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Abstract

There is a wide range of decision procedures available for solving the
existential fragment of first order theory of linear real algebra (QFLRA).
However, for formulas of the theory of quantifier-free nonlinear real arith-
metic (QFNRA), which are much harder to solve, there are only few de-
cision procedures (the lower bound for complete solvers is exponential).
The context this thesis is settled in is the software project SMT-RAT, a
software framework for SAT Modulo Theories (SMT) solving. SMT solv-
ing is a combination of a SAT solver, which checks the Boolean skeleton
of a given input formula and a theory solver, which handles the involved
theory constraints. SMT-RAT maintains different complete and incom-
plete solving modules and allows to combine several modules to operate
as a theory solver.

Interval constraint propagation (ICP) is an incomplete decision pro-
cedure to efficiently reduce the domain of a set of variables with respect
to a conjunction of polynomial constraints. The goal of this thesis is to
present a module based on ICP for SMT-RAT. This module takes a con-
junction of polynomial constraints as well as an initial set of boundaries,
represented by intervals, for the variables occurring in the constraints as
an input. It utilizes an interval extension of Newton’s method to reduce
the domain of the given variables up to a certain bound and passes the
set of constraints as well as the new boundaries to complete solvers, such
as the module based on the cylindrical algebraic decomposition (CAD).
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Chapter 1

Introduction

Satisfiability checking has become more and more important during the last
decades. The SAT Modulo Theories (SMT) approach is widely used for deci-
sion procedures, for example for the analysis of physical or chemical processes
or real-time systems. The approach combines the usage of highly efficient SAT
solvers with dedicated theory solvers.
In this thesis we focus on the quantifier-free nonlinear real arithmetic (QFNRA),
which is convenient to describe the above mentioned problems. Currently there
exist only few approaches for the satisfiability check of QFNRA formulae as they
are hard to solve. Complete methods for QFNRA formulae have a lower com-
plexity bound which is exponential. Among others, there exists the approach
of the cylindrical algebraic decomposition (CAD) [Col74] which is complete.
Virtual substitution (VS) [Wei88] and Gröbner bases [BKW93] are both incom-
plete procedures for QFNRA formulae. The context this thesis is settled in
is the project SMT-RAT [CA11] with the aim to provide open-source software
modules, which can be used for the development of SMT solvers. This tool-
box includes various modules, among them modules which implement Gröbner
bases, VS or CAD. Other modules currently implemented handle the conver-
sion of input formulae to conjunctive normal form (CNF), linear real algebra
(LRA) solving [Dan98, DM06] or the preprocessing of formulae. Additionally,
SMT-RAT provides a manager where the single modules can be combined to a
solving strategy.
The goal of this thesis is to develop a module for SMT-RAT which allows to ef-
ficiently reduce intervals, which form over-approximations of the solution space
of variables contained in NRA formulae, by implementing an interval constraint
propagation (ICP) [VHMK97] algorithm. This branch and prune algorithm is
used to reduce the search space by contraction of interval domains for the vari-
ables of the input formula.
The implementation as an SMT-RAT module poses several difficulties: The
module has to be integrable and thus fulfill certain constraints such as incre-
mentality and compatibility to the demanded structure and communication in-
terfaces of an SMT-RAT module. Furthermore, the module should be as in-
dependent as possible, which also includes an internal handling of solver states
and an own preprocessing.
So far there exist implementations of the ICP algorithm, such as RealPaver
[GB06], which implements ICP standalone and iSAT [FHT+07], which combines
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ICP with SAT. This thesis is based on the proposal of Gao et al. [GGI+10],
which combines ICP and LRA methods. We use this approach as a basis for
our own enhancements based on the work of Goualard et al. [GJ08] towards
reinforced learning and Herbort et al. [HR97] concerning the Newton-operator.

First we will provide background knowledge on interval arithmetic in Chap-
ter 2 which includes definitions and notations as well as operations needed for
the ICP algorithm.
After that in Chapter 3 we will focus on SMT solving and especially on the tool-
box SMT-RAT in detail. There we will also sketch the structure and nature of
the input formulae and then focus on the communication between the different
modules of SMT-RAT presenting the essence of the most important functions.
The main Chapter 4 is about the ICP algorithm. It consists of two parts – on
the one hand the ICP algorithm itself and on the other hand the description of
the implementation in the ICP module. The technical details on the single parts
of the algorithm are presented as well as the adaption to embed the designed
module in SMT-RAT.
Results from a simple example and an outlook as well as a summary conclude
this thesis in Chapter 5.



Chapter 2

Interval arithmetic

In this section we present basic operations of interval arithmetic as defined in
[Kul08]. The ICP module operates on multivariate polynomials defined over
interval domains (see Chapter 4). As ICP only uses the basic calculations ad-
dition, subtraction, multiplication and division, it suffices to extend only those
operations to intervals.

There is more than one way to extend arithmetic operations to intervals
(e.g., the natural interval extension, the distributed interval extension or the
Taylor interval extension, see [VHMK97]). We only refer to the natural interval
extension as it is the most intuitive one and parts of it were already imple-
mented in GiNaCRA [LA13], the library used for SMT-RAT. The other interval
extensions are not implemented in the context of SMT-RAT but would also be
suitable for our purposes.

2.1 Basic operations

In the following we define the basic arithmetic operations addition, subtraction,
multiplication and division in the ICP setting. We define a real interval as
follows:

Definition 2.1.1 (Interval). An interval I ⊆ R is a set, such that there exists
a, b ∈ R ∪ {−∞,+∞} such that I = {x ∈ R | a ∼l x ∼u b} for some ∼l, ∼u∈
{<,≤}. The set of intervals is denoted by IR.

We write I as 〈a, b〉, where 〈∈ {(, [} and 〉 ∈ {), ]}. When ∼l is < we denote
this by "(", which means that the lower bound is not contained in the interval
and call this a strict bound. When ∼l is ≤ we denote this by "[", which means
that the lower bound is contained in the interval and refer to it as a weak bound.
The upper bound types are defined accordingly. Note that combinations such
as a lower strict and a weak upper bound are also possible.

The central idea behind interval extensions for arithmetic operations is to
obtain a result interval which fulfills the following property:
No matter which number from the given interval domain you would insert into
the algebraic operation without interval extension, the result is contained in the
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obtained result interval

∀x ∈ Ix,∀y ∈ Iy : x� y ∈ Ix � Iy, � ∈ {+,−, ·,÷}

where Ix, Iy ∈ IR. Additionally, we have to consider the bound types whenever
performing binary functions on intervals.

Example 2.1.1 (Boundtypes). The intersection of two intervals

[1, 3] ∩ (2, 4) = (2, 3]

results in the maximal interval which respects both boundtypes.

With this information we are now able to explain the four basic operations
needed for the ICP algorithm.

Example 2.1.2 (Interval addition). The addition of the intervals [2, 4] and
[1, 5] results in the interval [3, 9] = [2 + 1, 4 + 5]

Example 2.1.3 (Interval subtraction). The difference of the intervals [2, 4] and
[1, 5] results in the interval [−3, 3] = [2− 5, 4− 1].

Example 2.1.4 (Interval multiplication). The product of the intervals [2, 4] and
[1, 5] results in the interval [2, 20] = [2 · 1, 4 · 5]

Example 2.1.5 (Interval division). The division of the intervals [2, 4] and [1, 5]
results in the interval [0.4, 4] = [2/5, 4/1]. However, if we divide the given
interval [2, 4] by [−1, 5], we obtain (−∞,−2] ∪ [0.4,+∞) = (−∞, 2/ − 1] ∪
[2/5,+∞) as a result of the divisor interval containing zero.

We encounter a problem, whenever the divisor interval contains zero. There-
fore we have to introduce and apply extended interval arithmetic, which defines
the division by intervals containing zero as well as definitions of the basic arith-
metic functions for unbounded intervals.

According to [Kul08], the basic arithmetic operations on A,B ∈ PR, where
PR denotes the power set (the set of all subsets) of real numbers, which IR is a
subset of, are defined by:∧

A,B∈PR
A ◦B := {a ◦ b | a ∈ A ∧ b ∈ B}, for all ◦ ∈ {+,−, ·, /}. (2.1)

According to 2.1 the interval division in IR is defined as∧
A,B∈PR

A/B := {a/b | a ∈ A ∧ b ∈ B}. (2.2)

Considering, that division is the inverse operation of multiplication, such that
a/b is the solution of b · x = a we can rewrite 2.2 as∧

A,B∈PR
A/B := {x | bx = a ∧ a ∈ A ∧ b ∈ B}

which allows to define and interpret the result of division by an interval con-
taining zero. For more details we refer to [Kul08].

Now we can define the basic operations +, − , · and /:
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Definition 2.1.2 (Interval addition). The addition of the intervals A = [a1, a2]
and B = [b1, b2], where A, B ∈ IR is defined as:

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]

Definition 2.1.3 (Interval subtraction). The subtraction of the intervals A =
[a1, a2] and B = [b1, b2], where A, B ∈ IR is defined as:

[a1, a2]− [b1, b2] = [a1 − b2, a2 − b1]

Definition 2.1.4 (Interval multiplication). The multiplication of the intervals
A = [a1, a2] and B = [b1, b2], where A, B ∈ IR is defined as:

[a1, a2] · [b1, b2] = [min{a1 · b1, a1 · b2, a2 · b1, a2 · b2},
max{a1 · b1, a1 · b2, a2 · b1, a2 · b2}]

Definition 2.1.5 (Interval division). The division of the intervals A = [a1, a2]
and B = [b1, b2], where A,B ∈ IR is defined as:∧

A,B∈PR
A/B := {x | bx = a ∧ a ∈ A ∧ b ∈ B}

where 0 6∈ B. In case 0 ∈ B we can separate eight cases as depicted in Table
2.5.

The results of an interval division with a divisor containing zero are depicted
in Table 2.5. Note that the results of the division with the divisor containing
zero may result in a union of two distinct intervals with a gap in between. In
the ICP algorithm we handle this as a split and refer to it as a heteronomous
split (see Section 4.5).
Note also, that the result is the smallest set containing all solutions, such that
the bound types have to be adjusted accordingly.

The full behavior of the basic operations is listed in the tables 2.1 to 2.5.
These tables contain the "basic" cases (bold text) as well as the exceptional
cases where infinity or zero are involved. Basic means that the other cases can
be derived from them by applying the rules for calculation with infinity:

∞+ x =∞, −∞+ x = −∞,
−∞+ (−∞) = −∞ ·∞ =∞, ∞+∞ =∞ ·∞ =∞,
∞ · c =∞, x > 0, ∞ · x = −∞, x < 0,
x

∞
=

x

−∞
= 0, 0 · (−∞) = 0 · (∞) = (−∞) · 0 = (+∞) · 0 = 0

The tables represent the case that both intervals have weak lower and upper
bounds. For strict bounds or combinations of weak and strict bounds the bounds
of the resulting interval have to be adjusted accordingly.
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Addition (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)
(−∞, a2] (−∞, a2 + b2] (−∞, a2 + b2] (−∞,+∞) (−∞,+∞)
[a1, a2] (−∞, a2 + b2] [a1 + b1,a2 + b2] [a1 + b1,+∞) (−∞,+∞)
[a1,+∞) (−∞,+∞) [a1 + b1,+∞) [a1 + b1,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.1: Definition for interval addition with consideration of infinity.

Subtraction (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)
(−∞, a2] (−∞,+∞) (−∞, a2 − b1] (−∞, a2 − b1] (−∞,+∞)
[a1, a2] [a1 − b2,+∞) [a1 − b2,a2 − b1] (−∞, a2 − b1] (−∞,+∞)
[a1,+∞) [a1 − b2,+∞) [a1 − b2,+∞) (−∞,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.2: Definition for interval subtraction with consideration of infinity where
the interval B = [b1, b2] is subtracted from the interval A = [a1, a2].

Division [b1, b2] [b1, b2] (−∞, b2] [b2,+∞)
0 6∈ B b2 < 0 b1 > 0 b2 < 0 b1 > 0
[a1, a2] , a2 ≤ 0 [a2/b1,a1/b2] [a1/b1,a2/b2] [0, a1/b2] [a1/b1, 0]
[a1, a2] , a1 ≤ 0 ≤ a2 [a2/b2,a1/b2] [a1/b1,a2/b1] [a2/b2, a1/b2] [a1/b1, a2/b1]
[a1, a2] , a1 ≥ 0 [a2/b2,a1/b1] [a1/b2,a2/b1] [a2/b2, 0] [0, a2/b1]
[0,0] [0,0] [0,0] [0,0] [0,0]
(−∞, a2], a2 ≤ 0 [a2/b1,+∞) (−∞, a2/b2] [0,+∞) (−∞, 0]
(−∞, a2], a2 ≥ 0 [a2/b2,+∞) (−∞, a2/b1] [a2/b2,+∞) (−∞, a2/b1]
[a1,+∞), a1 ≤ 0 (−∞, a1/b2] [a1/b1,+∞) (−∞, a1/b2] [a1/b1,+∞)
[a1,+∞), a1 ≥ 0 (−∞, a1/b1] [a1/b2,+∞) (−∞, 0] [0,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.3: Definition for interval division with consideration of infinity but
without the divisor interval B containing zero.
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[b1, b2] [b1, b2] [b1, b2] (−∞, b2] (−∞, b2] [b1,+∞) [b1,+∞)
Multiplication b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0 [0,0] b2 ≤ 0 b2 ≥ 0 b1 ≤ 0 b1 ≥ 0 (−∞,+∞)
[a1, a2], a2 ≤ 0 [a2 · b2, a1 · b1] [a1 · b2, a1 · b1] [a1 · b2, a2 · b1] [0,0] [a2 · b2,+∞) [a1 · b2,+∞) (−∞, a1 · b1] (−∞, a2 · b1] (−∞,+∞)
a1 < 0 < a2 [a2 · b1, a1 · b1] [min(a1 · b2, a2 · b1), [a1 · b2, a2 · b2] [0,0] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

max(a1 · b1, a2 · b2)] [0,0]
[a1, a2], a1 ≥ 0 [a2 · b1, a1 · b2] [a2 · b1, a2 · b2] [a1 · b1, a2 · b2] [0,0] (−∞, a1 · b2] (−∞, a2 · b2] [a2 · b1,+∞) [a1 · b1,+∞) (−∞,+∞)
[0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
(−∞, a2], a2 ≤ 0 [a2 · b2,+∞) (−∞,+∞) (−∞, a2 · b1] [0,0] [a2 · b2,+∞) (−∞,+∞) (−∞,+∞) (−∞, a2 · b1] (−∞,+∞)
(−∞, a2], a2 ≥ 0 [a2 · b1,+∞) (−∞,+∞) (−∞, a2 · b2] [0,0] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1,+∞), a1 ≤ 0 (−∞, a1 · b1] (−∞,+∞) [a1 · b2,+∞) [0,0] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1,+∞), a1 ≥ 0 (−∞, a1 · b2] (−∞,+∞) [a1 · b1,+∞) [0,0] (−∞, a1 · b2] (−∞,+∞) (−∞,+∞) [a1 · b1,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [0,0] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.4: Definition of interval multiplication with consideration of infinity.

Division B = [b1, b2] [b1, b2] [b1, b2] (−∞, b2] (−∞, b2] [b1,+∞) [b1,+∞)
0 ∈ B [0,0] b1 < b2 = 0 b1 < 0 < b2 0 = b1 < b2 b2 = 0 b2 > 0 b1 < 0 b1 = 0 (−∞,+∞)
[a1, a2].a2 < 0 ∅ [a2/b1,+∞) (−∞,a2/b2] (−∞,a2/b2] [0,+∞) (−∞, a2/b2] (−∞, 0] (−∞, 0] (−∞,+∞)

∪[a2/b1,+∞) ∪[0,+∞) ∪[a2/b1,+∞)
[a1, a2], a1 ≤ 0 ≤ a2 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1, a2], a1 > 0 ∅ (−∞,a1/b1] (−∞,a1/b1] [a1/b2,+∞) (−∞, 0] (−∞, 0] (−∞, a1/b1] [0,+∞) (−∞,+∞)

∪[a1/b2,+∞) ∪[a1/b2,+∞) ∪[0,+∞)
(−∞, a2], a2 < 0 ∅ [a2/b1,+∞) (−∞, a2/b2] (−∞, a2/b2] [0,+∞) (−∞, a2/b2] (−∞, 0] (−∞, 0] (−∞,+∞)

∪[a2/b1,+∞) [0,+∞) ∪[a2/b1,+∞)
(−∞, a2], a2 > 0 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1,+∞), a1 < 0 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[a1,+∞), a1 > 0 ∅ (−∞, a1/b1] (−∞, a1/b1] [a1/b2,+∞) (−∞, 0] (−∞, 0] (−∞, a1/b1] [0,+∞) (−∞,+∞)

∪[a1/b2,+∞) ∪[a1/b2,+∞) ∪[0,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.5: Extended interval division of A = [a1, a2] by B = [a1, a2] with intervals containing zero and infinity.
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Chapter 3

SMT solving

The goal of the presented ICP module is to speed up the search of an SMT solver
for a solution for quantifier-free nonlinear real arithmetic (QFNRA) formulae.
SAT Modulo Theories (SMT) solving for the existential fragment of nonlinear
real algebra is able to cope with formulae of this type. At the beginning we
present the theory fragment QFNRA and introduce definitions relevant for the
remainder of this thesis. Afterwards we shortly sketch the general process of
SMT-solving. In the last section we introduce the underlying SMT toolbox
SMT-RAT for the presented ICP module.

3.1 QFNRA formulae
The purpose of the ICP module in the context of this thesis is to speed up
the solving process of an SMT solver on quantifier-free nonlinear real arithmetic
(QFNRA) formulae, which in the following we also refer to as formulae. QFNRA
formulae are formed by the following grammar:

p := r | x | (p+ p) | (p− p) | (p · p)
c := p < 0 | p = 0

ϕ := c | (ϕ ∧ ϕ) | ¬ϕ

where x ∈ V ar(ϕ) denotes a variable and V ar(ϕ) = {x1, . . . ,xn} represents
the set of variables occurring in ϕ. Furthermore, r ∈ Q is a rational constant.
Syntactic sugar, such as p ≤ 0, p > 0, p ≥ 0 and (ϕ ∨ ϕ), can be derived from
the grammar.
We can rewrite a polynomial p created by the previously mentioned grammar
as

p :=

n∑
i=0

ri

ni∏
j=0

x
eij
j ,

where ri is the rational coefficient of the monomial
∏ni

j=0 x
eij
j . The degree of

the polynomial p is defined as

deg(p) = max


ni∑
j=0

eij | i ∈ {0, . . . ,n}
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The constraints can be separated into two groups: The set of linear constraints in
ϕ, Lϕ (deg(p) ≤ 1) and the set of nonlinear constraints in ϕ, Nϕ with deg(p) > 1,
where p is the left-hand side of the constraint c. If Nϕ is empty we call ϕ a
quantifier-free linear real arithmetic (QFLRA) formula.
The set of variables which occur in nonlinear constraints of ϕ is denoted by VNϕ

while the set VLϕ denotes variables, which occur in linear constraints. Note
that the intersection VNϕ ∩ VLϕ does not have to be empty, as there might be
variables which occur in both linear and nonlinear constraints.
The solving process for QFNRA formulae with current solvers is in the worst
case doubly exponential. Procedures to solve QFNRA formulae are cylindri-
cal algebraic decomposition (CAD), virtual substitution (VS) or Gröbner bases
among others. The mentioned procedures have already been implemented as
SMT-RAT modules. For QFLRA-solving there exist methods which are fast
(polynomial) [Kha79]. The module implemented in SMT-RAT to solve QFLRA
formulae is based on the Simplex algorithm [DM06, Dan98], which has an ex-
ponential worst-case complexity. However, in practice it is the fastest approach
by far.

3.2 Bounded NRA

The ICP method operates on bounded intervals, which requires that all vari-
ables have to be bounded initially. In general it suffices to provide an over-
approximating bound for every variable as long as this bound is given. This is
required due to the behavior of the underlying interval arithmetic on unbounded
intervals (see Section 2.1). Even if one bound for xj ∈ V ar(ϕ) is given while
the other bound is not, interval arithmetic operations will most likely result in
completely unbounded intervals (−∞,+∞).
Thus, we assume that each variable xj ∈ V ar(ϕ) has a corresponding interval
[x]xj

∈ IR. Each interval has a lower and an upper bound such that we can sep-
arate four cases, depending on the bound types (see Chapter 2):[x]xj

= [lj ,uj ],
(lj ,uj), (lj ,uj ] or [lj ,uj) with lj , uj ∈ R, lj ≤ uj . We denote a point interval
as [c], c ∈ R, which stands for [c,c].
We denote a vector of intervals [x] = ([x]x1

, . . . ,[x]xn
)T ∈ IRn as a search box.

Definition 3.2.1. A search box of a given constraint set C is a vector of inter-
vals [x] = ([x]x1 , . . . ,[x]xn) ∈ IRn for the variables occurring in C. Each interval
can be represented independently by the conjunction of two linear constraints:

Φ([x]xj
) =


lj ≤ xj ∧ xj ≤ uj iff [x]xj = [lj ,uj ]

lj < xj ∧ xj < uj iff [x]xj
= (lj ,uj)

lj < xj ∧ xj ≤ uj iff [x]xj
= (lj ,uj ]

lj ≤ xj ∧ xj < uj iff [x]xj
= [lj ,uj)

and the search box can be represented by the conjunction of linear interval con-
straints:

Φ([x]) =

n∧
i=1

Φ([x]xi
)
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Without loss of generality we can assume that constraints include only the
relational symbols < , ≤ , =. A preprocessing in the ICP module enables us to
transform all original constraints

ci :

n∑
j=1

rj ·
ni∏
k=1

x
ejk
k ∼ 0, ∼∈ {< , ≤ , =}

to the form

c′i : hi +

n∑
j=1

rj ·
ni∏
k=1

x
ejk
k = 0 (3.1)

such that all relations are encoded in the interval bound types of the additional
variables hi. Therefore all constraints can be transformed to the required form
of equations as demanded in Section 4.4.1.

Outlook Currently the ICP module demands a bounded initial search box. It
is still unresolved how to determine initial bounds efficiently. A rather inefficient
way of obtaining initial bounds would be to pass all equations we gained after
the preprocessing to a CAD implementation to project all polynomials occurring
in the equations to univariate polynomials and then calculate Cauchy-bounds.
The interval bounds would be the minimal and the maximal Cauchy-bound.

3.3 Classic SMT solving

ϕ

Boolean abstraction

SAT solver

(partial) assignment

Theory solver

infeasible subset

SAT/UNSAT

Figure 3.1: The classic SMT-solving approach.

As there are already very efficient SAT solvers, SMT-solving benefits from
a combination of them, when combined with theory solving. At first a Boolean
abstraction of the formula ϕ is created which is brought to conjunctive normal
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form (CNF). The Boolean abstraction introduces a fresh Boolean variable for
every constraint in the original formula and keeps the Boolean skeleton intact.
Converting the formula to CNF can be done efficiently by applying Tseitin’s en-
coding [Tse68]. The SAT solver now tries to assign the variables of the Boolean
abstraction in less-lazy DPLL style [GHN+04]. Each variable represents the
abstraction of an original QFNRA subformula of the input formula. After each
assignment the set of asserted subformulae which are constraints is checked for
consistency by a theory solver. The difference to full-lazy SMT-solving is, that
in full-lazy SMT-solving the SAT-solver creates a full assignment for all Boolean
variables and afterwards hands the corresponding constraints over to the theory
solver.

The theory solver now tries to solve the given set of constraints. If the theory
solver finds a solution it informs the SAT solver about this and further decisions
can be made until a complete satisfying assignment is found. If the theory solver
cannot find a solution because the set of constraints is unsatisfiable it provides
infeasible subsets of the checked set of constraints. Using this piece of informa-
tion the conflict can be resolved and the search for a satisfying full assignment
of the Boolean variables whose corresponding set of constraints is consistent can
be continued. If no backtracking is possible as all available options have already
been tried by the SAT solver the input formula is declared as unsatisfiable.
Due to this behavior the underlying theory solver should support incrementality
which means that an belated assertion or a removal of a constraints results in a
minimum of adjustments and already gained information which is not affected
can be used for further computation. Furthermore, if the implementation sup-
ports the creation of infeasible subsets and backtracking we refer to it as SMT
compliant.

3.4 SMT-RAT

The context in which the ICP module we present is used is the SMT-solving
toolbox SMT-RAT [CLJA12]. The toolbox provides a set of modules, among
others SMT compliant implementations of Gröbner bases, the virtual substi-
tution and the cylindrical algebraic decomposition. Furthermore, SMT-RAT
maintains a manager, which can use the provided modules to combine them to
a solving strategy (see Figure 3.2).

Each module maintains received formulae Crec which is a set of QFNRA
formulae the module is intended to solve. This set can be modified by using
the provided functions assert(formula ϕ) and remove(formula ϕ). The central
method isConsistent() calls the consistency check of the actual received formu-
lae Crec. As some of the contained modules are not complete (e.g. VS and
Gröbner bases) the modularity enables us to pass QFNRA formula sets to suc-
ceeding modules in case they cannot be solved by the current module. This is
referred to as calling a backend and is performed by calling the function run-
Backends(). When the consistency check fails it is intended to give a reason for
the failure, which is determined by sets of subsets of formulae Cinf called the
infeasible subset, where Cinf ⊆ 2Crec .
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ϕ

CNF SAT ICP VS CAD

Figure 3.2: An example strategy can consist of a module which converts the in-
put formula ϕ to CNF. Afterwards the SAT-solver creates a Boolean abstraction
and computes a partial assignment of the variables representing the constraints.
The corresponding constraints are then passed to the succeeding ICP Module.
Here the bounds on the variables in the received constraints are reduced for the
following modules, for instance like the VS or CAD. Note that not all modules
are necessarily called. If one module finds a solution itself it does not invoke its
backend module.

3.4.1 Passed and Received Formulae

i-1
Crec Cpas

Inf. Set

i
Crec Cpas

Inf. Set

i+1
Crec Cpas

Inf. Set

Figure 3.3: The communication of the single modules via passed (Cpas) and re-
ceived (Crec) formulae. The modules also pass their generated infeasible subset
back to the calling modules.

As previously mentioned modules can pass sets of formulae to succeeding
modules, which means that each module also keeps a set of passed formulae
Cpas. The received formula contain the set of formulae the module has to solve.
Therefore, the passed formula of the i-th module corresponds to the received
formula of the (i+1)-th module. Note that a set of formulae is semantically
defined by the conjunction of these formulae. In the following we call a member
of the received/passed formula also a subformula of the received/passed formula.
The formulae in the received formula can be different from the formulae in the
passed formula. However, if this is the case it is important to keep a mapping
from subformulae of the received formula to subformulae of the passed formula.
This is needed, as the returned infeasible subsets have to be subsets of the
received formulae. Hence, when using the obtained infeasible subsets Ipassed of
a backend for reasoning, a module must map the formulas in Ipassed to formulae
contained in Crec.

3.4.2 General module operations
Each module has to implement an interface which provides basic operations
such as assertion and removal of formulae to and from the received formula as
well as the consistency check of it. Among others, the function inform(..) can
be called. It triggers the preprocessing and initialization of constraints inside
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a module. The management of infeasible subsets also happens according to a
module interface, called getInfeasibleSubsets().
In the following paragraphs we sketch the purpose of the most important func-
tions every module implements.

inform(constraint c)

The purpose of the method inform(constraint c) is to be able to perform all
possible preprocessing before the assertion of formulae. This requires that a
module is informed about all possible constraints before adding formulae with
assert(formula ϕ) which contain them.

assert(formula ϕ)

The general difference between assert(..) and inform(..) can be described as
follows: While inform(..) just determines the set of constraints a module will
possibly encounter, assert(formula ϕ) indicates that a formula ϕ has been added
to the received formula. During assert(formula ϕ) all operations should be
performed which are needed to activate constraints of ϕ for a later consistency
check.

remove(formula ϕ)

The method remove(formula ϕ) is called in order to indicate, that ϕ is removed
from the received formulae Crec. With the removal of a formula all results
gained from calculations including this formula need to be removed as well.
The remaining results from calculations of formulae ψ ∈ Crec, ψ 6= ϕ should
stay untouched.

isConsistent()

The method isConsistent() is called to check the consistency of current received
formulae. Note that a call to runBackends() conforms to calling the method
isConsistent() of the succeeding module. The function performs the solving
and returns an answer of the type "True", "False" or "Unknown". In case the
answer is "False", the module should be able to provide an explanation in the
form of an infeasible subset.

getInfeasibleSubsets()

The method getInfeasibleSubsets() is called in order to return the infeasible
subsets to the preceding module in case the consistency check evaluated to
False.



Chapter 4

The ICP module

In this section we provide background information about the Interval Constraint
Propagation (ICP) module which is inspired by the approach by Gao et al.
[GGI+10]. The module can be separated in the four major parts preprocessing,
contraction, splitting and validation. First, we present the general module in
the first section. The next sections cover further details of the module, starting
with the preprocessing of the given constraints. The central element of the
algorithm, the contraction of intervals, is described afterwards. This section
also contains information about the proper selection of contraction candidates.
When the algorithm has come to a fixpoint, an autonomous split can advance the
procedure and provide new possibilities of progress. After a solution candidate
has been found this candidate has to be verified during the validation part of
the algorithm.

4.1 Algorithm

In this section we present the basic functionality of the ICP module. Note that
the input formula of a general module is a set of subformulae, which is defined
as the conjunction of the subformulae. The ICP module can only perform a
consistency check on a set of constraints and returns "Unknown" if this is not
the case. The Sections 4.2 to 4.6 deal with this consistency check, whereas Sec-
tion 4.7 explains how incremental manipulation of the received formula of the
ICP module is performed.

As the module is designed to be part of a whole solver strategy as well as
to be usable standalone, a preprocessing has to be included. This ensures, that
all constraints are put in the correct format for further processing, no matter
in which way the module is used. The main idea of the preprocessing is to split
nonlinear constraints from the linear ones and to transform all constraints to
equations. The former is achieved by introducing a fresh real-valued variable
vm for each nonlinear monomial m, replace all occurrences of m in the consid-
ered constraint by vm and add the equation vm = m. The latter is done by
introducing fresh variables to obtain equations (see Section 4.2).
After the preprocessing the actual contraction of the intervals takes place. The
algorithm chooses the next possible combination of constraint and variable, we
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refer to as the contraction candidate (see Definition 4.4.1), by a certain heuris-
tic (see Section 4.4.2), in order to apply contraction. The algorithm repeats
choosing a contraction candidate and contracting until we fulfill the precision
requirements (see Section 4.6.2), i.e. a given target diameter for all intervals of
the current search box is reached, or there is no contraction candidate contract-
ing the search box sufficiently, what we refer to as fixpoint.
If the latter case occurs, the search box is split in half and contraction is re-
sumed on the gained search box (see Section 4.5). After reaching a point where
the precision requirements are met, the contraction is stopped and the resulting
search box is handed over to the validation. After successfully validating the
box against the linear feasible region it possibly contains a solution. We verify
the existence of a solution in this box by an according backend call. In case
of an unsuccessful validation either the violated linear constraints are added as
contraction candidates or if already existing the box is set as (unsuccessfully)
validated (see Section 4.6). If contraction leads to an empty set the box is dis-
carded as a possible solution and the algorithm continues with the next possible
box (see Section 4.5.1).

4.2 Preprocessing
Linear and nonlinear constraints are separated during the preprocessing (line 3)
and ICP mainly performs on the nonlinear constraints, because firstly there are
already efficient algorithms to solve linear constraints [DM06] and secondly ICP
is known to suffer from the slow convergence problem, which can occur, when
we perform ICP on linear constraints (see Example 4.4.2).
Therefore it is important to detect the nonlinear parts in the given constraint
set, such that ICP initially can be applied on nonlinear constraints only. The
preprocessing we implement in the ICP module is related to the approach pre-
sented by Gao et al. [GGI+10].
For every new nonlinear mononomial mi of the left-hand side of the considered
constraint ci (see Section 3.1) we introduce a fresh nonlinear variable ni such
that we obtain a new constraint mi − ni = 0. Additionally to keep the original
structure, the nonlinear part in the original constraint ci is replaced by the newly
introduced variable ni. To be able to cope with relational symbols in the now
linearized constraints, we add a new slack variable si for every new (linearized)
left-hand side, set the relation to equality and add the bound correspondingly.
Assume, we have the nonlinear constraint

n∑
i=0

ci

ni∏
j=0

x
eij
j ∼ b,∼∈ {< , ≤},

we replace
∏ni

j=0 x
eij
j by a fresh real-valued variable mi. For all linear con-

straints
∑
cimi we equalize it by adding a slack variable si gaining the equation

−si +
∑
cimi and add the bound si ∼ b. Note that we introduce only one

nonlinear variable for equal nonlinear monomials and only one slack variable for
equal linear left-hand sides without constant parts.
This is done because the ICP algorithm demands equations as input, which are
gained by using the bounds of the slack variables to represent possible inequa-
tions.
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Example 4.2.1 (Preprocessing). Original constraints given to the module:

[x2 − 1− y = 0 ∧ x− y ≤ 0]

Add nonlinear variable n1 for x2: First add the identity x2−n1 = 0 and replace
all occurrences of x2 in the original constraints to obtain linearized constraints:

[x2 − n1 = 0 ∧ n1 − 1− y = 0 ∧ x− y ≤ 0]

Introduce slack variables for the linear constraints:

[x2 − n1 = 0 ∧ n1 − 1− y = 0 ∧ x− y − s1 = 0 ∧ s1 ≤ 0]

It is important to keep the mapping from the original constraints to the
preprocessed ones as for the communication to the other modules we need to
remember the original constraints. If we, for instance, obtain an infeasible subset
from a backend and we want to use it for the construction of the ICP module’s
infeasible subset, it is necessary to look up the correct preprocessed original
constraints. We introduce a mapping from original constraints to linearized
ones and from linearized constraints to the corresponding equations with slack
variables to achieve this (see Section 4.7).

After the preprocessing, the obtained linear equations are passed to an in-
ternal LRA module implemented according to [DM06] – the method inform(..)
of the LRA module is called with the linearized constraint (line 4). Due to the
fact that the internal LRA module is implemented as an SMT-RAT module it
is accessed by the same functions inform(..), assert(..), remove(..) and isCon-
sistent().

At this point we already have all information required for the creation of the
nonlinear contraction candidates (line 5). Note that we use the LRA module’s
internal slack variables, which are created in the aforementioned fashion. The
linear contraction candidates are held in a mapping, which maps the slack vari-
ables of the LRA module to the linear contraction candidates. Furthermore, we
inform the backend about the new constraints.

1 inform(Constraint _constr)
2 {
3 (linearConstraint, [nonlinearReplacements]) = linearize(_constr);
4 informLRASolver(linearConstraint);
5 createNonlinearCandidates([nonlinearReplacements]);
6 informBackend(_constr);
7 }

Listing 4.1: The method inform(constraint), which is called at first to perform
preprocessing.

Outlook Currently, we use the constraints from the received formula of the
ICP module as the constraints for the backends. It is also possible to pass the
preprocessed constraints to the backend which saves transformation time in case
we need the infeasible subset returned by the backend for internal purposes and
do not intend to pass the gained infeasible subset to a preceding module.



26 Chapter 4. The ICP module

4.3 Consistency check
After the preprocessing and the assertion of subformulae (see Section 4.7 for
assertion), the consistency check is called. The first step executed in the consis-
tency check function isConsistent() of the ICP module is to obtain the bounds
for every variable in the linearized constraints. This is done by invoking the
initialization of the LRA module and afterwards reading out the bounds of the
variables (line 3 of Listing 4.2). After getting the new intervals for the variables
(line 5 of Listing 4.2), the consistency check of the LRA module is invoked to
check linear feasibility of the linearized constraints. In case of success the ac-
tual ICP algorithm is triggered (line 12 of Listing 4.2). Otherwise, the gained
infeasible subset is passed to the previous module (line 10 of Listing 4.2).
When the ICP module finds a search box fulfilling the precision requirements,
this box is validated (line 13 of Listing 4.2). In case the validation fails, a new
box is selected (line 15 of Listing 4.2), otherwise the box is handed over to
the backend module, which means that the consistency check of this backend
is called with the current search box together with the received formula (line
20 of Listing 4.2). The same backend call is invoked, if the validation rejects a
search box due to numerical errors (see Section 4.6). Depending on the solution
returned of the backend, either a new box is selected for contraction (in case the
backend rejects the passed search box, line 24 of Listing 4.2) or the ICP module
returns "True" (in case the search box is accepted by the backend, line 29 of
Listing 4.2). Note that if the backend returns an infeasible subset, which does
not contain any bound of the current search box, it can directly be passed to
the preceding module (line 27 of Listing 4.2). At this point we know that the
check of the current constraint set in combination with the current box did not
fail because of the passed box but because of the constraint set itself. Otherwise
if a constraint defining the passed box is contained in the infeasible subset, a
new box is selected and the old box is rejected.

1 Answer isConsistent(){
2 initializeLRA(); // creates intervals for variables
3 variables = getVariablesFromLRA();
4 for (var in variables){
5 currentBox[var] = getIntervals(var);
6 }
7 answer = isConsistentLRA();
8 if (answer == false){
9 infeasibleSubset = getInfeasibleSubsetFromLRA();
10 return answer;
11 }
12 solutionCandidateBox = contract(currentBox)
13 answer = validateSolution(solutionCandidateBox);
14 if (answer = false){
15 currentBox = selectNextBox();
16 if (currentBox == NULL)
17 return false;
18 }else{
19 pushBoundsToPassedFormula(solutionCandidateBox);
20 answer = callBackends();
21 if (answer = false){
22 createInfeasibleSubset();
23 if (infeasibleSubsetContains(solutionCandidateBox))
24 currentBox = selectNextBox();
25 else
26 infeasibleSubset = getInfeasibleSubsetFromBackend();
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27 return false;
28 }else{
29 return answer;
30 }
31 }
32 }

Listing 4.2: The procedure isConsistent calls the ICP algorithm and manages
also the validation as well as the calling of backends.

The detailed methods used during the consistency check are described during the
following sections starting with the contraction of intervals which is performed
by the ICP algorithm giving this module its name.

4.4 Contraction/ICP
In our version of the ICP algorithm, the contraction of intervals is performed by
an interval extension of Newton’s method [Moo77, HR97]. In general each con-
traction takes a constraint as well as a variable occurring in the constraint and
uses this to contract the interval of the variable. We refer to this combination
as a contraction candidate:

Definition 4.4.1. A contraction candidate c is a tuple

c = 〈fi, xj〉, fi = 0 ∈ Nϕ ∪ Lϕ, xj ∈ V ar(fi) (4.1)

where V ar(fi) denotes the set of variables contained in fi. Note that the con-
straint fi = 0 is taken from the set of preprocessed constraints Nϕ ∪ Lϕ which
are generated from the input formula ϕ.

Each contraction candidate holds a weight which measures the importance
of this candidate during the past contractions and is updated after each con-
traction according to a weighting function (see Section 4.4.2). Having chosen a
contraction candidate, the actual contraction of the interval of the corresponding
variable can be started.

1 contract(IntervalBox _box){
2 relevantCandidates = updateRelevantCandidates();
3 while ( !relevantCandidatesEmpty() && !targetSizeReached){
4 candidate = chooseCandidate(relevantCandidates);
5 splitOccured = Newton(candidate, _box);
6 if(!splitOccured)
7 {
8 addContractionToHistoryNode(candidate);
9 addAllAffectedCandidatesToRelevant();

10 }
11 else
12 {
13 performSplit(candidate);
14 }
15 updateWeight(candidate);
16 relevantCandidates = updateRelevantCandidates();
17 }
18 }

Listing 4.3: Contraction in pseudo-code. The function updateRelevantCandi-
dates keeps the sorted mapping of relevant candidates up to date (see Paragraph
4.4.2 for details).
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4.4.1 Newton’s method

−2 −1 1 2 3
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x2 = x1 − f(x1)
f ′(x1)

(a) Newton’s method for univariate poly-
nomials.
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[x]x = [−2, 3]

[x]′x = [−2, 0.339286]

(b) The interval extension of New-
ton’s method. Note that [x]′x =
Ncmp([x]x, f(x), x) ∩ [x]x. The colored
markers represent the intervals.

The idea of a contraction operator based on Newton’s method can be de-
rived as follows (the idea is based on the approach initially presented by Moore
[Moo77] and further enhancements were made by Hansen and Pullman [Han78]
among others):
The set of constraints from the input formula can be seen as an n-dimensional
system of multivariate polynomial equations of the form

f(x) = (f1(x), . . . , fn(x))T = 0, f : D → Rn and fi(x) : D → R, D ⊆ Rn (4.2)

which is ensured by the preceding preprocessing. Newton’s original method is
defined on univariate real-valued polynomial functions. Thus by assigning a
value to n− 1 of the n variables in each function fi we obtain a function of the
required format and can apply Newton’s method.
Similar to Newton’s original method, the Newton operator for interval-valued
functions can be derived from the mean-value theorem. The derivation of the
Newton operator was presented by Herbort and Ratz [HR97]. As stated, we get
a one-dimensional function for each fi by fixing all but one variable xj

f̃ij(xj) := fi(x
∗
1, . . . , x

∗
j−1, xj , x

∗
j+1, . . . , x

∗
n) (4.3)

where x∗k, k ∈ {1, . . . , n}, k 6= j may vary in their corresponding interval [x]xk
∈

IR. Applying the mean-value theorem, we get

∃ξ ∈ [x]xj
: f̃ij(cj)− f̃ij(xj) = f ′ij(ξ) · (cj − xj) (4.4)

where cj denotes the center of the interval [x]xj
and it holds that xj ∈ [x]xj

.
Furthermore, f ′ij denotes the partial derivative ∂fi

∂xj
. Assuming that x∗ ∈ Rn is

a root of f and that ∂fi
∂xj
6= 0, we can transform Equation 4.4 to

x∗j = cj −
f̃ij(cj)

f̃ ′ij(ξ)
(4.5)
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because x∗ is a root of fi as well. If we replace the indeterminate ξ by the whole
interval [x]xj

we end at

N := cj −
f̃ij(cj)

f̃ ′ij([x]xj
)
, (4.6)

x∗j ∈ N

As stated above, the partial derivative should not be equal to zero. However, in
this setting it can happen that the resulting interval of the derivative contains
zero. In this case we make use of extended interval division (see Table 2.5)
which results in an interval with a gap (a heteronomous split, see Section 4.5).
Nevertheless, we do not have any information of the remaining zeroes contained
in x∗ – the only information we have is that they are contained in their intervals
[x]xj , j ∈ {1, . . . ,n} which defines the search box [x] = ([x]x1 , . . . , [x]xn)T ∈ IRn.
If we replace each x∗i , i ∈ {1, . . . ,n} by its corresponding interval, due to inclu-
sion monotonicity we obtain a superset of N :

N ⊆ cj −
fi([x]x1 , . . . , [x]xj−1 , cj , [x]xj+1 , . . . , [x]xn)

∂fi
∂xj

([x]x1 , . . . , [x]xn)
(4.7)

Note that the subtraction of an interval from a number (here: cj) can be handled
by treating cj as a point interval such that cj − [a, b] = [cj , cj ] − [a, b] = [cj −
b, cj − a].
We are now able to define the interval Newton operator, which uses the i-th
equation of the equation system to treat the j-th component of the search box :

Definition 4.4.2. Let D ⊆ Rn, f : D → Rn, f = (f1, . . . ,fn)T be a con-
tinuously differentiable function, and let [x] = ([x]x1

, . . . ,[x]xn
)T ∈ IRn be an

interval vector with [x] ⊆ D and i, j ∈ {1, . . . ,n}. Then the component-wise
interval Newton operator Ncmp is defined by:

Ncmp([x], i, j) := cj −
fi([x]x1 , . . . , [x]xj−1 , cj , [x]xj+1 , . . . , [x]xn)

∂fi
∂xj

([x]x1 , . . . , [x]xn)
(4.8)

The arguments of the component-wise interval Newton operator are the rea-
son for the structure of the contraction candidates which contain the needed
parameters i and j (see Definition 4.4.1). Herbort and Ratz elaborated two
important properties concerning the existence of a zero of the component-wise
interval Newton operator Ncmp [HR97]:

Theorem 4.4.1. Let D ⊂ Rn, f : D → Rn be a continuously differentiable
function, and let [x] = ([x]x1

, . . . ,[x]xn
)T ∈ IRn be an interval vector with [x] ⊆

D. Then the component-wise interval Newton operator Ncmp has the following
properties:

1. Let x∗ ∈ [x] be a zero of f , then we have for arbitrary i, j ∈ {1, . . . ,n} :
x∗ ∈ ([x]x1

, . . . , [x]xj−1
,Ncmp([x], i, j), [x]xj+1

, . . . , [x]xn
)

2. If Ncmp([x], i, j) ∩ [x]xj
= ∅ for any i, j ∈ {1, . . . ,n} then there exists no

zero of f in [x].
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Proof. Herbort and Ratz prove their first statement by referring to the deriva-
tion of the Ncmp operator. Let x∗ ∈ [x] be a zero of f , and let i, j ∈ {1, . . . ,n}.
If we take fi as a one-dimensional real-valued function in xj , we can derive from
the mean-value theorem (see Equation 4.4):

x∗j = cj −
fi(x

∗
1, . . . , x

∗
j−1, cj , x

∗
j+1, . . . , x

∗
n)

∂fi
∂xj

(x∗1, . . . , x
∗
j−1, ξ, x

∗
j+1, . . . , x

∗
n)
, ξ ∈ [x]xj

(4.9)

with cj := m([x]xj
) and assuming that ∂fi

∂xj
(. . .) 6= 0. As we know that x∗ ∈ [x]

and especially x∗j ∈ [x]xj we do not lose validity if we replace the unknown ξ
by the whole interval [x]xj

– in fact we include x∗j . If we additionally replace
every x∗k, k 6= j by its corresponding interval [x]xk

(as we do not know the exact
component x∗k but the same statement x∗k ∈ [x]xk

holds) we get a superset of
the previous inclusion:

x∗j ∈ cj −
fi(x

∗
1, . . . , x

∗
j−1, cj , x

∗
j+1, . . . , x

∗
n)

∂fi
∂xj

(x∗1, . . . , x
∗
j−1, [x]xj

, x∗j+1, . . . , x
∗
n)

(inclusion) (4.10)

⊆ cj −
fi([x]x1 , . . . , [x]xj−1 , cj , [x]xj+1 , . . . , [x]xn)

∂fi
∂xj

([x]x1 , . . . , [x]xj−1 , [x]xj , [x]xj+1 , . . . , [x]xn)
(4.11)

= Ncmp([x], i, j) . (4.12)

As only the j-th component of [x] is treated we can conclude that

x∗ ∈ ([x]x1 , . . . , [x]xj−1 , Ncmp([x], i, j), [x]xj+1 , . . . , [x]xn) . (4.13)

By using the first statement of the theorem the second one can be proven using
contradiction. We assume that there exists a zero x∗ ∈ [x] of f and we assume
that Ncmp([x], i, j) ∩ [x]xj

= ∅. If we apply the Newton operator with some
arbitrary i, j ∈ {1, . . . , n} we get:

x∗j ∈ Ncmp([x], i, j) ⊆ Ncmp([x], i, j) ∩ [x]xj
= ∅ . (4.14)

This neglects the assumed zero and proves the second statement by contradic-
tion.

Both statements from Theorem 4.4.1 have an important meaning for the ap-
plication of the component-wise interval Newton operator in the ICP algorithm
for contraction. The first statement ensures that regardless of how often an
interval is contracted by a contraction candidate, we do not lose a solution – all
zeros in the initial search box are always contained in the resulting search box.
The second statement is useful in rejecting possible search boxes: If the con-
secutive application of the component-wise interval Newton operator on a given
system of equations results in an empty set, the original search box did not con-
tain any zeros. This has two important implications for the data structure of
the ICP module: Firstly, if we are able to contract a box to the empty interval
we can drop the whole box and, secondly, it suffices to store the contractions
which are applied on a certain box instead of storing each resulting box after
one contraction step. This is because if we are able to create the empty set via
contraction we can drop all previously made contractions until the point where
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the box has been created, e.g. by a split (see Section 4.5.1 for details of the
data structure).

After contraction, the result is intersected with the original interval of the
variable before contraction. Therefore, the resulting interval is at least as wide as
the original one. This is done to prevent the method from diverging. Due to this
approach, if the actual setup tends to diverge, the resulting relative contraction
equals zero and thus, the contraction candidate is rated down. The rating of
contraction candidates is done via the relative contraction and the weight is
updated after each successful contraction (see Section 4.4.2). Successful in this
case means that the relative contraction is above a predefined threshold and the
contraction did not result in an empty interval.

Example 4.4.1 (Contraction). We choose the constraint set from previous ex-
amples but omit the preprocessing to increase readability: C = [c1 : x2 − y =
0 ∧ c2 : x− y = 0]. The initial search box is set as: [x] ∈ IR2 = [1, 3]x × [1, 2]y.
If we consider the two contraction candidates 〈c1, x〉 and 〈c2, y〉 and alter their
application, we gain a contraction sequence. We show the first contraction in
detail with the previously mentioned Newton operator:

Ncmp([1, 3]x × [1, 2]y, x
2 − y = 0, [1, 3]x) = [2, 2]− [2, 2]2 − [1, 2]

2 · [1, 3]

= [2, 2]− [2, 3]

[2, 6]

= [0.5, 1.66667]

what results in an updated interval for x : [1, 3]
c1,x→ [1, 3] ∩ [0.5, 1.66667] =

[1, 1.66667]. If we now alter the contraction candidates we obtain the sequence:

[1, 3]x
c1,x→ [1, 1.66667]x

c1,x→ [1, 1.3]x
c1,x→ [1, 1.14135]x

c1,x→ . . .
c1,x→ [1, 1]x

[1, 2]y
c2,y→ [1, 1.66667]y

c2,y→ [1, 1.3]y
c2,y→ [1, 1.14135]y

c2,y→ . . .
c2,y→ [1, 1]y

As mentioned in Section 4.2, the presented preprocessing approach separates
nonlinear and linear constraints. This is done due to the fact that ICP is
vulnerable to slow convergence. We can outline this behavior by an example:

Example 4.4.2 (Slow convergence). Consider the constraint set C = [c1 :
y = x + 1 ∧ c2 : x = y + 1]. If we limit the initial box, e.g.: [x] ∈ IR2 =
[1, n]x × [1, n]y, n ∈ N, we observe, that the constraint system is unsatisfiable.
However the contraction sequence of the ICP algorithm would look like

[1, n]x
c2,x→ [2, n]x

c2,x→ [3, n]x
c2,x→ [4, n]x

c2,x→ . . .

[1, n]y
c1,y→ [2, n]y

c1,y→ [3, n]y
c1,y→ [4, n]y

c1,y→ . . .

until the system is finally declared unsatisfiable. A linear solver would find this
fact without taking 2n contraction steps.

Outlook The contraction as described above is the first approach to con-
tract intervals. Herbort and Ratz [HR97] mention extensions to the presented
component-wise Newton operator: The usage of index lists is one of them.
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The introduction of index lists aims at improving the choice of the best possible
contraction candidate. The idea is to use automatic differentiation to determine
all partial derivatives, which corresponds to a single evaluation of the Jacobian
matrix of the system. This is done because if the derivative equals zero (the
denominator in Equation 4.8) and the numerator contains zero the result will
be (−∞,+∞), which does not contribute to the solution and, thus, can directly
be avoided.
According to [HR97] it is sufficient to choose only candidates from the obtained
Jacobian matrix with entries different from zero. This results in a set of possible
contraction candidates. However, the order of those candidates is still to be de-
termined. The idea is to successively use all possible variables on one constraint
as this results in an interval at least as small as if we choose the optimal variable
directly. In fact it can be even smaller – the next optimal step can be in the set
of remaining candidates

Remark 4.4.1 (Index Lists). Let S := (〈ci, x1〉, . . . , 〈ci, xn〉), j ∈ {1, . . . , n}, n :=
|V ar(ci)| be the unknown optimal contraction sequence for the constraint ci
where each variable xk, k ∈ {1, . . . , n} occurs exactly once. It can be assured
that the resulting relative contraction c when using a sequence S ′ 6= S is at least
as big as if the first contraction candidate of S is chosen directly.

Herbort and Ratz propose the usage of two index lists L1 and L2. The first
one contains all pairs (i, j), where the entry in the calculated Jacobian is dif-
ferent from zero while the second list contains all pairs where extended interval
division has to be applied.
The items for L1 are picked starting from the diagonal element of the calculated
Jacobian matrix and proceeding downwards and jumping to the first row if the
bottom is reached.
The list L2 is created by choosing the element with the largest diameter from
each column whose entry is equal to zero.

4.4.2 Choice of the Contraction Candidate
During the contraction of the given search box we can choose between several
contraction candidates, as we usually have more than one asserted constraint
with more than one variable. However, not all candidates will result in the same
relative contraction. Even worse, the possible relative contraction is dependent
on the order and appearance of the previous contractions.
This means that, on the one hand, we cannot predict the possible relative con-
traction of a contraction candidate and, on the other hand, the possible relative
contraction changes during time. Goualard and Jermann [GJ08] have related
this problem to a standard problem in reinforced learning, the multi-armed ban-
dit problem. This problem is described as follows.
There are k slot machines with an unknown probability to win and a fixed time
horizon. The goal is to find a sequence of levers to pull such that the out-
come is maximized in the given time horizon. In our case the slot machines are
the contraction candidates and the outcome is the relative contraction. There
exists a non-stationary version of the problem where the probabilities of the
slot machines to win change non-deterministically while time passes. The non-
stationary version of this problem is closely related to our problem as the re-



4.4. Contraction/ICP 33

sulting contraction is not predictable until the actual calculation is done and
varies during time.

If we consider our equation system of n equations with at most n vari-
ables, we have to choose between n2 contraction candidates before every single
contraction. As previously mentioned, there is no way to predict the relative
contraction of a candidate such that we stick to heuristics. Goualard and Jer-
mann [GJ08] propose a reinforced learning approach for this problem which we
adapt.
The basic idea of this learning approach is to rate every applied contraction such
that the weight W (ij) of every contraction candidate represents its importance
during the past solving process. Goualard proposes an update formula whose
result represents the average of the last contractions biased with a factor α
which introduces a parameter to adjust the effect of the last applied contraction
on the whole weight

W
(ij)
k+1 = W

(ij)
k + α(r

(ij)
k+1 −W

(ij)
k ) (4.15)

where r(ij)k+1 represents the last contraction and W (ij)
k the previous weight of the

candidate. The factor α has a strong influence on how the weights evolve: Is α
close to 0, for example α = 0.1, the initial weight has a longterm influence on
the weights. On the other hand, if we pick a value close to 1, e.g. α = 0.9, the
weights change with faster pace and the last payoffs have a stronger impact on
the weighting. In our approach we choose a value of α = 0.9, as the importance
of certain candidates in our examples varied a lot. Nevertheless, this factor is
one of the many relevant parameters which can be tuned to change the behavior
of the whole algorithm. Therefore, the optimal setting of this parameter still
has to be determined.
After picking a contraction candidate, the actual contraction is performed with
the component-wise interval Newton operator Ncmp (see Section 4.4.1). After
the contraction, the relative contraction is computed and the weight of the cho-
sen contraction candidate is updated.

ICP-relevant candidates Currently we keep a sorted mapping of weights
to contraction candidates, which we refer to as "ICP-relevant candidates". In
this mapping it is easy to pick the candidate with the highest weight, as it is
located at the last position in the mapping. Due to the improbable but still
possible case, that two candidates have the same weight, we extended the key
of the ICP-relevant candidates to a tuple (weight, id), where the id is set upon
creation of the contraction candidate by an internal manager.
If a relative contraction above a certain threshold has been made, the candidate
is kept in the mapping, otherwise it is removed. Additionally, all candidates
which contain the variable whose interval has changed and are active (see Section
4.6), are added to the ICP-relevant candidates.
This ensures that all candidates which could profit from a changed interval are
enlisted and are at least considered once for contraction. This implies, that each
change is eventually propagated throughout the whole system, as every affected
contraction candidate, which is active is added as a relevant candidate.
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Outlook As previously mentioned, the influence of the parameter α may be of
interest during the proper selection of the next contraction candidate. Further-
more, Herbort and Ratz introduced index lists which also might be of interest to
improve the algorithm [HR97]. In their paper Goualard and Jermann propose
to use priority queues for every variable which should ensure that each variable
is eventually used for contraction [GJ08]. The current approach via the weights
allows, that a limited number of contraction candidates are chosen alternately,
which might suppress the reduction of all variables. However, the current imple-
mentation also stops reducing one variable if the target diameter of its interval
has been reached such that this suppression is only temporary.
Another small optimization is to use linear contraction candidates only once as
the relative contraction of a linear candidate equals zero if it is applied more
than once consecutively.

4.5 Split

(a) Before split (b) Directly after split (c) After contraction

Figure 4.1: The split enables us to perform additional contractions without
losing a solution. Note that the gap in the second figure is just for graphical
representation.

In case the algorithm has reached a fixpoint during the contractions, we
perform a split (see Figure 4.1). Currently, we define that a fixpoint in the
algorithm is reached when the ICP-relevant candidates mapping is empty. This
means that the last possible contraction has been less than a certain threshold.
Therefore, the corresponding contraction candidate has been removed from the
mapping.
At this point no useful contraction can be applied. However, the search box
might still be too large to suffice our precision requirements (see Section 4.6.2),
which only happens, if we stop contraction due to loss of progress. To be
able to continue, we split the actual search box in the middle of an interval
domain, which is larger than our precision requirement, in one randomly chosen
dimension. This splitting can be seen as a contraction, such that all candidates
which contract in this dimension update their weights with a payoff of 50% (see
Section 4.4.2).
The second case when a splitting can happen is, when the contraction results
in a heteronomous split (see Sections 2.1.5 and 4.4). In this case, the payoff is
bigger or equal to 50% due to a possible gap in the resulting intervals, which
reduces the interval even more. Nevertheless, the treatment is the same as if an
autonomous split had happened, which includes creating two new search boxes
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and enlisting them into the history tree.

4.5.1 History Tree

Root, id: 1

Contractions: [∅]

Split:

[x]init

id: 2
Contractions: [. . .]

Split: x1

id: 3
Contractions: [. . .]

Split: x2

id: 4
Contractions: ∅

Split:

id: 5
Contractions: [. . .]

Split: x4

id: 6
Contractions: ∅

Split:

...

id: i
Contractions: ∅

Split:

id: i+1
Contractions: ∅

Split:

Figure 4.2: The HistoryTree holds all important information to switch and
restore a solver state. Each state keeps track of the applied contractions and in
case a split happens, the variable where the split occurred is saved. Note that
we omitted the search boxes each node keeps.

To keep track of splits (heteronomous and autonomous), we introduce a
tree-based structure to store solver states. It is necessary to keep track of solver
states due to the previously mentioned splittings. Every split produces a pair of
new boxes. Therefore, it is crucial to distinguish each box from the other ones,
as each box can be treated separately. The actual solver state is represented by
the current search box. Initially, the module starts with one root node contain-
ing the initial search box and a right child, which is set as the first considered
node. This is done to be able to recall the initial box.
All contractions are applied on the current node and the applied contractions
are stored in the node. Whenever a split happens, two nodes are created and
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appended to the current node. Each new node contains one half or less of the
original search box. Additionally, the old node sets a variable indicating in
which dimension it has been split.
To be able to get infeasible subsets, all nodes keep track of their applied contrac-
tions, such that we can apply a simple backtracking mechanism if needed. This
includes that a set of references to the used contraction candidates is stored,
where each candidate occurs at most once.
When selecting a new state in the tree, the current considered intervals con-
cerned for contraction are set to this state (see also lines 15 and 24 in Algorithm
4.2). The selection of the next state follows a left-most depth-first traversal of
the tree. When selecting a new box, the older nodes left of the new node can be
deleted. This keeps the tree in an almost linear structure, as every split results
in two nodes from which only one is considered. Furthermore, the old nodes are
not of interest any more as they were already visited.

1

2 3

4 5

...

i i+1

Figure 4.3: The choice of the next solver state is done in a left-most depth-first
manner. Note that when switching the solver state all visited nodes are cut to
keep the overall number of nodes small.

Outlook Currently, the splitting creates an almost linear binary tree. Au-
tonomous splits divide an interval into two equal parts by cutting in the middle
of the interval of the desired dimension.
One variation of this approach is to split in more than two parts. This would
result in a tree structure with a higher branching rate and the relative contrac-
tion by an autonomous split would be increased (e.g. splitting into three equal
parts results in 66% relative contraction).
Another possible improvement is to raise the selection of the next box after a
split to a SAT solver. Whenever a splitting decision has been made, it is possible
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to create deductions of the form

[(Ai−1 ∨Bi−1 ∨ ¬x < r ∨Bi)∨
(Ai−1 ∨Bi−1 ∨ ¬x ≥ r ∨B′i)]∧

(x′ < r ∨ x′ ≥ r)∧
(¬x′ < r ∨ ¬x′ ≥ r),

where Ai denotes the set of active constraints, Bi denotes the future search
box and r is the proposed split. This deduction indicates, that from the actual
active constraints Ai−1 and the actual search box Bi−1 a split in dimension x
is proposed at point r, which either results in the search box Bi or B′i, but not
both at the same time. This tautology is passed to a SAT solver, which might
use this and other information to select the next box with more information
than the ICP module has at this point.

4.6 Validation
After obtaining a search box which suffices our needs in terms of size, it is
necessary to validate this box against the linear feasible region, represented by
the conjunction of all linear constraints. We have to consider three cases which
can occur:

1. The search box resides completely inside the linear feasible region

2. The search box resides partially inside the linear feasible region

3. The search box lies completely outside the linear feasible region

It is especially important to separate the first case from the second. To do
so, Gao et. al. have introduced a two-phase validation which we use as well
[GGI+10].

In the first step, to separate the third case from the other two cases, we
consider an arbitrary point of the resulting box and check whether it is contained
in the linear feasible region.

Definition 4.6.1 (Linear feasible region). The linear feasible region determines
the solution space resulting from the conjunction of the linear constraints

n∧
i=1

 k∑
j=1

aijyj = si ∧ si ∼ ei

 ,∼∈ {< , ≤ , ≥ , >}

where ei is the constant part and VLϕ := {y1, . . . , yk} are the k variables occur-
ring in the linear constraint with their coefficients aij.

If this check fails, we either have a case-two scenario where the considered
point occasionally lies outside the linear feasible region, or the box is completely
outside such that any chosen point inside the box would violate at least one
linear constraint. As it does not matter which point is chosen, we simply take
the center of the search box as the point which is checked in the first phase (line
3 of Listing 4.4). The checking of a point can be performed by the internal LRA
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Figure 4.4: The three cases we want to separate during validation: Case 1,
where the center and the rest of the box lies inside the linear feasible region,
Case 2 which is distinguished from case 3 by the maximal point and Case 3
which we distinguish using the center point.

module. To this end, all linearized constraints as well as constraints representing
the center point of the search box are handed over to the LRA module (lines 4
and 5 of Listing 4.4)

∧
xi∈VNϕ

(
ui − li

2
= 0

)
∧ Lϕ ∧

∧
Λ,

where the set VNϕ := {x1, . . . , xn} denotes the set of variables, which occur in
nonlinear constraints of ϕ, Λ denotes the set of already asserted constraints and
li, ui are the lower respectively upper bound of [x]xi . In case the center point
of the search box lies inside the linear feasible region, the LRA module returns
a point-solution ~y for all variables {y1, . . . , ym} ∈ VLϕ \ VNϕ, which only occur
in linear constraints (line 6 of Listing 4.4).

The second phase of the validation process separates the second case from the
first one. The goal is to verify characteristic points of the search box against the
linear constraints. As the linear feasible region is determined by the intersection
of the linear constraints, it suffices to check each linear constraint separately.
The point solution ~y, obtained from the LRA module, is used to set all remaining
variables, which only occur in the linear constraints Lϕ (line 13 of Listing 4.4).
We can rewrite Lϕ ∧

∧
Λ as the intersection of half-spaces where we separate

the linear and nonlinear variables:

Lϕ ∧
∧

Λ ≡
k∧

j=1

~cTj ~x ≤ ej + ~d T
j ~y (4.16)

The vector ~cj contains all coefficients of the nonlinear variables, such that ~cj =

(cj1, . . . , cjn) and the vector ~dj = (dj1, . . . , djm) contains the coefficients of the
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Figure 4.5: The linear feasible region as a conjunction of linear constraints
([c1 ∧ c2 ∧ c3]), each defining a half-space.

linear variables.
If the conjunction is satisfied, this means that the chosen point for the variable
xj lies in the linear feasible region. To check the actual search box, it is sufficient
to validate only the maximal points of the box (lines 16 and 17 of Listing 4.4).

Lemma 4.6.1 (Maximal points). Given cj and [x] := [l1, u1]× . . .× [ln, un] the
maximal points of [x] are

max

{
~cTj ~p | ~p = (p1, . . . , pn) ∈ [x] and pi =

{
li if cji ≤ 0

ui if cji > 0

}
.

The intuitive idea behind Lemma 4.6.1 is, to pick the point of the box far-
thest in the direction of the linear constraint and verify it against this constraint.
If this point lies outside the half-space depicted by the linear constraint, we can
be sure that the actual search box covers the linear feasible region only partially.
Note that we only perform the second check if the center point of the search box
is verified. Thus, at least the center point lies inside the linear feasible region,
while the maximal point lies outside - we encounter a case two scenario.

1 Validate(searchBox, assertedLinearConstraints)
2 {
3 centerConstraints = centerPoint(searchBox);
4 assertLRA(centerConstraints);
5 assertLRA(assertedLinearConstraints);
6 pointSolution = isConsistentLRA();
7 if ( isEmpty(pointSolution) ) // the centerpoint lies outside
8 {
9 violatedConstraints = getInfeasibleSubsetLRA();

10 }
11 else // validate maximal points
12 {
13 linearVariables = pointSolution;
14 for(constraint in assertedLinearConstraints) do
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Figure 4.6: The maximal points in relation to different constraints.

15 {
16 p = MaximalPoint(searchBox, assertedLinearConstraints);
17 answer = validatePoint(p);
18 if (answer == False )
19 {
20 addToViolatedConstraints(constraint);
21 }
22 }
23 }
24 return violatedConstraints;
25 }

Listing 4.4: Validation algorithm in pseudo-code.

During the validation there are two steps where the linear constraints might
be violated: Either, while validating the center point (line 6 of Listing 4.4) or
during the validation of the maximal points (line 17 of Listing 4.4). In each
case, the validation algorithm returns a set of linear constraints. In order to
consider the linear feasible region during the further solving process, we add the
violated linear constraints to the constraints relevant for contraction, if they are
not already contained. The contraction candidates of those constraints are set
as active to track whether they were already considered during validation. Note
that firstly, all nonlinear contraction candidates are always active and secondly,
the state active is different from "being asserted" (asserted linear contraction
candidates are only considered for contraction if they have been activated before
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during validation).
In a future contraction, the added active linear constraints are considered as well.
If they are again violated during a later validation phase, they can be neglected
as this violation is only because of numerical errors. This can be assumed,
because if the constraints are already contained in the relevant candidates set,
they are at least once considered for contraction before the next validation is
called. Note that validation is only called if the set of relevant candidates is
empty and thus, every contraction candidate inside it has been unsuccessfully
used for contraction at least once.
If a linear constraint, which is already activated (and thus has been in the
relevant candidates set) is violated due to the validation process, the violation
can be neglected, as it can only occur due to numerical errors, as ICP produces
a solution box which fulfills all considered constraints (see Theorem 4.4.1).

4.6.1 Involving backends
Whenever a search box has been validated, it is a solution candidate for the suc-
ceeding backends. As the idea of the ICP module as a part of a solver strategy
is to reduce the search space for the subsequent backends, the latter are called
with solution boxes which usually are smaller than the initial problem. To call
a backend with a solution box, the constraints representing the box are added
to the passed formulae.
If the backends declare the passed formulae as inconsistent, they provide an in-
feasible subset. The infeasible subset is a subset of the constraints contained in
the passed formulae. This means that it can also contain constraints represent-
ing the solution box. If this is not the case, the infeasible subset obtained by the
backend can be re-transformed to the constraints from the received formulae of
the ICP module and can be used as the infeasible subset.
However, if the infeasible subset of a backend contains constraints, which are
part of the constraints representing the solution box, it is necessary to select a
new box, as this box has been invalidated.
If we have already tried all possible boxes the ICP module returns "False" and
uses the whole received formula as an infeasible subset.

Outlook Another approach, which has to be implemented yet, may result in
generally smaller infeasible subsets. If we use the information gained from the
infeasible subsets of child nodes to create an infeasible subset for the parent node
in the history tree, we could optimize the process of infeasible subset generation
and might exclude branches in the tree early.

4.6.2 Precision
Precision is one of the tunable parameters in the ICP module. We define a
threshold for the contraction, which we refer to as target diameter. It determines
the maximal size of the solution candidate, which is handed over to the backend.
However, this parameter is crucial for the interaction of the ICP module and
its backends. On the one hand, the backend profits from a smaller size of the
received solution candidate box. For example, the CAD module might be able
to reduce the set of considered polynomials or the VS module can drop certain
substitution candidates. This results in a faster solving in the backend.



42 Chapter 4. The ICP module

i− 1

cci−1 = Bi−1 ∪ LA ∪NA

Infi−1 =?

i

cci = Bi ∪ LA ∪NA

Infi ⊆ ci

i′

cci′ = Bi′ ∪ LA ∪NA

Infi′ ⊆ ci

split1(Bi−1)
cci→ Bi split2(Bi−1)

cc′i→ B′i

Figure 4.7: The challenge for finding the infeasible subset of a falsified parent
node.

On the other hand, the calculation of a smaller solution candidate box requires
more contraction and splitting steps. We assume, that this marks a trade-off,
as there might be a point where the gain of the contractions is less effective
than the reduction by the backend. However, this is still to be evaluated and
furthermore, this point might differ from constraint system to constraint system.

4.7 Incrementality

So far, we only considered a fixed set of constraints. As previously mentioned we
apply less-lazy SMT-solving, which implies that the ICP module should support
incrementality. This means, that the set of constraints can change. In SMT-
RAT this is realized via the functions assert(formula ϕ) and remove(formula ϕ).

4.7.1 assert(formula ϕ)

When the assertion of a constraint is called, the linearized constraint is asserted
in the internal LRA module (line 4). Furthermore, the original constraint is
asserted in the backend (line 5). Note that assert has a parameter of type
formula, which contains an original constraint. This requires, that during the
preprocessing a mapping from original constraints (referred to as origins) to
modified constraints has to be kept. This is necessary in order to identify the
created nonlinear contraction candidates in case, that the original constraint
contains nonlinear parts (line 6).

Example 4.7.1 (Origins). During inform(..) the constraints

(x2 + x− y = 0 ∧ x3 + 2x2 − y = 0)

have been passed to the module and the nonlinear contraction candidates 〈hr0 −
x3 = 0, x〉, 〈hr0 − x3 = 0, hr0〉, 〈hr1 − x2 = 0, x〉, 〈hr1 − x2 = 0, hr1〉 have been
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created. In case the function assert(x2 + x − y = 0) is called, the nonlinear
contraction candidates 〈hr1 −x2 = 0, x〉, 〈hr1 −x2 = 0, hr1〉 have to be identified
by their corresponding origins and are activated.

These nonlinear contraction candidates are activated during this step (line
7). Furthermore, the linear contraction candidates are created during assertion
if they do not already exist. At this point, the LRA module should be informed
about all possible constraints and thus has created the according slack variables
(line 8). These are collected by the ICP module and assigned to the newly cre-
ated linear contraction candidates (line 9). The intervals of the slack variables
taken from the LRA module are the intervals for the slack variables of the lin-
earized constraints. However, the intervals for slack variables are not calculated
yet, as the assertion of further constraints can have influence.
Note that it can occur, that one contraction candidate is representing more
than one constraint. This happens especially for the nonlinear contraction can-
didates. Consider the set of asserted constraints:

(x2 + x− y = 0 ∧ x3 + 2x2 − y = 0)

During inform(..) the nonlinear replacements hr0 − x3 = 0 and hr1 − x2 = 0
with their corresponding contraction candidates 〈hr0 − x3 = 0, x〉, 〈hr0 − x3 =
0, hr0〉, 〈hr1 − x2 = 0, x〉, 〈hr1 − x2 = 0, hr1〉 are created. The contraction can-
didates which replace x2 are now asserted twice. This is handled by a counter
which is increased during assertion if the candidate already exists and decreased
upon removal of an original constraint.

1 assert(Formula _subformula)
2 {
3 linearFormula = getLinearizedConstraints(_subformula);
4 assertLRASolver(linearFormula);
5 assertBackend(_subformula);
6 nonlinearCandidates = findNonlinearCandidates(_subformula);
7 activateCandidates(nonlinearCandidates);//increases counter if active
8 slackVariable = getLRASlackvariables(_subformula);
9 createContractionCandidate(_subformula, slackVariable);

10 }

Listing 4.5: The assertion procedure in pseudo-code.

4.7.2 remove(formula ϕ)
During the solving phase, the preceding module can remove formulae, for ex-
ample during backtracking and indicate, that after the call of remove(..) the
constraint will be removed from the received formulae and thus is irrelevant for
the next call of isConsistent().
When the function remove(formula ϕ) is called, we require the mapping from
original to preprocessed constraints to identify the corresponding contraction
candidates (linear and nonlinear ones). The counter of a contraction candidate
is decreased in case it is > 1. Otherwise, the contraction candidate is set to
inactive and thus will not be considered for contraction until it is asserted again
(see Section 4.4).
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4.7.3 Data Structure
The needed data structure to realize incrementality includes several aspects.
First of all, contraction candidates are separated into linear and nonlinear con-
traction candidates. Furthermore, the contraction candidates can be asserted,
such that we have to keep track of the asserted ones, as they are the only ones
which should be considered for contraction. Each contraction candidate can be
active or inactive. This property is important whenever contraction candidates
are considered for contraction. Nonlinear candidates are always active, while
linear ones only become active after validation in case their corresponding linear
constraints were violated (see Section 4.6 for details).
In case new constraints are asserted or removed, we need a mapping from original
constraints to preprocessed constraints. This is needed, because the constraints
contained in the subformulae, which are passed with assert(..) or remove(..)
are original constraints and we need to update the corresponding contraction
candidates, which have been created from the preprocessed constraints.
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Conclusion

In this chapter we show an exemplary run of the designed ICP module with dif-
ferent target diameters for the solution candidate boxes and discuss the results.
Furthermore, we sum up the ideas for future work as also presented in the last
chapters. A final summary concludes this thesis.

5.1 Results

1.0 0.5 0.0 0.5 1.01.0

0.5

0.0

0.5

1.0

Figure 5.1: An extract of an exemplary run of Example 5.1.1 with an initial box
[x] = [−1000, 1000]x × [−1000, 1000]y and a target diameter of 1. The resulting
boxes are drawn without filling, the dropped ones are colored red and the boxes
which are passed over to the backend are colored green. The intersection of the
green boxes shows, that in fact two boxes have been passed to the backend.
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Example 5.1.1. For first testing we created a simple input formula which cov-
ers most interesting cases:
The required constraint system should contain linear as well as nonlinear con-
straints. Furthermore, incrementality should be tested with a disjunction, where
at least one removal and one assertion are possible.[ (

x3 − 2x2 − y > 0

)
∧
(

1

2
+ y ≥ 0

)
∧
(

1

4
x− y ≥ 0

)
∧
(
−4x2 + 20x− y = 0 ∨ 1

2
x2 − 1− y = 0

)
∧
(
x2 − y = 0 ∨ 1

2
x2 − 1

4
− y = 0

)]
The test was done with an initial box [x] = [−1000, 1000]x×[−1000, 1000]y which
added the constraints for the boundaries[

(x ≤ 1000)

∧(x ≥ −1000)

∧(y ≤ 1000)

∧(y ≥ −1000)

]
to the constraint set.

We tried different target diameters for the solution candidate boxes starting
from 10 decreasing by factor 10 until we reached the target diameter 0.0001. The
described test run was made by the strategy previously presented in Section 3.4
which consists of the modules

ϕ→ CNF→ SAT→ ICP→ VS→ CAD

The modules VS and CAD are succeeding the ICP module and thus operate as
supporting backends. The results of the test runs are depicted in the following
table

∅ backend calls inv. boxes depth avg(max) # contr. # splits
10 8 1 28(64) 155 100
1 7 2 25(66) 219 120
0.1 4 5 36(82) 369 177
0.01 7 9 39(94) 525 218
0.001 4 17 43(106) 638 247
0.0001 4 22 48(122) 735 281

Table 5.1: The results of the test run show, that with decreased target diameter
the number of contractions and splits increases, while the number of backend
calls only changes marginally.
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Figure 5.2: The solution space is denoted by the blue area, which is gained by
an intersection of half-spaces created by two linear and one cubic inequation
(blue). The actual solution is the intersection between the quadratic functions
(red), which lies inside the solution space.

The area covered by boxes, which are handed over to the backend is visual-
ized in Figure 5.1 by the green boxes with a target diameter of 1. In this case
there did not occur any rejections of boxes in the visible extract.
The solution candidate boxes, which should be generated to a diameter of 1
are in this case smaller than 1. This can be explained with the fact, that the
contraction is done stepwise while the contraction per step cannot be predicted
as already mentioned (see Section 4.4.2). Therefore, if a box is marginally larger
than the target diameter, it often occurs that the next contraction results in an
interval smaller than the target diameter.
The results for the presented example with different target diameters are de-
picted in Table 5.1. Note that with a smaller target diameter the number of
splits and contractions rises as expected. The average depth of the tree also
satisfies our expectations. The system has, due to the preprocessing at most
7 variables, which all require a search box of the demanded target diameter (2
original variables (x, y), 2 variables for nonlinear replacements and 5 variables
as linear slack variables). Without contraction, the tree depth is limited by the
number of splits until the target diameter is reached. We can calculate the up-
per limit for the tree depth when using binary splits as

∑
x∈V ar(ϕ) log2([x]initx ),

where [x]initx denotes the initial interval for x.
The number of backend calls does not change significantly. This can be explained
by the fact, that a smaller target diameter but the same set of constraints just
requires more contractions and splits per step, than the same set with a larger
target diameter. Note that a smaller box diameter speeds up the backend calls.
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Figure 5.3: Another extract of a run with the example constraint set, made with
a target diameter of 0.1. The diameter of the box in the y-dimension is by far
smaller than the target diameter, which results of the unpredictable outcome of
the contractions.

5.2 Future work
The presented ICP module has lots of options for optimizations. The current
state of the module provides the basic behavior of a module in the context of
SMT-RAT [CA11]. However, most of the operations performed can be optimized
and improved.

• Contraction and choice of contraction candidates: The choice of
contraction candidates currently depends on the weighting. An optimiza-
tion is to improve the weighting itself, meaning, that the influences, which
affect the weight are extended (e.g. number of variables, number of oc-
currences in the input formula, degree of the polynomial). Also the initial
weight can be adjusted according to preliminary information concerning
the constraints themselves. This is closely related to the usage of index
lists encouraged by Herbort and Ratz [HR97] (see Section 4.4f).

• Splitting: The splitting also offers options for optimization. A mentioned
idea was, to experiment with more than binary splits to increase the rel-
ative contraction gained by the split and to flatten the resulting history
tree. It is also mentioned, to raise the splitting decision to the SAT solver
by creating tautologies, such that the decision for the chosen box after the
split can be done by the SAT solver (see Section 4.5).

• History tree: In the current version, the history tree is reset whenever
a change to the constraint set happens. However, in case a constraint is
added we could use the already existing information of the search boxes
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and further decrease diameter by cutting it with the results from the
contractions according to the new constraint set (see Section 4.5.1).

• Infeasible subset generation: The current approach does not include
any intelligence concerning the infeasible subsets. Therefore it offers a lot
of improvements as on the one hand minimized infeasible subsets might
decrease the number of theory calls, as the SAT solver has more informa-
tion. On the other hand, by creating more sophisticated infeasible subsets,
we also might deduct reductions of the maintained history tree and thus
drop boxes earlier (see Section 4.6.1).

5.3 Summary
The goal of this thesis was to develop a module for the SMT-RAT toolbox, which
uses ICP as a mechanism to efficiently reduce search boxes for given QFNRA
formulas.
We presented an SMT-RAT module, which combines ICP and an LRA solver
module to achieve the mentioned goal. In this context, we introduced general
background knowledge about SMT-RAT and the SMT solving procedure. We
presented the existential fragment of nonlinear real arithmetic, which is the
underlying logic for the input formulas. Furthermore, we outlined the needed
information about interval arithmetic, which is crucial to perform the ICP al-
gorithm.
We showed the general structure of the designed module as well as technical
details concerning the single parts it contains. We sketched the preprocessing
of the input formula to separate linear and nonlinear constraints. We showed
how the interval contraction works in the ICP algorithm and provided a proof
of its validity. The splitting as a mechanism, which helps to reduce intervals
where simple contraction does not show progress, was shown after the contrac-
tion. In combination with the splitting, the history tree was introduced to store
the solver states resulting from the splits. We showed a lightweight validation
procedure to validate possible solution candidate boxes before passing them to
the backend.
We gave ideas for optimizations for most of the parts of the presented module.
At last we used a small example to present the correct functioning of the module
and to visualize the progress during the decision process of the created module.
We thereby also sketched the influence of the target diameter of the solution
candidate boxes on the behavior of the module.
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