq + 0.904

PS
abs(s1in , s

2
out) = PS

abs(sin(1), sout(9)) = pin · p2out

=
(0.8− 0.8p) · (0.48− 0.28q)

(0.48− 0.28q) · (0.8− 0.64p) + (0.52− 0.52q)(1− 0.7p)

=
−0.384p− 0.224q + 0.224pq + 0.384

−0.6712p− 0.744q + 0.5432pq + 0.904
.

We have the final abstraction of our PMC as in Figure 4.11.
Here we can easily read the model checking results for reaching a target state t as PS

abs(1, t) for
t ∈ {5, 9}.
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Figure 4.11: Final abstract PMC M S
abs
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5 Implementation

5.1 Integration into COMICS

The algorithms Model check as given in Algorithm 1 and Abstract as in Algorithm 3 are not only
a theoretical idea but also already integrated into the framework of the COMICS tool. This feature
will be part of the next release on the COMICS website1.

COMICS is the abbreviation for COmputing MInimal CounterexamleS for Discrete-Time Markov
Chains and is presented in [16] and [15]. As already seen in this title the original idea of this
tool was to give algorithms for model checking DTMCs and searching for counterexamples. We
extended this approach to PMCs and now we can model check both types of Markov Chains.

The COMICS tool consists of two main parts: a command line version written in C++ and a
GUI version written in Java. The algorithms all are implemented in C++ ensuring an efficient
computation. The Java part only visualizes the graph structure and the resulting model checking
probabilities as well as counterexamples for DTMCs. After model checking a DTMC D we get a
probability bound for all infinite paths in D reaching the set of target states from the initial states.
Then we can give a probability bound p which is less or equal than the probability bound of the
model checking. The task is now to generate a counterexample for p. A counterexample is a set of
infinite paths starting in an initial state and reaching a target state with a total probability greater
than the probability bound, i. e., it is a counterexample for the formula

Φ = P<p♦target.

Instead of searching for paths, the approach in COMICS is to generate a subset K of the states of
the original DTMC D where all infinite paths in K form a counterexample.

In the GUI of the tool a user can also interactively guide the process of generating such
counterexamples. Therefore we can take advantage of the user’s expert knowledge or narrow down
parts of the graph the user is interested in.

5.1.1 Structure

When compiling the tool it is possible to configure the type of the internal probability representation.
At the moment three different types are available. The default type represents probabilities as
double. This floating-point representation may yield rounding errors and therefore lesser precision.
To gain correct and exact values the second type uses the GNU Multiple Precision Arithmetic
Library (GMP) [7], which computes with arbitrary precision, hence does not lose any precision, but
lacks speed. We developed a third type to handle the parametric case where we can also handle
parameters as probabilities.

To represent rational functions we use the GiNaC library [3] which already has most of the
necessary functions to deal with rational functions. For a better encapsulation we wrote our own
Polynomial and Rational classes. In Polynomial we use GiNaC’s expression class ex to hold a
polynomial. This allows us to easier gain control over the whole arithmetic computation process of
GiNaC.

Additionally we wrote a singleton class Parameters to manage everything in the topic of
parameters. This class does not only hold all parameters in the PMC but also all ever appearing
Polynomial expressions. We therefore hold each expression in the memory only once.

1http://www-i2.informatik.rwth-aachen.de/i2/comics/
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In the preprocessing of the algorithm we also generate constraints for all transitions as stated in
Section 4.1. These constraints later can be used to restrict the bounds of every parameter and
therefore also refine the bounds of the resulting model checking probability.

Last we also introduced a special class AbstractParameter to store newly introduced abstract
transitions. We assign a new variable to every such abstract transition. This will be helpful in
the future for the topic of counterexamples. By evaluating the probability for such an abstract
transition one could measure its impact on the total probability and therefore decide, whether this
transition is necessary to form a certain counterexample.

Lastly, for reading PMCs we developed a new file format .pmc similarly to the .dtmc format
from COMICS. We integrated the Prismparser of PARAM [10] and can read prism files directly
now. Especially for loading the later case studies this is very helpful.

5.1.2 Simplifying rational functions

As seen before in Chapter 4 we adopted the algorithms for DTMCs to PMCs. We therefore can
also use it for the parametric case and only have to change the type of the probabilities. This
is done while compiling. To avoid a blowup of the used rational functions we try to simplify
them whenever a new abstract transition is introduced. We therefore assign not only the equation
with its underlying abstract transitions, but also the rational function it represents, to every new
abstract transition. However this simplification is not enough as internal benchmarks pointed out,
because the functions grow too large to be handled efficiently later on. We therefore simplify a
rational function after every arithmetic operation, i. e., after addition and multiplication, and can
keep the rational functions small.

We have implemented our own algorithms for simplifying rational functions to benefit from the
special structure of the occurring rational functions. The main aspect here is the cancellation of
the numerator and the denominator of a rational function. Thus, we best need a factorization of
the polynomials to easily search for the Greatest Common Divisor (GCD) which is used to cancel a
rational function. As every rational function is computed in a bottom-up manner from parametric
probabilities, we store a factorization of every polynomial as a binary tree. Here every polynomial
has two polynomials as factors. This data structure is visualized in Figure 5.1.
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Figure 5.1: Data structure for factorization

For each polynomial we additionally save a list of all multiples, i. e., all parents of this polynomial.
E.g., after every multiplication of two polynomials p1 · p2 = p3 we store this new polynomial p3
along with its factors p1 and p2. Additionally we traverse the tree to store this new polynomial p3
as a multiple of p1, p2 and their children. Thus we use the bottom-up computation to generate a
factorization for our polynomials.

By use of this data structure, the computation of a GCD of two polynomials is linear in size of
their factors. We traverse the factorization tree of one polynomial. For every leaf of this tree we
search in the corresponding multiple list for the second polynomial. If this search is successful, we
have another factor of the GCD.

This GCD then can be used to cancel rational functions. Similarly we can compute the
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Least Common Multiple (LCM) to expand two rational functions for addition. Thus, even while
computing an addition the resulting rational function is kept small. However, an addition destroys
the factorization of a polynomial. Hence, we use GiNaC’s implemented GCD function as a fallback
to cancel the rational function after performing the addition.

All in all the used simplification via GiNaC costs a lot of time and slows the whole computation
process. Another aspect is the high memory consumption due to the storage of all occurring
polynomials. Therefore the implementation still leaves room for optimization.

5.2 Case studies

We have done some case studies to show the competitiveness of our tool COMICS and compared
it to the tool PARAM [10]. For each case study we list the state count and the number of
transitions in the PMC, the total computation time for the model checking algorithm and the
memory consumption. For our implementation we also measured the time spent on simplifying
the rational functions. We list the time needed for the cancellation algorithms using our specific
data structure and the time spent on GiNaC’s simplifications as fall-back. The number of stored
polynomials is shown as well. For better comparability we do not use bisimulation in PARAM. All
case studies were done on a 2.66 GHz Intel Core 2 Quad CPU with 4 GB RAM.

5.2.1 Crowds protocol

The crowds protocol [19] should allow anonymous communication in the Internet. This is done via
random routing. If a user wants to send a message to a different user, he has two possible actions.
He either sends the message directly to the user or to another random user. He then acts as a
router by only forwarding the message. An intruder now could not be certain if the message and
the sender belong together or if the sender only forwarded the message. Thus the anonymity could
be preserved. We have N honest users, M dishonest users and therefore

B =
M

M +N

is the percentage of untrustworthy users. R many messages are sent during the whole process.
The users send the message directly to its destination with probability 1 − pf or forward it to
a random user with probability pf . The parameters in our PMC are pf and B, were N and R
are instantiated with concrete values. We are now interested in the probability, that one user is
identified more often by a bad member than every other.

The results of this case study can be found in Table 5.2.1.

Table 5.1: Results for the crowds protocol

Param. Graph COMICS PARAM

N R States Trans. Cancel (s) GiNaC (s) Time (s) Poly. Mem. (MB) Time (s) Mem. (MB)

2 1 16 18 0 0 0 12 1.43 0 1.36
2 2 77 101 0 0.02 0.02 99 1.43 0.03 1.36
2 3 138 198 0 0.09 0.11 239 1.43 0.10 1.36
3 2 183 243 0.01 0.03 0.07 192 1.43 0.14 1.36
3 3 396 576 0.02 0.26 0.39 515 1.43 0.62 1.36
3 5 1198 2038 0.56 2.44 3.89 1613 2.05 5.58 1.36
5 5 8653 14953 4.28 22.27 33.21 10097 12.24 148.12 5.01

We see that our tool performs better than PARAM on this case study and is faster for greater
state spaces. The memory consumption only increases moderately and we can benefit from storing
all polynomials here. Notice also, that our own cancellation routine only takes a small amount
of time while the fall-back with GiNaC approximately takes 2/3 of the total time. Therefore we
should try to replace these algorithms with our own approaches in the future.
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It is also interesting to see that the resulting probability bounds seem to have a structure for
their denominators as seen in Table 5.2.1.

Table 5.2: Denominator of the probability bounds for the crowds protocol

N R Result

2 2 4 · (1 +B · pf − pf )
2

2 3 9 · (1 +B · pf − pf )
2

3 2 8 · (1 +B · pf − pf )
3

3 3 9 · (1 +B · pf − pf )
3

3 5 125 · (1 +B · pf − pf )
3

5 5 625 · (1 +B · pf − pf )
5

Therefore a general denominator likely has the form

RN · (1 +B · pf − pf )N

This result could only be seen with our tool, because we try to represent polynomials through
their factorization. On the other hand, PARAM expands all polynomials and the resulting rational
function becomes unintuitive.

5.2.2 Zeroconf protocol

The zeroconf protocol [4] models the automatic assignment of addresses to hosts in a network. A
new host joining the network picks a random number from the set of address numbers of size K.
Then the host asks, if other hosts are using this address and waits for answers. With m hosts we
have a collision probability

q =
m

K
.

In case of a collision the host gets no answer with probability p. In this case the host repeats
his question and waits for an answer again. If the host gets no answer within n tries, he will
erroneously consider his address as valid. This model is depicted in Figure 5.2.

sok s0 s1 s2 · · · sn serr

1

1− q q p

1−p

p

1−p

p p

1−p

1

Figure 5.2: Zeroconf protocol

We use p and q as parameters in our PMC and are interested in the probability of eventually
reaching a valid state, i. e.,

Φ = P< p♦sok

We instantiated n with several values. The results of this case study can be found in Table 5.2.2.
This case study shows that our tool still needs too much memory in specific cases, which slows

down the whole computation. Especially in this example we spend nearly no time simplifying
rational functions, but still need more than 1GB of memory.
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Table 5.3: Results for the zeroconf protocol

Param. Graph COMICS PARAM

N States Trans. Cancel (s) GiNaC (s) Time (s) Poly. Mem. (MB) Time (s) Mem. (MB)

10 14 25 0 0 0 22 0.25 0 0.19
100 104 205 0 0 0 112 0.57 0 0.23
1000 1004 2005 0 0 0.23 1012 19.73 0.03 0.77
10000 10004 20005 0.01 0.01 55.07 10013 1797.00 0.38 6.47

Table 5.4: Probability bounds for the zeroconf protocol

N Result

10
1− q

1− q + q · p10

100
1− q

1− q + q · p100

1000
1− q

1− q + q · p1000

10000
1− q

1− q + q · p10000

Here the resulting probability bounds are also very intuitively as seen in Table 5.2.2.
The general probability of reaching the state sok for n tries likely has the form

1− q
1− q + q · pN

5.3 Analyzing the Model Checking Result

After gaining the resulting probability bound as a rational function, we also want to analyze it.
We therefore tried to use the SMT solver dReal [6], which checks for satisfiability over the reals
for a given formula which can be nonlinear. Our implementation can generate the corresponding
input format for dReal, such that the user can run the tool afterwards to analyze it. By adding
own constraints for the probability bound or the parameter range, the user can use dReal to check,
whether there still exists a well-defined evaluation for this restricted case. Thus, this is a first step
to a detailed analysis of the model checking result.

47





6 Conclusion and Future Work

In this thesis we presented our new extension of the SCC-based model checking algorithm for
Parametric Markov Chains. This new algorithm for PMCs is very similar to our existing approach
for DTMCs and therefore could be well adapted. We proved the correctness of this approach and
introduced a set of constraints which comes along with every PMC as seen in Section 4.1. We
implemented our algorithm in our tool COMICS and showed it competitiveness with the tool
PARAM by two case studies. The main advantage of our tool is the intuitive representation of the
rational functions which allows for a better analysis of the resulting probability bounds.

This new model checking approach allows for further improvements, which we will tackle in
the future. The implementation can be made more efficiently by improving the existing handling
of rational functions. Especially the handling of additions can be optimized to preserve the
factorization as much as possible. Further on, we should store the rational functions uniquely as
well to not have the same function multiple times. We therefore avoid canceling a rational function
more than once. However, this would increase the memory consumption another time. Thus, a
better memory management is preferable, where for example unused polynomials are destroyed.
These improvements then should make the tool more competitive.

Another interesting topic for the future is the evaluation of the resulting rational functions. At
the moment, these functions are only used to instantiate several parameter values to avoid multiple
model checking. Fortunately the rational functions carry more information, which we would like
to use. As seen in Chapter 1 the resulting functions can also be used to restrict the range of the
original parameter values. Therefore we already store the constraints on every transition as seen in
Section 4.1. These constraints can later be used to restrict the parameter values and therefore the
resulting probability bound. By using the knowledge and interest of the user, we can also restrict
the solution space further. Therefore we like the user to restrict interactively certain bounds and
compute the new ranges for all the remaining parameters and probability bounds. This approach
would strengthen the advantage of PMCs compared to DTMCs.

A further topic could be the generation of counterexamples. For a given probability bound p a
counterexample is a set of paths which summed up probability is greater or equal than the given
probability bound p. Therefore theses paths refute the PCTL formula P<p(♦target). The goal
is to find a preferably small set of states forming such a subgraph. This counterexample then
indicates the parts of the Markov Chain which are responsible for unwanted behavior.

For DTMCs exists already a hierarchical counterexample generation. This generation is based
on the expansion of the underlying strongly connected subsets of the abstracted graph while model
checking.

However before starting to adapt the algorithm, first the concept of counterexamples on PMCs
has to be defined. There are two different cases to consider. We can still generate the minimal set of
states which forms a counterexample for all parameter instantiation. This would be independent of
the concrete parameter values. A second approach would be to lessen the range of the parameters
to refuse the given probability bound. This would be a counterexample consisting of the parameters
instead of a set of states.

After defining counterexamples, one question would be, if the hierarchical approach could be
extended to PMCs as well. This approach searches for the most probable paths, but with rational
functions it is not uniquely determined. Therefore we would need to define a relational operator on
rational functions to determine which subsystems to consider to form a counterexample. Another
approach would be to encode PMCs into SAT formulas and then use SAT solvers to search for the
minimal set of states refuting the probability bound.
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Concluding there are many opportunities of research in this area in the future. We consider our
model checking approach just as the beginning of new insights in the topic of Parametric Markov
Chains.
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