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Abstract

Satisfiability modulo theory (SMT) solvers exist for various theories of first-order
logic, whereas the theory of quantifier-free nonlinear real arithmetic (QFNRA)
problems is quite unexplored. Corresponding state-of-the-art SMT solvers are
still actively developed in order to achieve further efficiency for their underlying
implemented methods.

SMT solvers are developed towards well-known problems, but seem to be-
have less sophisticated in unknown fields, especially those which have emerged
through practical issues. This downside can mostly be vanished, when rear-
ranging the utilization order of the used approaches. The strategy challenge
proposes combinations of them, which can flexibly and easily be defined by the
user in order to improve the efficiency of an SMT solver for new problem classes.

The SMT toolbox for real arithmetic, short SMT-RAT, allows the creation
of SMT solvers for QFNRA problems according to a user-defined strategy. This
thesis introduces an improved strategy approach for this toolbox and presents
a user-friendly GUI for creating them. The new approach entails the possibility
for the user to intend alternative combinations of solving procedures, depending
on dynamically determined conditions on the input. Furthermore, it is capable
to apply these procedures even in parallel, which can be considered as a novel
achievement in this field of research.
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Chapter 1

Introduction

In computer science, decision problems pose the question whether formulas from
a given logic are satisfiable or not, i.e., whether there exists a type-correct
assignment of values to variables of a formula such that the formula evaluates
to true. Algorithmic solutions to decision problems, called decision procedures,
are available for a variety of different logics. SAT solvers are highly efficient
tools implementing decision procedures for propositional logic. They are widely
used in both academia and industry, e.g., for the analysis of circuits. The
efficiency of SAT solvers enabled the technique of satisfiability modulo theories
(SMT ) solving. In this approach, quantifier-free first-order logic formulas over
some theories can be checked for satisfiability with the help of a SAT solver,
which handles the Boolean structure of the formula, in combination with a theory
solver, which checks consistency of constraints from the underlying theory. SMT
solvers for different logics like equality logic or linear real arithmetic are widely
used for, e.g., the analysis of programs or real-time systems.

In this thesis quantifier-free nonlinear real arithmetic (QFNRA or simply
NRA) is considered, for which a great number of solving procedures exist, such
as the cylindrical algebraic decomposition (CAD) method [6], Gröbner bases
[24], virtual substitution (VS) [23] or interval constraint propagation (ICP) [14].
The SMT solver Z3 [16], for instance, implements the CAD method, whereas
iSAT [15] is based on the incomplete ICP method. QEPCAD B [5] is a highly
tuned implementation of the CAD method without working in SMT fashion and
the REDLOG package [11] involves a fast combination of Gröbner bases, the
virtual substitution and CAD methods. The SMT solver CVC3 [3] can only
handle very few nonlinear instances by a simplification of the input formula to
the supported linear fragment of NRA. RAHD [20] combines different existing
implementations of some of the aforementioned methods in Maxima [19] by a
user-defined strategy to obtain a theory solver for NRA. However, these imple-
mentations and therefore the obtained theory solvers are not SMT-compliant,
which means that they support incrementality, backtracking and infeasible sub-
set generation. The satisfiability modulo theories-real arithmetic toolbox (SMT-
RAT) [7], which is subject of this thesis, can be utilized to build on the one
hand SMT solvers, which handle existential fragments of NRA and, on the
other hand, theory solvers to enable other SMT solvers to solve NRA problems.
It maintains several of the mentioned decision procedures for checking the sat-
isfiability of NRA formulas and simplifying methods, which can be composed
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in a strategy in order to exploit the advantage of their combined power.
As efficiency is one of the important aspects, which must be regarded when

designing SMT solvers, it is meaningful to compare different tool implementa-
tions by means of efficiency. Benchmarks, e.g. from SMT-LIB [2], are provided
for the purpose of comparing the efficiency of SMT solvers and to motivate their
further development. Unfortunately, such benchmarks have the negative side ef-
fect, that SMT solver implementations tend to be optimized for the well-known
problems of these benchmarks, but do not behave sophisticated enough for new
classes of problems, especially those which occur in practice, as stated in [9].
Interestingly, in many cases the implemented decision procedures and simplifier
methods of SMT solvers are sophisticated enough such that for a given prob-
lem instance often more efficient compositions can be found. For this reason, [9]
proposes the strategy challenge, which intends the user of an SMT solver to take
control over how to compose the different simplifying and solving approaches.

The strategy challenge motivated that the implementation of SMT-RAT
composes its decision procedures and simplifier methods in a user-defined way.
Moreover, it is also the key ingredient for the first part of this thesis, which
applies an enhancement of the already provided capabilities of SMT-RAT in
strategy building in order to allow further flexibility. Using the new strategy
approach, the user is enabled to define compositions containing alternative de-
cision procedures and simplifier methods, which can be invoked dynamically.
SMT solver tools, which allow the adaptation of the underlying composition
are for example RAHD and Z3, whereas the latter one fulfills the adaptation
through a great number of parameters, which is rather a less straight-forward
solution for the user. This thesis pursues a more receptive way by introducing a
graphical user interface (GUI), in its second part, in order to enable the creation
of strategies in an easy and self-explanatory manner, as proposed by [9].

To my knowledge, none of the state-of-the-art SMT solvers for NRA con-
tains parallel implementations. This is a remarkable fact, as virtually all mod-
ern computer architectures offer multiple CPU cores, which enable the ability
for multiprocessing and thereby additional hardware resources, which can be
exploited. This motivates the third part of this thesis, which applies a paral-
lelization approach on SMT-RAT in order to execute several decision procedures
and simplifier methods concurrently. This approach is designed to exploit the
new strategy component, as it allows to set several alternatives in one strategy,
which can be executed in parallel. In this way, it is guaranteed, that the most
efficient alternative is always involved in the solving process. As all simplify-
ing and solving approaches in SMT-RAT are implemented SMT-compliant, it is
ensured in the parallelization of SMT-RAT to support these features.

Structure of the thesis Chapter 2 introduces basic definitions about SMT
solving, which are required for the comprehension of the further course of the
thesis. The SMT-RAT application and the components of its framework are
presented in Chapter 3. The capabilities of the new strategy for SMT-RAT are
explained in Chapter 4, whereas the new GUI for creating such strategies is
presented in Chapter 5. Chapter 6 introduces the parallelization of SMT-RAT
in order to exploit the new strategy design. In Chapter 7 some experimental
results based on the aforementioned features are presented, while Chapter 8
motivates further goals for future releases of the toolbox.



Chapter 2

SMT solving for NRA

The problem of SMT solving covers the process of solving a decision problem
for SMT formulas. An SMT formula is a Boolean combination of constraints
from one or more theories of first-order logic. This thesis confines itself to the
theory of NRA and thereby on NRA formulas.

Definition 2.0.1 (NRA formula, direct subformula, degree of polynomial)
An NRA formula ϕ is a Boolean combination of (NRA theory) constraints c and
Boolean variables b. A constraint c is, w.l.o.g., a comparison of a polynomial
p with 0. A polynomial p can either be a combination of polynomials, using the
operators for addition, subtraction and multiplication, a real valued variable x
or a constant.

ϕ ::= (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ) | c | b
c ::= p = 0 | p < 0
p ::= p+ p | p− p | p ∗ p | x | 0 | 1

Let ϕ :=
∧n

i=0 ϕi, then ϕi is a direct subformula of ϕ (0 ≤ i ≤ n). Furthermore,
let p := Σn

i=0aiΠ
mi
j=0x

ei,j
j , then deg(p) := max({Σmi

j=0ei,j | 0 ≤ i ≤ n}) is the
degree of polynomial p.

The operators ‘>’,‘≤’, ‘≥’, ‘∨’, ‘⇒’, and so on are defined as syntactic sugar,
whereas the standard semantics for NRA formulas is used for all mentioned
operators.

An SMT solver decides whether a given formula is satisfiable or not. In
case of satisfiability, it provides a satisfying assignment for the formula. The
following presented definitions orientate towards [18].

Definition 2.0.2 (Assignment)
An assignment for an SMT formula ϕ is a function α, which maps the real
valued and Boolean variables of ϕ to elements of the domains of the reals R
and Booleans B, respectively. An assignment is full, if all variables of ϕ are
assigned, otherwise it is partial.

Definition 2.0.3 (Satisfiability)
An SMT formula ϕ is satisfiable, if there exists an assignment α for ϕ under
which ϕ evaluates to true, which is denoted by α � ϕ. It is unsatisfiable, if
there exists no such α for ϕ.
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When transforming or simplifying an NRA formula ϕ, it results in an equi-
satisfiable NRA formula ϕ′, which possibly contains more or less variables than
ϕ.

Definition 2.0.4 (Equisatisfiability)
Given two SMT formulas they are equisatisfiable if they are both satisfiable or
both unsatisfiable.

An example is Tseitin’s encoding [22], which transforms an arbitrary Boolean
combination to conjunctive normal form (CNF) by introducing linearly many
fresh Boolean variables. A formula is in CNF, if it is a conjunction of disjunc-
tions of literals. A literal is an atom or its negation, where an atom is either a
Boolean variable or a constraint. Furthermore, a formula is in negation normal
form (NNF), if a negation only appears in front of Boolean variables. This can
be achieved by using De Morgan’s laws

¬(x ∨ y) ≡ ¬x ∧ ¬y, ¬(x ∧ y) ≡ ¬x ∨ ¬y

and inverting a constraint, if a negation appears in front of it, by transforming
the relational symbol according to

= → 6=, 6= → =, > → ≤, ≤ → >, < → ≥, ≥ → < .

An SMT solver is able to solve SMT formulas of different underlying theories
by maintaining a Davis-Putnam-Logemann-Loveland-style (DPLL-style) [8] SAT
solver and decision procedures for each of the targeted theories. The input
formula is transformed into CNF and NNF, as mentioned before. In order to
decide the satisfiability of the resulting formula, it is abstracted to its Boolean
skeleton by replacing each of its constraints with a fresh propositional variable,
where either the value true or false can be assigned. The SMT solver exploits a
DPLL-style SAT solver in order to find satisfying assignments for the Boolean
skeleton. The assignment is then checked for consistency with the underlying
theory by utilizing an appropriate decision procedure. As the formula is in NNF,
only those constraints need to be checked, for which the corresponding Boolean
abstraction is assigned to true. This achieves a sophisticated way of deciding
the satisfiability of SMT formulas containing theories richer than propositional
logic. In this context a decision procedure implementation is also called a theory
solver in order to emphasize its usage for a given theory.

SMT solving can be distinguished by two main variants. In the full lazy
SMT solving approach, an SMT solver utilizes the implemented SAT solver in
order to find a full satisfying assignment for the Boolean abstraction of a given
SMT formula, which is then checked for consistency by the theory solver. In
case of consistency, the SMT formula is satisfiable. In case of inconsistency,
the SAT solver is required to create another full assignment. This process is
repeated until a consistent assignment can be found or until the SAT solver is
not able to create further assignments, which implies the unsatisfiability of the
given SMT formula.

In the less lazy SMT solving approach, which is depicted by Figure 2.1, a SAT
solver utilizes the theory solver to check the consistency of a partial assignment.
Partial assignments are built for each decision level according to [8]. As a partial
assignment is extended from one decision level to the next, the set of constraints
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SAT solver

theory solver
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(un)satisfiability

partial assignment

(in)consistency

Figure 2.1: The less lazy SMT solving approach.

to be checked is extended as well. For efficiency reasons it is significant, that
the theory solver is able to reuse results from its previous checks. This approach
is called incrementality. In case a checked assignment is consistent, the SAT
solver continues, otherwise, the theory solver provides infeasible subsets, which
are reasons for the inconsistency in form of a set of infeasible subsets of the
checked constraints. The SAT solver can utilize these sets in order to prevent
from getting into the same conflicts again. Choosing a new partial assignment
involves an adjustment of the Boolean assignment of the SAT solver, which
might undo decision levels. This means that some of the constraints, held by the
theory solver, must subsequently be removed. When removing these constraints,
the theory solver tries to keep as many of the still relevant results of the previous
check, which are referred to as the backtracking ability. The three mentioned
abilities, incrementality, backtracking and infeasible subset generation, make
theory solvers for less lazy SMT solving SMT-compliant.
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Chapter 3

SMT-RAT

The SMT-RAT application, as presented in [7], enables the development of cus-
tomized SMT solvers. The core of an SMT solver constructed with SMT-RAT
consists of implementations of transformations, simplifications and decision pro-
cedures for NRA formulas, which in the context of SMT-RAT are called mod-
ules. The toolbox offers a various range of modules and its modular framework
is designed in order to be extended by additional implementations. Further cus-
tomizations are achieved by utilizing user-defined compositions of the contained
modules. A composition specifies a set of modules and defines the way of their
interaction in order to complete an SMT solver. There exists a wide variety of
NRA problems, which ask for tailor-made solutions for efficient SMT solving.
Therefore essential concerns of SMT-RAT are to provide versatile and powerful
SMT-RAT modules and to allow their custom-made application. Furthermore,
a resulting solver is SMT-compliant, which gives the opportunity to embed it
as a theory solver into a DPLL-based SMT solver, although it can as well be
utilized as a standalone application.

The main components of the toolbox are the modules, a strategy and the
manager. Their designated usage is outlined in the following sections. When
mentioning SMT solvers in the following of this thesis, they refer to customized
SMT solvers created with the SMT-RAT application, unless stated otherwise.

3.1 Module

The development of the SMT-RAT application includes providing efficient SMT-
RAT modules for checking the consistency of NRA formulas. The different
module implementations apply different approaches in order to either check the
satisfiability of an NRA formula or to transform or simplify its underlying form.
The currently provided SMT-RAT modules are introduced at the end of this
section.

3.1.1 Module interfaces

When including an SMT-RAT module into an existing SMT solver, a key ingre-
dient for efficiency is that a theory solver implementation composed by SMT-
RAT modules is SMT-compliant. Besides that, the interaction of different mod-
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ule instances within any composition of SMT-RAT as well benefits from the
fact, that their interfaces are implemented according to the concepts of SMT-
compliance, as discussed in the previous chapter. The following interfaces are
defined for each SMT-RAT module:

check(formula ϕ): This method contains the respective consistency check im-
plementation of an SMT-RAT module for the given formula ϕ, which is
referred to as received formula. Note that the received formula is, w.l.o.g.,
a conjunction of formulas. When invoking the module, it checks for the
consistency of its received formula ϕ. The result can be of one of the
following three states: sat, if the formula is satisfiable, unsat for the
contrary case and unknown in case the implementation is not capable of
checking the satisfiability ϕ.

addFormula(formula ϕi): This method is utilized in order to fulfill the incre-
mentality aspect of SMT-compliance. This method is invoked in order to
append the direct subformula ϕi to the received formula ϕ of the module
(by conjunction).

removeFormula(formula ϕi): This method is the counterpart of the previ-
ously explained method as it is invoked to remove direct subformulas ϕi

from the received formula ϕ of the module. This method requires the
ability of backtracking.

getInfeasibleSubsets(): The aspect of retrieving infeasible subsets is ful-
filled by this method. In case a module detects the unsatisfiability of
its received formula ϕ, this method can be invoked to retrieve the corre-
sponding infeasible subsets. In SMT-RAT, infeasible subsets are returned
in form of a set of subsets of the set of direct subformulas ϕi.

3.1.2 Module implementations

The toolbox contains a set of SMT-RAT module implementations, which can
be extended with more implementations either by the user or by future releases
of SMT-RAT. Currently the toolbox provides the following modules.

CADModule The CADModule contains a complete procedure, which implements
the CAD method. The implementation can solve any conjunctions of con-
straints, but is often inefficient, especially when equations occur.

CNFerModule The implementation of the CNFerModule transforms a given
NRA formula into CNF using the aforementioned Tseitin’s encoding. The mod-
ule is then supposed to pass the result to a further module.

GroebnerModule The GroebnerModule employs Gröbner bases in order to de-
tect the unsatisfiability of equations, and under certain circumstances also in-
equations, of a given NRA formula. In case of being unsuccessful, it supports
the ability of invoking a further module on a simplified version of its received
formula.
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LRAModule The name LRAModule derives from the fact, that it implements the
Simplex method of [12], which tries to solve the linear real arithmetic (LRA)
fragment of an NRA formula. In case this module detects the satisfiability of this
LRA fragment, but the found assignment does not satisfy the NRA fragment of
the formula, it can exploit a further module implementation.

PreprocessingModule The PreprocessingModule is a general simplifier. It
as well implements a method to transform an NRA formula into CNF with some
additional preprocessing before and after the transformation. The preprocessing
of a formula includes also the weighting and thereby prioritizing of constraints
for a further invoked module.

SATModule It is meaningful to prefix the SATModule with the CNFerModule, as
it can only work on NRA formulas in CNF. The implementation transforms the
received formula internally into its Boolean abstraction, where each constraint
is replaced by a fresh Boolean variable. The result is solved with a DPLL-
style less lazy SAT solver [13] and every time it finishes a decision level, the
SATModule invokes a further module on the constraints corresponding to the
Boolean abstraction assigned to true.

SimplifierModule The SimplifierModule is a simplifier for constraint con-
junctions and bases on smart simplifications as proposed in [10]. As a simplifier
module it is supposed to forward the simplified received formula to a further
module.

VSModule The virtual substitution method is implemented in the VSModule.
The implementation searches for possible candidate solutions of the variables
of a given NRA formula, whereas only a finite number must be considered for
each constraint. The VS method cannot create any candidate solutions for
constraints, which have a variable degree greater than 2, but in such a case a
further module is invoked for support.

When referring to the term Modules in the following, the set of the aforemen-
tioned modules are meant.

3.2 Strategy

A composition of SMT-RAT modules is expressed by a strategy, which defines
a sequential call hierarchy among the intended modules. For this purpose, a
strategy needs to define

• the set of intended modules,

• which of the modules should be invoked as a further module in order to
continue the consistency check, and

• under which condition such an invocation can be permitted.

The structure of conditions is explained in the next subsection, whereas the
syntax and semantics for building strategies are presented afterwards.
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3.2.1 Conditions

Conditions make a strategy dynamic, which means, that the choice of the mod-
ule to solve a given formula bases on the formula itself. It is of great importance,
to have this possibility as it often highly depends on the structure and the con-
tents of the formula, which module might perform best to solve it. For instance,
it is senseless to invoke the LRAModule on an NRA formula, which does not
contain any LRA fragments. A condition consists of a Boolean combination of
propositions, which state demanded properties of NRA formulas. The set of all
possible conditions is denoted by Conditions. In case a formula satisfies a given
condition the corresponding module becomes available and can be invoked, oth-
erwise not. The SMT-RAT application provides several kinds of propositions:
There exist propositions, which can be used to describe properties of the Boolean
structure of an NRA formula, for example if a formula is in CNF, if it is a pure
conjunction, a clause, a literal or an atom, or if it contains Booleans. Further
propositions address the properties of the constraints contained in a given NRA
formula, for instance, if equations or (weak/strict) inequalities are contained.
At last, propositions can be related to the polynomials of the constraints, for
instance, whether they are linear, nonlinear, multivariate or of a degree less
than a certain bound.

3.2.2 Strategy scheme

The possibility of an SMT solver to utilize user-defined strategies of SMT-RAT
modules is one of its main distinctive features in comparison with the standard
DPLL-based SMT solver model, which does not use module compositions. It is
therefore interesting to explain how strategies can be built for SMT-RAT and
how a standard DPLL-based SMT solver can be constructed by an SMT solver
created with SMT-RAT. Before explaining the semantics of strategies by an
example, which constructs the standard DPLL-based SMT solver as introduced
in the last section, the syntax of a strategy is presented:

Definition 3.2.1 (Syntax of strategies)
A strategy s can be constructed with the following abstract grammar:

s ::= (c ? s : s) | m,

where c ∈ Conditions and m ∈Modules.

Such a strategy s1 := (c1 ? m1 : s2) is evaluated according to a given formula
ϕ by checking if ϕ satisfies condition c1. If the case is given, module m1 is used
to check the satisfiability of ϕ, otherwise it must be continued with strategy s2
and ϕ in the same manner. It must be stated, that even in case no condition of
a strategy holds, a module will still be determined at the end.

3.2.3 Strategy example constructing the standard DPLL-
based SMT solver model

Using the provided syntax, the standard DPLL-based SMT solver model can be
constructed with the following strategy:

(is conjunction ? CADModule : (is in cnf ? SATModule : CNFerModule))
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As can be seen by this example, a strategy consists of a list of pairs of a condition
and a module, whereas the last element of the list is just a module. When
processing a strategy, the list is traversed from outside to inside until one of the
conditions is satisfied by the given NRA formula. For the given example, this
means, that if, on the one hand, a given NRA formula is a conjunction, it can
directly be checked by the CADModule, as its implemented decision procedure
underlies a complete algorithm. If, on the other hand, an NRA formula is not
a conjunction and also not in CNF, it is processed by the last module, the
CNFerModule, because the last module is always applied in case no condition
is satisfied by the formula. After applying the CNFerModule, the formula can
be checked by the SATModule implementation, as the formula would then be
in CNF. After being processed by the SATModule the formula is received by
the CADModule, which can check the formula, as the SATModule asks for the
consistency of a conjunction of constraints.

The first objective of this thesis, describes the enhancement of the capabili-
ties of the strategy component and is presented in the next chapter.

3.3 Manager

SMT solvers designed with SMT-RAT are instances of a manager, which holds
all the aforementioned components together and also handles their interactions.
It maintains a frontend to receive NRA problems from the environment and to
return the results of the satisfiability check on this formula. This environment
could either be a user, who applies SMT-RAT on example files defining an
NRA formula, or another SMT solver. On the basis of the strategy the manager
decides whether a backend can be used by an invoking module or not. A backend
is as well a module, but its term emphasizes the relation to another module,
which can invoke this backend. Such a module-backend-relation is used, in case
a module is unable to apply a satisfiability check independently, because its
algorithm is incomplete for instance, or when its implementation intends the
transformation or simplification of a given NRA formula only. A module can
invoke backends by calling the interface runBackends(..), which is provided
by the manager.

runBackends(formula ϕ′): While checking a formula ϕ a module can utilize
a backend in order to ask for the satisfiability of a formula ϕ′, which
in this context is called passed formula. For this reason, the method
runBackends(..) is invoked on ϕ′, which is provided by the manager and
which is responsible for forwarding the communication to the backend. In
case no backend is intended by the given strategy it returns unknown. If a
backend is available, the manager invokes its interface check(..) on the
passed formula ϕ′, which becomes the received formula of that backend.
Afterwards the result is returned to the invoking module, which can then
use this result and continue checking ϕ. In case the result of checking ϕ′ is
unsatisfiable, the invoking module can use getInfeasibleSubsets() of
the backend for retrieving reasons, which can influence the further progress
of checking ϕ.

A more detailed description of the complete procedure, which as well inte-
grates the newly introduced strategy component of the next chapter, is given at
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the end of Chapter 6.



Chapter 4

Strategy graph

As mentioned before, SMT-RAT utilizes user-defined strategies, as proposed
by [9], to compose several single SMT-RAT modules of the toolbox into one
powerful SMT solver. Previous releases of SMT-RAT allow only the usage of
strategies, which pursue sequential executions of the composed modules. The
first task of this thesis covers the enhancement of the available capabilities of
the already implemented strategy component of SMT-RAT. This enhancement
should provide the opportunity to compose given SMT-RAT modules for se-
quential as well as for parallel executions.

This chapter begins by motivating the reason for renewing the existing strat-
egy component of SMT-RAT and by specifying the objectives for the enhance-
ment process.

4.1 Motivating parallel strategies

When creating solutions for solving SMT problems, efficiency is an important
aspect and, hence, the main motivation to develop strategies, which are addi-
tionally capable of guiding executions of composed modules in parallel. Up-
grading the existing strategy component of SMT-RAT with parallelism, gives
the potential for more flexible and more powerful module compositions.

Nowadays, processor manufacturers accelerate software executions rather by
offering multiple cores within one CPU than by increasing the clock rates of sin-
gle core processors. In order to be able to benefit from accelerations, software
engineers must also adapt their algorithms to multiprocessing. Preceding re-
leases of SMT-RAT can just build SMT solvers, which only exploit one single
CPU core. Thereby the toolbox dismisses valuable hardware resources, when be-
ing executed on computer architectures containing multiple cores. Introducing
parallel strategies in SMT-RAT is a first step to exploit more available resources
and to improve efficiency by the usage of parallelism.

The way how more available resources can be exploited emerges, when the
different properties of the SMT-RAT modules, which have been described in
the previous chapter, are considered. As different SMT-RAT modules underlie
different mathematical approaches, a perfect composition of them does not exist
in general. The efficiency of a composition also depends on the properties of
the presented NRA formulas, which should be checked for satisfiability. For
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instance, for certain kinds of formulas it makes sense to utilize a CADModule,
whereas in other cases, it might be more efficient to use a GroebnerModule. It
is also possible, that the best approach might be to use a composition, which
enables a GroebnerModule to invoke a CADModule as its backend, in case of
being unsuccessful. The choice of a module or composition of modules is a
critical aspect, which should be considered, when regarding efficiency. It is
desirable to dynamically choose the intended module or composition, which can
check a given formula most efficiently. Sequential hierarchies allow a module to
invoke a backend, but they cannot offer several backends to allow alternatives.
Parallel strategies improve this approach, as they enable modules to utilize a set
of alternative backends, which are supposed to be executed concurrently. An
NRA formula can thereby be checked with different mathematical approaches
simultaneously. This ensures, that the process of checking a given NRA formula
with the intended modules or compositions is performed in an optimal fashion,
as they are all involved in the process.

4.2 Objectives for enhancing the strategy com-
ponent

Before explaining the concept of the underlying structure of the new strategy
component, it should be clearly stated what the component must be capable of.

Module maintenance First of all, the component must be able to define,
which SMT-RAT modules can be utilized. This involves maintenance of
their corresponding module instances and conditions. In the case of the
new strategy component, several SMT-RAT modules of the same type can
be used within one SMT solver, which is the reason for keeping instances
of modules and not modules. As mentioned before, an SMT-RAT module
requires a condition in order to decide, whether it is useful to invoke it as
a backend of another module.

Module-backend-relations Moreover, it must be possible to save directed
relations of pairs of the maintained module instances to point out their
intended call hierarchy in a composition of module instances. This means,
that these relations represent the module-backend-relations of the com-
posed module instances in the strategy. The component must be enabled
to manage either sequential, parallel or combined strategies. A sequential
strategy allows no selection of alternative backends for any of the module
instances in a composition. Only a single or no backend at all can be
assigned to each module instance. A parallel strategy does offer alterna-
tive backends at intended points in the strategy. When using the term
combined strategy, it emphasizes the fact, that a given strategy contains
sequential as well as parallel parts.

Prioritized backend executions In case a parallel strategy is used, sets of
backends are assigned to certain module instances. A parallel working
SMT solver is supposed to execute all backends of such a set concurrently.
Furthermore, several currently executed module instances of the strategy
might invoke their backends concurrently. The SMT solver should then
execute all backends of all invoked sets in parallel. When executing several
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backends concurrently, the occasion might arise, that not enough hardware
resources are available to process all backends efficiently in parallel. The
reason for this case is outlined in Chapter 6. The SMT solver must then
be enabled to decide over an execution order of all currently intended
backends, as it can only process subsets of them successively. The new
strategy component therefore expands the set of module attributes by a
priority value, which allows to prioritize executions of any module instance
in the strategy after a predefined order.

Backend retrieval Besides the task of maintaining strategies, the renewed
strategy component must as well entail functionality. A method must
be provided, which returns the intended set of backends for any module
instance of the underlying composition. Moreover, this method must dy-
namically filter those backends, which are actually available for a current
NRA formula.

On the one hand, the above listed objectives present the requirements for the
enhanced strategy implementation. The manager, on the other hand, also re-
quires enhancements to enable concurrently running SMT-RAT modules. They
are described in Chapter 6, which examines how parallelization is implemented
inside SMT-RAT.

4.3 Grammar for strategy graphs

The preexisting strategy component is replaced by a new component named
strategy graph. Its name highlights its underlying concept of using graph struc-
tures, as it will be fully explained later in this chapter. The term strategy graph
is from now on synonymously used for strategies, which are capable of main-
taining sequential, parallel and combined compositions. The plain term strategy
is then again used as a general term for any type of strategy. Derivations of the
following introduced Grammar SG are abstractions of the internally maintained
compositions of strategy graph instances.

Definition 4.3.1 (Grammar SG for strategy graphs)
Abstract strategy graphs derive from the formal Grammar

SG = (N,Σ, R,G),

whereas the nonterminal symbols are given by the set

N = {G,G′, P, S,B,C,M},

and the terminal symbols are denoted by the set

Σ = L(C) ∪
{start[0], ., /, (, ), [, ],⇒, i} ∪
{cad, cnf, groebner, lra
prepro, sat, simplifier, vs},

which is the union of the language of conditions, which will be introduced later
by Grammar C of Chapter 5, the set of auxiliary terminal symbols and the set
of all currently available SMT-RAT modules. G ∈ N is the start symbol and the
production rules are denoted by the set R, which are as follows:
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G → start[0].G′

G′ → P | S
P → (S/G′)

S → B.G′ | B
B → C ⇒M[i]

C → start symbol of Grammar C, see Definition 5.3.1
M → cad | cnf | groebner | prepro |

lra | sat | simplifier | vs

The grammar uses the placeholder variable i, where i ∈ N is a unique
priority value within the strategy graph. For a given sub-strategy graph C ⇒
M[in].G

′ it holds, that minPriority(G′) > in, with minPriority(G′) being
the minimum of all priorities appearing in sub-strategy graph G′.

4.3.1 Semantics of strategy graphs

For a better comprehension of the grammar the semantics of the terminal and
nonterminal symbols is explained. The letters of the nonterminals are standing
for the following: G is the start symbol of the production rules and as strategy
graphs are derived it simply stands for graph. The nonterminal G′ is used to
derive sub-strategy graphs, which are subgraphs of a strategy graph. A subgraph
contains the same construction as a strategy graph derived from G, with the
exception of not possessing the Start module as its root. Subgraphs become
handy, when explaining the terminal symbols of the grammar or traversing
a strategy graph, which is for instance done by Algorithm 1. S furthermore
stands for sequential, P for parallel and B for backend. A backend or module
instance assembles from a condition, a type of module instance and a priority
value, symbolized by the nonterminals C, M and the placeholder variable i

respectively. As mentioned before, a condition is a Boolean combination of
propositions to demand properties of NRA formulas. No concrete production
rules for the related nonterminal C are given at this point, because conditions
are derived from Grammar C, whose description is deferred to Definition 5.3.1
of the next chapter.

Start module The terminal symbol ‘start[0]’ expresses the inevitable Start
module, which is the root of each strategy graph. It does not implement any
solving approach itself, but is utilized to receive the initial NRA formula of a
given NRA problem. Its task is to forward the initial NRA formula to the initial
module instances of a strategy graph. Maintaining the initial module instances
as backends of the Start module has the advantage of enabling the usage of
parallel subgraphs at the direct beginning of a strategy graph, which can then
be invoked concurrently.

Sequential operator The sequential operator is denoted by the terminal
symbol ‘.’ and outlines a sequential call hierarchy of module instances. Having
the sub-strategy graph G1 := TRUE⇒M1[1].TRUE⇒M2[2].TRUE⇒M3[3],
where M1, M2 and M3 are module instances and TRUE denotes the condition,
that always holds. It means, that M3 is the one and only backend of M2, which
is the one and only backend of M1. If available, M1 can invoke M2 on its
passed formula, which then again can invoke M3 on its passed formula as well.
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There are no backends intended for M3 in this strategy. When the sequential
operator is used, all invocations are intended to be executed sequentially one
after the other. The sequential operator can also be utilized to indicate se-
quential call hierarchies of subgraphs. The module instances M2 and M3 can
be composed into the subgraph G2 := M2.M3 and the above stated strategy
can then be changed into M1.G2. It outlines that all module instances of the
subgraph G2 are executed after module instance M1. The sequential operator
is right-associative, which means that the sub-strategy graph G1 is interpreted
as TRUE⇒M1[1].(TRUE⇒M2[2].TRUE⇒M3[3]).

Parallel operator The terminal symbol ‘/’ represents the parallel operator,
which outlines a parallel call hierarchy of invocable backends or subgraphs of
a module instance. The sub-strategy graph G1 := TRUE ⇒ M1[1].(TRUE ⇒
M2[2]/TRUE ⇒ M3[3]) expresses, that the module instances M2 and M3 are
both backends of the module instance M1. If both are available, M1 can call
them on its passed formula, which is then supposed to be executed in both of
them in parallel. In order to ease the algorithmic processing of a strategy graph,
the parallel operator is binary. This is realized by the usage of the terminal
symbols ‘(’ and ‘)’ for each pair of backends or subgraphs, which should be
executed in parallel. A set of three backends for M1 is expressed by the subgraph
G1 := TRUE ⇒ M1[1].(TRUE ⇒ M2[2]/(TRUE ⇒ M3[3]/TRUE ⇒ M4 [4])),
where M4 is a module instance as well.

Types of module instances The grammar contains several terminal sym-
bols, for example cad or lra, for each type of the currently implemented SMT-
RAT modules of the toolbox. This set of terminal symbols can vary between
releases of the toolbox and the user of SMT-RAT is as well enabled to integrate
own module implementations to achieve desired customizations. This becomes
again important, when discussing the implementation of the GUI in Chapter 5.
Note again, that if the same module occurs at different positions of the strategy,
it refers to different instances of this module.

Priority values The terminal symbols of priority values are expressed by
the placeholder variable i. As said, priority values are utilized to indicate the
order of intended module instance executions, in case hardware resources are
not sufficiently available. Chapter 6 is reserved to explain further details. The
lower a priority value, the higher the priority of a module instance. The sub-
strategy graph G1 := TRUE ⇒ M1.(TRUE ⇒ cad[1]/TRUE ⇒ vs[2]) is given
as an example. In case resources remain only for the concurrent execution of
one further module instance, the module instance of type cad will be executed
first. After its execution or after sufficient hardware resources become available
again, the execution of the module instance of type vs will be initialized, because
it has the next highest priority. Moreover, it might be the case, that several
concurrently executed module instances are invoking their sets of backends. The
execution order of all backends of all the sets must then be prioritized. For this
purpose, the priority values must be unique throughout a whole strategy graph.

As the priority values denote the execution order of module instances, the
Start module, as the root of all strategy graphs, has the highest priority, which
is denoted by the lowest priority value 0. Moreover, Definition 4.3.1 constitutes,
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that priority values must have an ascending order, when the sequential opera-
tor is used. This is meaningful, as module instances will never invoke module
instances, which are predecessors of themselves. Furthermore, the later intro-
duced GUI implementation displays all priority values together with all module
instances and the user can thereby easily follow the execution flow of a strategy
graph. In the strategy graph G1.G2, all priority values of G2 must be higher
than those of G1. When the parallel operator is used, the order of the priority
values of the subgraphs are independent from each other. In the strategy graph
G1.(G2/G3), the contained priority values of subgraph G2 are ordered com-
pletely independent of the priority values of subgraph G3 and vice versa. As
both subgraphs are supposed to be executed concurrently, this allows to alter-
nate the execution of module instances in both subgraphs, in case not sufficient
hardware resources are present to execute all module instances of both parallel
subgraphs concurrently. It must not be dismissed, that the priority values of
both subgraphs must still be higher than those of subgraph G1, as they are
executed afterwards and the sequential operator is used.

Auxiliary terminal symbols The grammar includes some auxiliary terminal
symbols, which are not necessarily required to fulfill the tasks of the grammar,
but which improve the readability of the derivations and the later introduced
algorithms.

• The terminal symbol ‘⇒’ outlines the execution of a module instance. An
example would be C1 ⇒ M1[5]. If the condition C1 evaluates to true
for a given NRA formula, the manager forwards the passed formula to a
module instance of type M1, which is then executed with a priority of 5.

• A pair of an opening square bracket ‘[’ and a closing square bracket ‘]’ is
used to clutch and thereby mark priority values within the derivation.

4.4 Strategy graph examples

A few practical examples are presented in the following to explain the way
how strategy graphs can be derived from the Grammar SG. For simplicity, all
examples contain only the already introduced condition ‘TRUE’.

A strategy graph, which intends the usage of only a single SMT-RAT module
can be meaningful, when just one complete decision algorithm should be used,
as can be seen in the first example.

Example 4.4.1 (Strategy graph with one SMT-RAT module)
An example for a strategy graph, which contains one single module instance
would be:

w1 = start[0].TRUE⇒ cad[1]

The next example shows how an instance of the new strategy graph compo-
nent can maintain a sequential call hierarchy of several SMT-RAT modules, as
it was already possible with the preceding strategy component. This allows to
exploit the power of several mathematical solving and simplification approaches.
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Example 4.4.2 (Sequential strategy graph)
An example of how SMT-RAT modules can be composed for a sequential execu-
tion order would be:

w2 = start[0].TRUE⇒ lra[1].TRUE⇒
groebner[2].TRUE⇒ vs[3].TRUE⇒ cad[4]

The new capability of the strategy graph component of building parallel
strategies is presented in the next example. As explained, a parallel strategy
enables an SMT solver to follow up several approaches for a single NRA problem
simultaneously.

Example 4.4.3 (Parallel strategy graph)
This example illustrates how a strategy graph can assemble several SMT-RAT
modules for a parallel execution:

w3 = start[0].(TRUE⇒ groebner[1]/(TRUE⇒ cad[2]/TRUE⇒ vs[3]))

A combined strategy graph allows the most flexibility, as both approaches
of sequential and parallel hierarchies can be exploited. It allows to build several
sequential hierarchies of SMT-RAT modules, which can be invoked in parallel
and can then again split into several further sequential hierarchies, and so on.

Example 4.4.4 (Combined strategy graph)
A more complex strategy graph combining sequentiality and parallelism could be:

w4 = start[0].(TRUE⇒ cad[1]/(TRUE⇒ prepro[2].TRUE⇒ sat[3].

(TRUE⇒ cad[4]/TRUE⇒ vs[9])/TRUE⇒ lra[5].TRUE⇒ groebner[6].

TRUE⇒ vs[7].(TRUE⇒ groebner[8]/TRUE⇒ cad[10])))

The last example again emphasizes, that priority values of parallel subgraphs
can be distributed independently from each other. This is useful in order to allow
a switching of the execution of module instances in different subgraphs, in case
no sufficient hardware resources are available, as it was stated in the previous
section.

4.5 Concept and capabilities of the grammar for
strategy graphs

The strategy graph w4 of Example 4.4.4 contains a manageable number of only
ten module instances, but is already complex to overlook. A graphical illus-
tration of the strategy graph, which can be seen in Figure 4.1, counters this
problem. It reveals the underlying concept of the strategy graph component
and why it actually deserves its name: Its structure is an acyclic, directed and
weakly connected graph, where in a weakly connected graph each node can
be reached from every other node, when changing the directed into undirected
edges. Moreover, this graph is actually a tree, but the component keeps its
name for future planned applications. Chapter 8 proposes a purpose for the
usage of cyclic graphs. The concept of a graph has been chosen, as it can easily
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start[0]

TRUE ⇒ cad[1] TRUE ⇒ prepro[2]

TRUE ⇒ sat[3]

TRUE ⇒ cad[4] TRUE ⇒ vs[9]

TRUE ⇒ lra[5]

TRUE ⇒ groebner[6]

TRUE ⇒ vs[7]

TRUE ⇒ groebner[8] TRUE ⇒ cad[10]

Figure 4.1: A graphic illustration of strategy graph w4 of Example 4.4.4.

be utilized to express relations among nodes. Within the graph structure of a
strategy graph, the nodes are module instances. An instance of a strategy graph
stores a module instance by its set of attributes. As mentioned, such a set con-
tains the type of the module instance, the condition and the newly introduced
priority value. The attributes can easily be seen in the figure, when hiding the
auxiliary terminal symbols, which were ‘⇒’, ‘[’ and ‘]’. Directed edges between
module instances express their related module-backend-relations, the successor
being the backend. Thereby a graph is able to maintain a composition of module
instances, either a sequential, parallel or combined one.

It should be emphasized, that the strategy graph component applies a dif-
ferent way of invoking module instances than as it was done by the preceding
strategy scheme, which has been explained in subsection 3.2.2 of the previous
chapter. When an SMT solver utilizes a strategy graph to invoke backends for a
module instance, it can invoke those backends, whose related conditions are sat-
isfied by the currently processed NRA formula. Backends, whose conditions are
not satisfied, are not invoked and no further actions are applied. For example,
it does not check a set of conditions to find one being satisfied by the formula
in order to invoke a different backend then, as it was done by the preceding
strategy component.

The more module instances are composed in one strategy graph, the more
the readability and comprehension of the corresponding derivation is impaired.
The reason is not an unsophisticated grammar, but the form of its representa-
tion. Whereas sequential strategies can still easily be read consecutively, parallel
strategy graphs split into subgraphs, which are scattered along the flat struc-
tures of their derivations. A graphic illustration of strategy graphs as presented
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in Figure 4.1 is much more receptive. The figure gives a clearly understandable
overview of the strategy graph and is self-explanatory. The second task of this
thesis, which Chapter 5 deals with, constitutes the creation of a GUI to build
customized strategy graphs. Preparing derivations in a graph form as in the
figure exposes an illustrative and apprehensible way for the user of this GUI.

4.6 Retrieving available backends

The strategy graph examples reveal, that most of the targeted objectives of
Section 4.2 have been accomplished already. Module instances, their attributes
and their relations can be stored by the usage of the underlying Grammar SG.
A function is still required, which an SMT solver can utilize to determine the set
of available backends for a given module instance, formula and strategy graph.
An implementation for such a function is introduced by Algorithm 1.

An SMT solver retrieves available backends of a module instance by invoking
the method getAvailableBackends(..), which requires three parameters. The
first parameter, denoted byG, is a strategy graph, which needs to be a derivation
of Grammar SG. The second parameter is the priority value p of the module
instance, whose available backends should be retrieved. Priority values are
unique within a strategy graph and this can be exploited when traversing a
strategy graph to search for a module instance. As described, the priority value
of the Start module is always 0. If p equals 0, the set of initial module instances
of the strategy graph are returned by method getAvailableBackends(..). The
last parameter is an NRA formula ϕ, which is checked against the conditions of
all backends of module instance p to filter only the available ones.

The procedure of the method getAvailableBackends(..) traverses the
passed strategy graph in order to find the position of the module instance,
whose backends should be retrieved. Once the position has been fixed, the
backends of the module instance are contained in the succeeding subgraph,
which is passed to the auxiliary method filterBackends(..). A set of pairs of
filtered backends and corresponding priority values is returned by the method
getAvailableBackends(..) to the manager. Traversing the graph is achieved
by checking the root of the passed strategy graph G. If the priority value of the
root does not match p, it means, that the desired module instance is not in the
root, which can be dismissed. The search is then continued by recursively calling
the method on maybe several subgraphs, whose roots contain the backends of
the just dismissed module instance. While traversing a strategy graph, the
appearance of the top-level of its currently checked subgraphs alternates and
the method distinguishes four different kinds:

1. The root is the Start module, which is denoted by start[0].Gsub, as can
be seen in Line 1. If the priority value p equals 0, the set of available initial
module instances of the strategy graph G must be returned with help of
the method filterBackends(..). Otherwise the search is continued in
the subgraph Gsub.

2. The input graph is sequentially composed at the top-level, which is de-
scribed by C ⇒ M[i].Gsub in Line 7. If the priority value i of the first
module instance equals p, the searched module instance is found and its
backends must be returned. If p is greater than i, the search is continued
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in the subgraph by calling the method getAvailableBackends(..) on
Gsub. Otherwise p is less than i and the search can be stopped by return-
ing an empty set at this point. The desired module instance cannot be
contained in the remaining subgraph, as its contained priority values must
all be greater than p, as given by Definition 4.3.1. The algorithm reaches
this case, when traversing the different parallel subgraphs of a strategy
graph.

3. The input graph consists of a branch containing parallel subgraphs, as
it is outlined in Line 15 by (Gsub1/Gsub2). The search is independently
continued in the subgraphs and their results are joined afterwards as it
can be seen in Line 16. In Grammar SG the binary operator has been
defined for this case in order to enable a unique recognition of branches,
even if they contain more than two parallel subgraphs. Further parallel
subgraphs are then contained in Gsub2 .

4. Only one module instance remains in the graph. In this case, it does not
have any backends and thus an empty set is returned.

As an auxiliary method, filterBackends(..) has the task to collect and
return all module instances, which are stated at the top-level of a passed sub-
strategy graph G, as they are the backends of the module instance, which has
been found with method getAvailableBackends(..). The availability of these
backends is given in case their conditions are satisfied by the formula ϕ. The
procedure of the method filterBackends(..) is similar as above. It also
recursively traverses the passed graph to collect the backends and must therefore
as well distinguish different types of the traversed subgraphs, as they are outlined
above.

1. The input graph is sequentially composed at the top level and the root is
a desired backend, which must be checked for availability, as can be seen
in the Lines 1 and 2.

2. The input graph consists of a branch containing parallel subgraphs. The
procedure is independently continued in both subgraphs, because the root
of each subgraph contains a backend. Afterwards the union of both results
is returned. This is described in the Lines 3 and 4.

3. Only one module instance remains in the graph. It must be checked
whether ϕ satisfies its condition C or not. If it does, the backend is
available and can be returned. This is outlined by the Lines 5 to 7. If not,
the empty set is returned.
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Algorithm 1 Algorithm to retrieve the set of all available backends for a given
strategy graph G, a module instance, denoted by its priority value p, and an
NRA formula ϕ.

backends getAvailableBackends(graph G, priority p, formula ϕ)
begin

if G = start[0].Gsub then (1)

if p = 0 then (2)

return filterBackends(Gsub, ϕ); (3)

else \\ p > 0 (4)

return getAvailableBackends(Gsub, p, ϕ); (5)

end if (6)

else if G = C ⇒ M[i].Gsub then (7)

if p = i then (8)

return filterBackends(Gsub, ϕ); (9)

else if p > i then (10)

return getAvailableBackends(Gsub, p, ϕ); (11)

else (12)

return ∅; (13)

end if (14)

else if G = (Gsub1/Gsub2) then (15)

return getAvailableBackends(Gsub1 , p, ϕ) ∪ (16)

getAvailableBackends(Gsub2 , p, ϕ);
else \\ G = C ⇒ M[i] (17)

return ∅; (18)

end if (19)

end

backends filterBackends(graph G, formula ϕ)
begin

if G = C ⇒ M[i].Gsub then (1)

return filterBackends(C ⇒ M[i], ϕ); (2)

else if G = (Gsub1/Gsub2) then (3)

return filterBackends(Gsub1 , ϕ) ∪ filterBackends(Gsub2 , ϕ); (4)

else \\ G = C ⇒ M[i] (5)

if C � ϕ then (6)

return {M}; (7)

else (8)

return ∅; (9)

end if (10)

end if (11)

end
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Chapter 5

SMT-XRAT

The previous chapter dealt with the development of the parallel strategy graph
component of SMT-RAT. The creation of a GUI in order to facilitate the build-
ing and management of customized strategy graph instances constitutes the
second task of this thesis.

Preceding releases of the toolbox already contain a GUI created to build
up sequential strategies. Unfortunately this first approach is not very self-
explanatory and the usability for novice is rather low. A new GUI pursuing a
different approach by introducing an entirely fresh design overcomes this draw-
back and eases the usage in case the user is inexperienced. Besides improved
user-friendliness, it offers the opportunity to build up the aforementioned strat-
egy graphs. The GUI is contained in SMT-RAT, which can be downloaded
at [21].

Before presenting the novel GUI implementation and its main features, this
chapter starts by motivating reasons for constructing a new GUI and collects
important objectives which must be attained by it.

5.1 Motivating a new GUI design for building
strategy graphs

The user utilizes SMT-RAT to create tailor-made SMT solvers. It must be em-
phasized that SMT-RAT is mainly a toolbox to construct SMT solvers. With-
out an underlying strategy graph instance an SMT solver is not complete. Even
though releases may contain suitable default strategies, the user is motivated
to assemble the integrated SMT-RAT modules to create SMT solvers. As men-
tioned before, this user-guided creation and customization of SMT solvers is an
essential feature, as stated in [9], and thereby plays an important role.

A composition of SMT-RAT modules, i.e. an instance of the strategy graph
component, must be present and compiled together with SMT-RAT to obtain
the desired SMT solver. In case the user wants to change a composition sub-
sequently, the source code of the corresponding strategy graph instance has to
be adjusted. SMT-RAT then needs to be repeatedly compiled. Maintaining
strategies as source code keeps SMT solvers compact and more efficient.

The question that arises is how SMT-RAT should enable the user to build
and manage strategy graphs. Obviously, it is not an elegant solution to force the
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user to grapple with the source code of SMT-RAT. At least, it should not be the
only way to handle strategies. An easy and more user-friendly solution would
be to let the user author more abstract strategy graphs than given by plain
source code. Strategies could be written down as derivations of Grammar SG
of the previous chapter, for instance. A tool could then translate and integrate
them into the source code automatically. This rather primitive approach is not
sufficient to provide a good user experience. Although this solution diminishes
the effort of the user, because it undertakes the source code integration at least,
the user still needs time to understand the grammar and derive strategies from
it. As could be seen in Example 4.4.4 of the previous chapter, derivations of even
small strategy graphs are getting quite long and complex and lack of readability.

Even though SMT-RAT releases may contain suitable default strategies,
they might not be suited for all kind of NRA problems. Different scopes of
application need different solving approaches. Hence, the user needs to tailor
an own strategy for a given problem to exploit the full power of an SMT solver.
Workload by the user can therefore not be avoided completely, but the burden
should be minimized. A GUI, which represents strategies in a graph style as in
Figure 4.1 and which can thereby be operated intuitively, has the potential to
achieve this. It would disencumber the user from the requirement to understand
a grammar or to study needed parts of the source code. It could thereby allow
a quick start for building and managing strategies.

Guidances and objectives, which influenced the design of the following pre-
sented GUI, are introduced in the upcoming section.

5.2 Guidances and objectives for the design of
SMT-XRAT

When creating a GUI, usability should always be considered. Usability suggests
that an application should be easy to use and to a high degree self-explanatory,
to allow a fast understanding at the side of the user. This concept is important
for designing a GUI and should be applied as much as possible. In case the
GUI can be operated intuitively and the user is inexperienced, it helps to catch
the attention of the user, who can quickly start by trying to create and manage
strategies. This is important to keep SMT-RAT attractive among other com-
petitive tools without the preliminary actions of building strategies. Besides the
usability, the overlapping concept of user experience should be kept in mind.
Whereas the first concept addresses more the pragmatic aspects, the user ex-
perience concentrates on the emotions and responses of the user related to the
utilized application.

Besides these general advices, concrete aspects related to SMT-RAT have
to be considered as well. As the GUI is utilized to create user-defined strategy
graphs, it must of course enable the user to input all required data. It must
also consider constraints for the inputted data, for example all priority values
must be distinct, as stated in Chapter 4. Furthermore the GUI should give the
opportunity to build sequential, parallel and combined strategies as it is also
proposed in the preceding chapter.

As in the case of the first GUI approach, the new GUI must be a standalone
program, which can be used apart of SMT-RAT. This leaves the toolbox applica-
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tion with its actual intended purposes. Furthermore the experienced user might
as well want to create strategy graphs by changing the source code directly.
Then a GUI application is not required.

5.3 Overview of SMT-XRAT

The presented GUI is called SMT-XRAT. The GUI possesses an own name to
highlight, that it is a standalone program apart of the actual toolbox. The name
simply derives from SMT-RAT and adds the letter ‘X’ to symbolize, that it is
a graphical window application, whereas the toolbox is operated in the console.

The following subsections are used to give an overview of SMT-XRAT and to
introduce its functionalities. Besides the required features, additional features
are stated, which have been implemented to gain a higher degree of usability
and user experience. These features help to prevent user frustrations, enable
fail-safe working and support the visual creation and manipulation process of
strategy graphs.

5.3.1 Concept

The underlying concept of SMT-XRAT is the user-guided, visual modeling of
module compositions in form of graphs and their mapping onto their corre-
sponding source code for SMT-RAT. A modeled graph expresses an intended
strategy graph of the user. Both can easily be projected on each other, because
the data structure of a strategy graph also describes a graph structure, as ex-
plained in the previous chapter. A mapping considers not only the modeled
hierarchy of the SMT-RAT modules, but also their attributes. Furthermore the
GUI complies the constraints of these attributes during the modeling process,
for example priority values are required to be unique.

The user benefits from that concept, because strategy graphs can be created
and manipulated completely independent of SMT-RAT. No knowledge of the
inner data structure of strategy graphs and no knowledge about their corre-
sponding source code is required by the user. The GUI does not only support
the visual creation of strategy graphs and their translation into source code,
but also enables the user to integrate the translated source code into SMT-RAT
or, if necessary, delete it subsequently. The conclusive work only involves a
recompilation of SMT-RAT with the desired strategy graph instance to obtain
a customized SMT solver.

SMT-XRAT has been implemented with the programming language Java. It
embeds the freely available Java Universal Network/Graph Framework (JUNG)
[17], which fulfills the main demands of the underlying concept, as it allows to
model and visualize data, which can be represented as a graph. The JUNG
library helped to reduce the basic workload of the GUI creation enormously.
Even though, a lot of effort still remained in adjusting its classes to fit for
SMT-XRAT.

5.3.2 Main window structure

The main window structure of the SMT-XRAT application can be seen in Figure
5.1. It principally consists only of one large pane, which is called strategy graph
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Figure 5.1: The main window of the SMT-XRAT application in its initial state.

pane. This pane embodies the workspace of the user and visualizes the composi-
tion of SMT-RAT modules, which are currently modeled. Only a comparatively
small area is occupied by a compact menu bar, which offers further necessary
or practical functionalities, but which need no visualizations, for instance the
exportation of a strategy graph into SMT-RAT.

5.3.3 Strategy graph pane

The strategy graph pane is the focus point of the main window and occupies
nearly all of its area. It can hereby offer enough workspace to the user to model
strategy graphs without distractions. Modeled graphs are acyclic, directed and
weakly connected, right as they are needed for Grammar SG. Nodes represent
SMT-RAT modules and edges represent the call hierarchy of them. Both of the
element types are labeled to display all necessary and editable module attributes
within the visualization. Thereby the user is always able to keep a full overview
of the modeled strategy graph and its attributes. Moreover, the user can con-
tinuously be aware of the presented execution flow of the module composition.
Thus, SMT-XRAT nicely supports the user to visualize an imagined strategy
while mapping it onto a data structure in the same time.

Modeling strategy graphs on the pane implies the interactive operations of
adding, editing and deleting modules and also aligning elements, if desired by
the user.

Adding backends

An initial visualization of the pane contains the inevitable Start module of
an SMT solver, which displays no attributes, but marks the starting point for
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Figure 5.2: The small rectangles alongside the edges reveal the hidden condition
of a backend.

the user to create the desired strategy graph. The user can simply consider
the Start module as the frontend of an SMT solver where NRA problems are
passed to. Building up a composition of modules occurs by appending backends
to the Start module and then to the newly appended backends and so forth.
When appending a backend to a selected module, a dialog window requests
the operating user to input a condition and to choose the type of SMT-RAT
module for the new backend. The GUI provides a special input interface to
enter conditions, which is explained later. For each appended backend a new
node as well as a directed edge from the originating module to this new node is
drawn in the visualization. In this way, the graph gradually arises on the pane.
The added graph elements display the inputted data of a backend. A node is
labeled with its type of SMT-RAT module whereas an edge holds its condition
and an automatically assigned priority value. Initially this priority value is
always the total number of currently existing modules decreased by 1, as the
Start module is not counted. As inputted conditions might get quite long, they
cannot be directly seen on the strategy graph pane. Instead, a small rectangle
alongside the edge reveals them quickly on request. The user needs to point the
mouse cursor over a rectangle to obtain its corresponding tool tip text, which
shows the hidden condition, as can be seen in Figure 5.2. This leaves the graph
compact and helps to concentrate on the more essential aspect of modeling an
execution hierarchy. The user can choose to input an own condition or leave it
by the default value of ‘TRUE’, which, as described in the last chapter, means
that a condition is always satisfied. To point out better which modules contain
default conditions and which do not, the color of a rectangle containing a default
condition is green and otherwise orange. When looking at the strategy graph
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pane, the user is always capable to recognize the execution flow of the modules
by following the directed edges in the graph. The colored rectangles signalize
at which points of the hierarchy a passed formula must be checked against the
condition for an intended backend. This is a quite handy feature, when the user
wants to re-enact the solving of an SMT problem.

Grammar for conditions

When adding a module to the strategy graph pane, the user has to input a valid
condition for its intended use as backend. A valid condition is a derivation of
the formal Grammar C, which completes Grammar SG of Definition 4.3.1 of the
previous chapter. The grammar is concretely utilized by the GUI. A recursive
descent parser [1] has been implemented in the GUI, which applies exactly this
grammar.

Definition 5.3.1 (Grammar C for conditions)
Conditions are derived from the formal Grammar

C = (N,Σ, R, S).

The set of nonterminals is given by

N = {S, T,B,C,D, P},

whereas the set of terminal symbols

Σ = {(, ),¬,↔,⊕,→,∧,∨} ∪ {TRUE, p1, . . . , pn}

consists of the union of logical operators and propositions. S ∈ N is the start
symbol of the production rules denoted by the set R, which covers the following:

S → TRUE | T | C | D | TBT
T → P | ¬T | (C) | (D) | (TBT)
B → ↔ | ⊕ | →
C → C ∧ C | T
D → D ∨D | T
P → p1 | . . . | pn

The nonterminal symbols stay for the following: As said, S for the start sym-
bol of the production rules, T for term, B for binary operator, C for conjunction,
D for disjunction and P for proposition.

The terminals ‘¬’, ‘↔’, ‘⊕’, ‘→’, ‘∧’ and ‘∨’ represent their related logical
operators, which, in the context of conditions, are negation, equivalence, exclu-
sive or, implication, conjunction and disjunction respectively. Their semantics
is defined as usual. The terminal symbols ‘(’ and ‘)’ are used, in case several
different types of logical operators are utilized within one term. They point out
the precedences of the operators in the same way as it is known from mathe-
matical contexts. For example, for the term p1 ∨ p2 ∧ p3 it is unknown, which
of the logical operators has the higher precedence. Writing the same term with
parenthesis as p1 ∨ (p2 ∧ p3) clarifies, that the conjunction operator is of higher
precedence.

The propositions P = {p1, . . . , pn} are not concretely mentioned in the gram-
mar, as they have already exemplary been listed in Chapter 3 and numerous
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are available. Furthermore, the set of available propositions can vary among
releases of the toolbox, as well as the user can also define own propositions. For
this reason, the set of propositions is dynamically loaded from the SMT-RAT
source code each time the GUI is started. As mentioned in the previous chapter,
the set of SMT-RAT modules can vary as well. Therefore the list of available
SMT-RAT modules is also dynamically loaded. This allows to edit SMT-RAT
without editing the GUI additionally.

The grammar is constructed in such a manner, that the user working in
the context of SMT solving is naturally enabled to input conditions effortlessly,
although they must be derivable from the grammar. Therefore it can be assumed
that no additional workload arises.

Improved interface for inputting conditions

When adding backends to existing modules on the strategy graph pane, a dialog
window requests the user to input a desired condition, which must be derivable
from the above defined Grammar C. This dialog window is equipped with addi-
tional features to ease the input process for the user and to improve the usability.
A specialized text area is used for inputting conditions. Initially, it contains the
default proposition value ‘TRUE’. The window also contains a combo box, where
the user has the possibility to choose a proposition value from. A chosen propo-
sition value can then be copied to the current caret position of the text area.
Should the occasion arise that the user selects a part of an entered condition
beforehand, it is simply overwritten by the chosen proposition value. The user
can only input proposition values by using this combo box. Proposition values
cannot be typed into the text area directly. On the one side, this simply pre-
vents mistyping and, on the other side, the list of propositions might be changed
between releases of SMT-RAT, as stated above. The combo box informs the
user about all currently available propositions of the toolbox. In many cases it
will not be sufficient to use conditions, which contain just one single proposition.
When requiring a Boolean combination of conditions, the above stated logical
operators are needed. Although, the characters of the operators are generally
not present on a keyboard, they can just be typed into the specialized text area
of the dialog window. To input the conjunction operator ‘∧’, for instance, the
user simply needs to hit the key ‘c’ on the keyboard. Instead of the character
‘c’, the character ‘∧’ will then appear in the text area. The mapping between
the symbols, which express the given logical operators, and characters, which
are present on general keyboards, supports the readability and comprehension
of inputted terms and therefore achieves a better user experience.

In order to increase the user experience even further, the text area treats the
single characters of an inputted proposition value as a block, which cannot be
entered by the caret of the text area. This means, that if the caret is positioned
directly left of an inputted proposition value and the user navigates the caret to
the right, it will jump to the position directly right of the proposition. The caret
will never appear between the characters of a single proposition value. This is
the analogous case for selecting and deleting proposition values. All characters
of a proposition value are always selected, deselected or deleted at once. This
allows a faster and more comfortable navigation and editing.

The text area allows to copy and paste conditions or parts of it. Text, which
should be pasted into the text area, is checked to guarantee, that it only contains
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Figure 5.3: A wrong condition has been inputted by the user.

allowed values. Otherwise it will be refused. Allowed values cover proposition
values, the characters used to express logical operators and parenthesis.

When the user confirms the dialog window, the implemented recursive de-
scent parser of SMT-XRAT checks, whether the inputted condition is a valid
derivation of Grammar C or not. In case it is not, the user will be returned to
the dialog window to re-edit the condition, as can be seen in Figure 5.3. Oth-
erwise the inputted condition is adopted for the backend. This fail-safe method
of inputting conditions saves frustrations on the side of the user. A mistake
is better pointed out at this stage than at the time of exporting the strategy
graph or even when compiling the resulting SMT solver. The user is promptly
informed about an error and is directly enabled to correct it.

Manipulating the strategy graph

Besides the capability of adding modules, the strategy graph pane gives the user
also the possibility to remove and edit them subsequently.

The deletion of a single module implicates that all of its succeeding modules
in the composition hierarchy will be removed as well. The strategy graph pane
is only allowed to contain one single weakly connected graph. Furthermore,
when deleting one or implicitly more modules, the priority values of all remain-
ing modules might automatically be adjusted to comply the constraints of the
priority values. However, the logical priority order remains untouched.

When editing modules, the same dialog window is displayed as for adding
modules. The window components are already filled in with the attributes of
the corresponding module. However, priority values are not manipulated via
this dialog window. As said before, priority values are automatically assigned,
when a module is created, and they are displayed alongside the edges. The
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Figure 5.4: Priority values before changes are set.

user can manually change the priority order by pushing the priority value of a
lower prioritized module in front of the priority value of a higher prioritized one.
The user achieves this by using the mouse pointer to draw a dashed arrow from
the edge label of that lower prioritized module to the edge label of the higher
prioritized module, as it is illustrated by Figure 5.4. Afterwards the lower
prioritized module will have a higher priority than the other one. The priority
values of the modules might just be swapped. If this is not possible, the priority
values of the modules and of their preceding modules are adjusted automatically,
so that as a result, the newly prioritized module will be ordered logically before
the other one. The adaptation of the priority values is emphasized by Figure
5.5. This mechanism has been implemented not only to offer a fast way of
subsequently changing priority values, but also to picture the actions of the
user even more.

Moving graph elements

As mentioned before, the user can utilize the mouse to position graph elements
freely on the strategy graph pane. Either a single element or a whole group of
elements can be moved at once. This feature allows to arrange graph elements
after the imagination of the user. For instance, a tree graph can be modeled,
where the root node is in the middle of the top and the leaves are distributed
at the bottom, as it is done in the graphic illustration of Figure 4.1 of the last
chapter. The user could also move the Start module to the center of the pane
and position its subgraphs into the corners.

Moving graph elements makes the process of the strategy building more
tangibly. Additionally, it is playful and invites a novice user to dwell on the
strategy graph creation and keeps the attention.
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Figure 5.5: Intentionally changed and automatically adapted priority values.

5.3.4 Further functionalities

Further features of the GUI are reached through the menu bar. These features
need no visualizations and can be performed via simple dialog windows.

The most important and also necessary functionality is the management of
strategy graphs inside the SMT-RAT source code. It is not sufficient to design
a strategy graph on the pane. Its underlying data structure also needs to be
translated into source code, which must then be integrated into SMT-RAT. To
export a currently modeled strategy graph, the user simply needs to open the
corresponding dialog window and choose a name, Figure 5.6 shows an example
for exporting the current strategy graph and naming it SMT XRAT. The GUI
will then fulfill the translation and integration process. The same dialog window
also lists all existing strategy graphs, which are currently integrated in the source
code, and gives the opportunity to delete them separately. This can be seen for
the existing strategy graph NRATSolver of the example.

The remaining features hold by the menu bar are not mandatory, but im-
prove the creation process and usability. For example, the GUI allows the user
to save the current strategy graph into an XML file. This file can then be opened
again for later editing or it can be exchanged with another user. Another prac-
tical feature is the ability to save a screen shot of the strategy graph pane into
an image file. Such image files can be used to discuss strategy graphs, when it
is not desired to run the GUI. For this purpose, it could be attached into an
email or included into a presentation, for instance.
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Figure 5.6: Managing SMT solvers in the SMT-RAT source code.
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Chapter 6

Parallelization of SMT-RAT

The thesis brought forward the new strategy graph component allowing the
possibility to store parallel strategies. Furthermore a GUI, which allows the
user to create and manage such strategies intuitively has been presented. The
fulfillment of the third and last task of this thesis is supposed to complete
this work. The task covers the adaptation of SMT-RAT as, at this point, it
is only capable of utilizing one single CPU core, which means, that it even
processes parallel strategies sequentially. A final step must enable the utilization
of multiple CPU cores to process composed SMT-RAT modules concurrently.

When implementing concurrent applications, different kinds of approaches
are required which also entail new types of problems. This chapter therefore
starts by introducing some specific aspects of parallel programming, compiled
from [25], which have been considered before adapting SMT-RAT. Afterwards,
the implementation of the parallelization approach is examined.

6.1 Aspects of parallel programming

Modern computer architectures offer operating systems the ability of multipro-
cessing. This means, that multiple CPU cores are available to execute several
processes concurrently. One core can serve only one process at once, hence,
applications can benefit from multiprocessing in case several are executed si-
multaneously. Application executions are thereby accelerated, because more
total CPU time is available for each process. A lonely executed application
itself cannot directly take advantage from multiprocessing, when it is running
sequentially. Its program parts must be distributed among available CPU cores.
Mostly, it is not worthwhile to split applications into several processes. Main-
taining applications, which consist of several processes is complex and interpro-
cess communication is required and that can become very costly. Instead, it is
better to apply the concept of multithreading and allow a process the control of
a set of threads, which overtake parts of the program procedure. They can then
be distributed among available CPU cores in order to fulfill tasks concurrently.
As threads share the same process memory, its management is less complex
and its communication is less expensive. By introducing this concept, a solely
running process can as well benefit from multiprocessing. Furthermore, it can
also take advantage of unoccupied CPU cores, even if several applications are
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executed simultaneously.
In case an application wants to exploit the concept of multithreading, its

algorithms need to be adapted to allow the distribution of problems among
threads. Several concerns must be regarded, which are presented in the follow-
ing.

Parallelization approaches Multithreading is generally achieved by divid-
ing a more complex problem into several less complex subproblems, which can
then be concurrently processed by threads. After completion their results are
joined back together to the solution of the original problem. A different approach
is simply achieved by distributing independent tasks on different threads. Both
approaches can also be intermixed, in case problems of the independent tasks
can as well be split into several subproblems.

Scalability When applying a parallelization approach to realize multithread-
ing, a software engineer should implement scalable algorithms, which means,
that no fixed number of CPU cores should be assumed at any time. This allows
applications to run flexibly on differently equipped computers. The reason is,
that it is desirable to utilize all cores in order to exploit a maximum of resources,
especially for CPU-intensive applications. If less cores are assumed, less threads
might be intended than possible and thereby valuable hardware resources are
dismissed. Overhead can then again arise, if more CPU cores are assumed than
can actually be utilized simultaneously, as explained in the following.

Overhead & oversubscription If more threads are running than CPU cores
are available a so called oversubscription is present. One core can always issue
CPU time to exactly one thread only. An oversubscription forces the process
scheduler of the underlying operating system to switch the processing of threads,
which causes additional overhead through context switches. A context switch
of a thread involves saving and loading its state costing process time as well.
Overhead can arise the other way around as well. It is not always worthwhile to
split a given problem into as many pieces as number of CPU cores are given. The
creation and management of threads also causes overhead and if subproblems
are getting too small, this overhead might surmount the intended efficiency gain.

Mutual exclusions Considerations have to be made about mutual exclusions
of data accesses, because threads of the same process are sharing the same
memory. It must be prevented, that two or more threads try to manipulate the
same data concurrently or race conditions might be caused. A race condition is
given, when one thread changes data while other threads are still working with
then outdated copies of it. Race conditions induce inconsistent data states,
which can cause unpredictable program behaviors. Shared resource accesses
of threads must therefore be coordinated, for example by introducing locking
mechanisms, which are shortly presented in the next section.

Deadlocks Ensuring mutual exclusions for accesses on shared resources can
cause deadlock situations, which must be inhibited. Deadlock situations arise
when two or more threads are mutually waiting for each other. This can for
example occur, when a first thread is waiting for the release of a resource locked
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by another thread, which is already waiting for the release of further resource
locked by the first thread. Multithreading approaches harbor the risk of falling
into deadlock situations, because they are generally locking accesses to shared
memory. Deadlocks do not occur each time when a threaded algorithm is ex-
ecuted, because thread scheduling is arbitrary. Unfortunately the detection of
algorithm parts, which might cause deadlock situations, is thus not always an
obvious approach.

6.2 Applying parallelization in SMT-RAT

As the core of an SMT solver, the manager is able to survey the interaction
among all components and is therefore enhanced for the parallelization process
of SMT-RAT. The manager requires the application of a parallelization ap-
proach under consideration of the above described aspects in order to function
efficiently.

6.2.1 Parallelization approach

The process of SMT solving must be partitioned into several independent com-
ponents or into subproblems in order to enable parallelism. As stated through-
out this thesis, the target of the parallelization of SMT-RAT is to allow parallel
executions of SMT-RAT modules. Thus it is meaningful to treat single modules
of a strategy as independent components, whose executions can be running in
their own threads. These threads can then simply be distributed among avail-
able CPU cores. This approach can be applied, because module instances can
work independently on their own received formula. In case a module instance
invokes backends on a formula, these backends can calculate a result in their
own threads and pass it back to the thread of the invoking module instance. In
case one of the threads calculated a relevant result, this means different from
unknown, the overall process can be accelerated by interrupting all corresponding
threads, which still have ongoing calculations. Note, that the utilized approach
has a disadvantage, because it cannot influence the processing costs. There are
chances where the processing costs of the module instances are too small to
justify the multithreading induced overhead.

6.2.2 Achieving scalability

When utilizing the described parallelization approach, it is deliberately not pos-
sible to execute the exact same number of threads as CPU cores are available.
The number of backends, which can be invoked by one module instance, is
dynamic and depends on the underlying strategy and can furthermore vary
through the properties of the different passed formulas. Therefore the overall
number of module instances, which are intended to be executed concurrently,
is also dynamic and exposed to even stronger variations. It is only possible to
provide a maximal possible number of concurrently running module instances.
Due to this reason, there might be less threads running than cores could ac-
tually be utilized. A possibility to counter this problem and gain full usage of
the dismissed resources is proposed in the conclusion at the end of this thesis.
The utilized parallelization approach also harbors the risk, that more module
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instances are running concurrently than cores are available. This oversubscrip-
tion must be prevented, as it causes additional overhead. Therefore the only
scalability aspect, which must be achieved is to set the number of given CPU
cores as an upper bound for the number of concurrently running threads to
inhibit oversubscriptions. The full mechanism is explained later in this chapter.

6.2.3 Overhead reduction

Executing applications entails overhead, which cannot be prevented completely.
Unfortunately, the concept of multithreading increases this overhead further due
to the creation, deletion and management of threads as well as their required
context switches. It is subject of the manager to lower the overhead caused by
multithreading, which is achieved by applying the following introduced aspects.

Dynamic multithreading utilization The utilization of multithreading is
only meaningful, if the provided computer architecture contains multiple CPU
cores. Furthermore, it is not required and cannot even be utilized for the un-
derlying parallelization approach, if the composed strategy does not intend any
parallel backend executions. These conditions can dynamically be checked for
each SMT solver run and in case not both of them hold, the manager performs
the SMT solving completely without multithreading.

Subsequent use of threads A combined strategy graph should utilize mul-
tithreading, but also contains sequential call hierarchies, which can be processed
without it. For cases where a strategy defines only one backend for a module
instance, it is not necessary for this backend to be executed in its own thread.
Instead, the manager utilizes the same thread for the backend as for the invoking
module instance. This is done in the same way as without the adaptation of the
manager. The SMT solver transfers this behavior to those cases where indeed
several backends are assigned to a module instance, but only a single one is cur-
rently available. Therefore, independent of the number of available backends,
exactly one backend is always executed in the same thread as of the invoking
module instance. This spares context switches and decreases the number of
thread creations.

Interruption of backends The chosen parallelization approach specifies,
that concurrently running backends, which process the same passed formula,
can be interrupted once one of them has found a relevant result. This concept
does not lower the overhead induced by the usage of threads, but increases the
overall efficiency of an SMT solver. Canceling module instances enables other
module instances to utilize the freed resources earlier. A thread, which pro-
cesses a module instance is not simply deleted or canceled on interruption. It is
necessary to ensure, that a currently running calculation is terminated in a safe
fashion, such that a module instance is not left in an inconsistent state. How
this is realized is described in Section 6.3. When a thread is not deleted, the
opportunity is given to reuse it, what is examined in the following.

Further reuse of threads As an SMT solver, which is built with SMT-RAT,
works incrementally on NRA formulas, a high number of backend invocations
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can be assumed. Instead of creating and deleting threads each time a mod-
ule instance should be executed, the manager reuses threads once they have
been initially created. This prevents the creation and deletion of a considerable
high number of threads. For this purpose, the manager takes care about which
module instance can be executed by which thread. It thereby prevents mod-
ule instances in competing for the same thread and inhibits possible deadlock
situations as described later in this section. After a thread has been utilized
by a module instance, it is locked until it is required again, as this consumes
less overhead than a full thread creation and deletion. The approach of reusing
threads is explained in detail in Section 6.3.

Dynamic thread creation The preceding explained approach for creating
required threads implies: An SMT solver can start to process a strategy graph
with its main thread. When descending in the strategy graph, for each module
instance as many threads as the number of its available backends minus 1 are
additionally required. This allows to calculate a maximal number of required
threads for a strategy graph. There are actually two further ways, which are
worthy of remark and stated by Corollary 6.2.1. For a further efficiency gain not
all threads should initially be created, but the solving process should instead
start with one thread only. Further required threads are then added dynami-
cally. The reason is, that there might be cases where a module instance never
needs to utilize any backends or that a formula never satisfies the conditions of
certain module instances. This keeps the number of created threads minimal.

Figure 6.1 shows how the number of additionally required thread creations
decreases when applying the above mentioned thread savings. Nodes which are
colored in red, represent module instances which need to run in an own thread.
Module instances displayed by gray nodes are executed in the same threads as
their preceding module instance. In Figure 6.1a all module instances need their
own thread to run in. This adds 9 additional threads to the preexisting main
thread. Without reusing initially created threads, 100 complete passes would
require 900 thread creations and deletions. This is an enormous multithreading
induced overhead. When reusing threads, the number of 9 threads persists inde-
pendently of the number of passes. When threads are furthermore subsequently
used again for invoked backends, the number decreases to 4 threads, as can be
seen in Figure 6.1b. It even decreases further to 2 threads, when for instance
the left subgraph is never invoked and threads are dynamically created, as can
be seen in Figure 6.1c.

Corollary 6.2.1 (Number of maximal required threads)
The number of maximal required threads for a strategy graph can also be calcu-
lated by:

• the maximal number of intended parallel running module instances, or

• the number of leaves (when considering a strategy graph as a tree).

Prevention of oversubscriptions Although the number of created threads
is always minimal, it might still surmount the number of available CPU cores.
The manager prevents a potential oversubscription by assigning only one thread
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Figure 6.1: Number of additional required thread creations.

to each CPU core. In case the given strategy prescribes that more module
instances should be running concurrently, further executions are blocked by
a priority locking mechanism until one CPU core becomes available, as it is
described later. The priority values of module instances are utilized to decide
on an execution order for all currently module instances intended to run. Even
though the number of running threads cannot exceed the number of available
CPU cores, it might still be the case that the overall number of existing threads
is higher. Note, that this is required to prevent the deletion and later recreation
of threads as stated above.

6.2.4 Locking mechanisms

For the application of the parallelization approach locking mechanisms are re-
quired. On the one hand, they should protect the access on shared resources
and, on the other hand, they are used to prevent oversubscriptions. Both kinds
of the utilized locking mechanisms are presented in the following.

General locks When applying multithreading, accesses on shared variables
must be controlled to ensure mutual exclusions. This can be achieved by several
methods, but implementations firstly rely on those provided by the program-
ming language. Therefore, when discussing the algorithm of the full procedure
of a parallel working SMT solver in Section 6.4, locks are simply utilized to give
an idea how and where mutual exclusions take place. The mechanism of locks is
as follows: The same lock can only be owned by one thread at a time. When a
thread wants to access shared resources, it simply tries to acquire its ownership.
Once the lock is owned by the thread, it can access the shared resources and
then release it afterwards.

Locking mechanism to prevent oversubscriptions An own kind of lock-
ing mechanism has been developed for the implementation of the parallelization
approach to prevent potential oversubscriptions. This locking mechanism is
utilized to control the number of simultaneously running threads. In case a
maximum number is reached, accesses on the CPU cores are locked for further
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threads of the SMT solver. Locked threads are not released before a currently
running thread has finished its check. The whole implementation is described
in detail in Section 6.3.

6.2.5 Deadlock prevention

The introduced parallelization approach of distributing executions of module
instances on different threads has been applied under regards of possible dead-
lock conditions. This means, that situations where threads could be mutually
waiting on each other have been prevented. The prevention of two deadlock
situations, which are worthy of mention and which are nature of the applied
parallelization approach are examined in the following.

Assignments to available threads As mentioned, an SMT solver reduces
multithreading overhead by reusing threads once they have been initialized.
When a module instance should be processed by an already existing thread,
a deadlock situation might arise when choosing a wrong thread. The simplest
case is given, when a thread pushes the task of executing a module instance to
itself. The thread is then waiting for a result, which will never be delivered. In
another case, two running threads could be involved. If the first thread sends its
task to the second one, and this thread also sends a task to the first one, both
end up waiting for each other. Constellations with up to all existing threads
are thinkable. For this reason an SMT solver does not only keep track of all
existing threads, but must also maintain their availability to process a module
instance to prevent this deadlock situation. The full approach is explained in
the next section.

Coordination of thread locking The preliminary described locking mecha-
nism to prevent oversubscriptions also harbors the risk of running into deadlock
conditions, because it implements a mutual exclusion on shared CPU cores.
Locking and releasing threads must be coordinated. The reason is, that if the
lock of just a single thread is never released, a deadlock arises, because the result
of its processed backend can never be returned to the invoking module instance,
which is thereby also locked. Thus, a chain of waiting threads is built up to the
Start module, which is then left waiting forever. In order to prevent such cases,
the parallelization approach memorizes all locked threads and releases one of
them each time another thread has finished its processing.

6.3 Implementing the parallelization approach

This sections introduces the necessary implementations for the parallelization
approach of SMT-RAT, whereas the complete algorithmic overview of the man-
ager is presented in Section 6.4.

6.3.1 Thread management for module instances

It is the task of the manager to coordinate the execution order of module in-
stances and to maintain a set of threads to allow concurrency. Furthermore, it
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Figure 6.2: Thread management for module instances of a fully available strat-
egy graph, i.e. all backends are always available.

decides which module instance should be processed by which thread. Examin-
ing the way how an SMT solver designates module instances for certain threads
also provides explanations on how the parallelization approach for SMT-RAT
has been implemented. It also states how this implementation already applies
some of the above listed aspects for this approach.

Preliminary illustration Figure 6.2 shows a graphic illustration of a strat-
egy graph, which helps to present how an SMT solver manages its threads for its
execution of module instances. This illustration is simplified and shows neither
conditions nor types of module instances, as for this purpose only the priority
values are of interest. They are listed alongside the edges of the graph and
simultaneously name their corresponding module instances. The thin, dashed
arrows next to these edges represent threads, which could be utilized by an SMT
solver. In order to be able to distinguish threads, a small letter is assigned to
each, which can be read along their related arrows. The graph contains the
seven threads a to g and this is also the number of leaves in the graph. As
described in the previous section, this number equals the maximal number of
required threads for a full processing of the strategy graph and this means that
all potentially required threads are depicted in the figure. The beginning of
a thread arrow is closely situated to the module instance, which is the driver
for the creation of the corresponding thread. In case such a module instance
invokes its backends, it is the account of this thread to process exactly one of
the backends and return its result to this module instance. In case further back-
ends have been invoked, the remaining threads, whose arrows are also closely
placed to the module instance, must process one backend each. For an exam-
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ple, module instance 4 is the driver to initiate the creation of thread d and f.
Thread d processes module instance 10, whereas thread f takes care of module
instance 5. The main thread of the SMT solver is presented by the thread arrow
starting above of the Start module instance. All module instances which might
potentially be processed by the same thread are presented alongside its related
arrow. Thread g for example, is created through the Start module in order to
process module instance 1. While processing backend 1, thread g might also be
required to process module instances 2 and 3 sequentially.

Decision over utilized threads The graphic illustration is presented in such
a manner, that backends of a module instance are ordered by their priorities,
what can be expected without loss of generality. This means, that the backend
with the highest priority and therefore the lowest priority value, is placed at the
outer left. The lower the priority of a backend the farer right it is placed. The
method runBackends(..) of the manager uses the same sequence to process the
backends of an invoking module instance. Beginning with the highest priority,
it invokes each backend on its own thread. For the rightmost backend with
the lowest priority the same thread of the invoking module instance will be
subsequently used again. Note, that in case only a single backend is available or
specified by the strategy, the same thread will as well be subsequently used. In
case no backends are specified at all, the thread of the invoking module instance
will return to its preceding calculation. This thread management approach can
easily be comprehended, when pursuing the different thread arrows of Figure
6.2. Utilizing it guarantees, that threads of higher prioritized backends are
invoked earlier and that for each set of backends one thread creation is spared
through reuse. The thread, which is reused, must of course initiate all required
thread calls before it can start to process its own backend. As the processing of
the own backend will then always be started at last, it explains why the backend
with the lowest priority is chosen to be that certain backend.

Ensuring assignments only to available threads Figure 6.2 presents the
underlying thread management for module instances for the case, that all con-
ditions are satisfied in the strategy, whereas the modified Figure 6.3 shows an
example where not all conditions are satisfied. In this case, the remaining mod-
ule instances are not all processed by the same threads as in the first case. On
closer observation, however, it can be seen, that this involves only those mod-
ule instances, which became the lowest prioritized backend of their preceding
module instance. Instead they are now processed by the thread of this invoking
module instance. The mapping between threads and module instances is there-
fore always constant except for that particular case. An SMT solver is thereby
always enabled to subsequently use one thread for each branch again. When
assigning a unique identification number to each thread, all module instances
can be mapped onto these numbers and the SMT solver can always be aware
about which thread is designated for which set of module instances. In this way,
it is ensured, that only available threads are utilized to process invoked module
instances and can prevent the previously outlined deadlock condition.

Retrieving thread identification numbers An SMT solver implements the
method getThreadId(..) in Algorithm 2 to retrieve the thread identification
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Figure 6.3: Thread management for module instances of a partly available strat-
egy graph.

numbers for its utilized module instances. The procedure of this algorithm is
to perform a depth-first search for a module instance in the strategy graph
while calculating the thread identification number for it on the fly. The initial
thread identification number is 0, as Lines 5 and 11 determine it. At each
point where the strategy graph is branching, further threads are required and
for each further required thread the number is increased by 1. For this purpose
the depth-first search works from right to left and the increase applies for each
step to the left, as can be seen in Lines 16 to 20, whereas a further step to the
left is only required if the module instance has not been found in the previous
branch, what is denoted by a return value of -1, as it is outlined in Lines 13
and 17 to 19. This algorithm traverses a derivation of the Grammar SG and
needs to distinguish different top-levels of a strategy graph and its subgraphs as
it was done by method getAvailableBackends(..) of Algorithm 1, which can
be seen in Lines 1, 3, 9 and 15. The method getThreadId(..) requires two
parameters, a strategy graph G which is traversed in order to search for a module
instance passed as its priority value p. The way how a run-through of a graph
is applied, can also easily be reconstructed when following the thread arrows in
Figure 6.2 in their alphabetical order and considering the thread identification
numbers for thread a as 0, for b as 1, and so on, until the search module instance
is found.

Priority locking mechanism In case oversubscriptions must be prevented,
the above mentioned priority locking mechanism is used. In the Figures 6.2
and 6.3, small circles can be seen along the thread arrows, which reveal the
point of times when it is required to check, whether a priority locking must be
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Algorithm 2 Algorithm to retrieve the thread identification number for a given
strategy graph G and a module instance, denoted by its priority value p.

int getThreadId(graph G, priority p)
begin

if G = start[0].Gsub then (1)

return getThreadId(Gsub, p); (2)

else if G = C ⇒ M[i].Gsub then (3)

if p = i then (4)

return 0; (5)

else (6)

return getThreadId(Gsub, p); (7)

end if (8)

else if G = C ⇒ M[i] then (9)

if p = i then (10)

return 0; (11)

else (12)

return -1; (13)

end if (14)

else \\ G = (Gsub1/Gsub2) (15)

int id := getThreadId(Gsub2 , p) (16)

if id = -1 then (17)

id := 1 + getThreadId(Gsub1 , p); (18)

end if (19)

return id; (20)

end if (21)

end

applied. As can be seen, checks are always required just before the processing
of a module instance should begin. For this purpose, Algorithm 3 provides
the method checkPriorityLocking(..) for threads intending to process a
module instance. As the manager utilizes threads and its own thread in order
to process the backends of a module instance, the method holds two different
program flows, whereas the first treats the case for different threads and the
second for the own thread, as can be seen in the Lines 2 and 9. The method is
explained in the following with help of the method numberOfCores().

numberOfCores(): This method must be supplied by the programming lan-
guage in order to determine the number of available CPU cores of the
underlying computer architecture.

Priority locking for a different thread A thread t, which is intended to
process a currently invoked module instance IM , is initially in a locked
state and waits to be unlocked to process the method check(..) of IM .
In case priority lockings are applied, it must be checked, whether the
thread is allowed to be unlocked or must be pushed in a queue for be-
ing unlocked later. This check consists of testing, whether a maximum
number of running threads has already been reached or not, which means,
that the algorithm compares the global variable runningThreads, initial-
ized by the manager, against numberOfCores(), as can be seen in Line 3.
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Algorithm 3 Algorithm to apply priority lockings if required. Invocations for
different threads or the same thread are distinguished. Threads are denoted by
their thread id tid and their priority value passed by p.

void checkPriorityLocking(thread id tid, priority p, bool ownThread)
begin

t := retrieve thread in T with thread id tid; (1)

if ownThread = False then (2)

if runningThreads < numberOfCores() then (3)

runningThreads := runningThreads + 1; (4)

t.unlock(); \\ to run IM .check(..) (5)

else (6)

PQ.push((p, tid)); (7)

end if (8)

else (9)

if runningThreads = numberOfCores() then (10)

if PQ has element of higher priority than p then (11)

PQ.push((p, tid)); (12)

(p′, tid′) := PQ.pop(); (13)

t′ := retrieve thread in T with thread id tid′; (14)

t′.unlock(); \\ to run I ′M .check(..) (15)

t.lock(); (16)

end if (17)

end if (18)

end if (19)

end

If the maximum is not reached, a counter for counting all currently run-
ning threads is increased and the requesting thread can start to process its
assigned module instance IM , as it is done from Lines 4 to 5. If otherwise
the maximum is reached, the algorithm must store the thread priority of
the thread in the priority queue PQ and leave it locked, as it is done in
Line 7. A thread priority is a pair of the priority value of the current
module instance IM , denoted by p, and the unique identification number
tid of the thread. The global priority queue PQ, which is initialized in the
manager as well, sorts its maintained thread priorities by their priority
values.

Priority locking for the same thread In case a module instance should be
processed by the same thread, the number of running threads must not
be increased, but it is checked, whether this number is maximal, as it is
done in Line 10, and whether a thread with a higher priority might be
waiting, as denoted by Line 11. Are both conditions met, the invoking
thread t enqueues its thread priority in PQ, Line 12, in order to allow the
execution of the higher prioritized module instance I ′M first. The thread
priority of it is popped from PQ and the appropriate thread t′ is retrieved
from the set T of all threads, which is global and also initialized by the
manager, as it is outlined by the Lines 13 and 14. Thread t′ can then be
unlocked to run I ′M .check(..) while thread t is locked, as can be seen in
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Lines 15 and 16.

Release of priority locking Once a running thread, which is not the one
of the invoking module instance, has finished the processing of its backend, it
can be locked again and the priority lock of another potentially waiting thread
can be released. Note, that the locking takes place outside the scope of this
algorithm. The method releasePriorityLocking() of Algorithm 4 is utilized
for releasing priority locks. In Line 1 it tests, whether the priority queue PQ
is empty or not. If it is empty, the counter runningThreads is decreased and
the thread can be locked, as in line 6. If the priority queue is not empty,
the first element with the highest priority is dequeued in order to unlock the
corresponding thread t to run the method check(..) of its module instance
IM , as it was done before.

Algorithm 4 Algorithm to release a priority locking, if required.

void releasePriorityLocking()
begin

if PQ 6= ∅ then (1)

(p, tid) := PQ.pop(); (2)

t := retrieve thread in T with thread id tid; (3)

t.unlock(); \\ to run IM .check(..) (4)

else (5)

runningThreads := runningThreads - 1; (6)

end if (7)

end

Global variables: runningThreads, T , PQ

Intermediate results The proposed parallelization approach for SMT-RAT
has thus far already been applied under regard of most of the above described
aspects. It efficiently decreases the overhead induced by the thread management,
as threads are not created before they are not required, module instances reuse
the same threads to invoke their backends or reuse its own thread. Moreover,
the implemented approach is scalable, because a fixed number of CPU cores is
not assumed at any time. The addressed deadlock situations are eliminated, as
threads are always reused for the same set of module instances and in case of
preventive measures against oversubscriptions, each time a thread finishes its
task, it wakes up a suspended thread, if there is one waiting.

6.3.2 Interruption of module instances

A module instance invokes several backends with the intention to pursue mul-
tiple solving approaches for the same NRA formula. Once one of the backends
has found a relevant result, the invoking module instance can continue its own
calculation. Currently, a further processing of the remaining backends is not
required, because they either return the same relevant result or unknown. The
parallelism approach therefore specifies, that the remaining backend calcula-
tions must be interrupted to accelerate the overall process. Note, that in case of
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Figure 6.4: Distribution of interruption flags and their sphere of influence.

unsatisfiability, it might be meaningful to leave backends running, if they do not
terminate “much” later and if they are thereby enabled to provide further and
maybe even better infeasible subsets. This approach is future work and pro-
posed in Chapter 8. All SMT-RAT modules are SMT-compliant, which means
that they especially support incrementality and must therefore be enabled to
store their intermediate results of a calculation for a later reuse. For this rea-
son, running threads cannot simply be deleted. They must rather be interrupted
in a safe fashion without loosing the intermediate calculations of their related
backend and without leaving it in an inconsistent state. The LRAModule for
example, implements the Simplex method, which maintains a tableau, whose
elements are updated in each calculation step. Canceling its calculation in an
unsafe fashion might not only leave the update unfinished, but also the backend
in an unusable state.

Illustration of the interruption approach For the above mentioned rea-
sons, it is not possible to cancel a backend processing from outside. It is rather
required, that the respective SMT-RAT module implementations regularly con-
trol, whether their processing should be interrupted or not. For this purpose
interruption flags are introduced, which must be distributed from an invoking
module instance to its set of backends. In case a backend finishes its check of
an NRA formula with a relevant result, it can change its interruption flag to in-
form the remaining backends of its set. As backends might be enabled to invoke
further sets of backends, which must additionally be enabled to be interrupted
independently, it is not enough to utilize just a single interruption flag. For this
reason sets of interruption flags are required, whose contained flags signalize,
which subgraph of backends must be interrupted. The procedure is outlined
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by Figure 6.4. In the illustrated strategy graph, sets of interruption flags are
positioned next to their related module instances. They are built by utilizing
all elements of the set of the preceding module instance and by adding an own
interruption flag. Beginning with the Start module, which creates the initial
interruption flag, sets grow from top to bottom. Building sets in this way guar-
antees, that all backends of all subgraphs of one module instance contain its
interruption flag. It can for example easily be seen, that the initial interruption
flag of the Start module, which is named is and colored in red, is contained in
all sets in the strategy graph. The interruption flag i4 of module instance 4,
which is colored in blue in the figure, is then again contained in the sets of the
module instances 5 to 9. If for example any of the backends of module instance 4
calculates a relevant result, the interruption flag i4 is changed and signalizes the
interruption for all remaining backends. This means, that all backends in both
subgraphs of module instance 4 are subject of this interruption, but no preced-
ing module instances are involved. By applying this method any subgraph can
be interrupted independently from each other. While backends are processed
for module instance 4, module instance 7, for example, can interrupt its own
subgraphs independently. Its interruption flag i7, which is colored green, inde-
pendently interrupts the processing of backend 8 and 9, but does not influence
the processing of backend 5 or 6. The three dashed fringes show the different
spheres of influence of the corresponding interruption flags is, i4 and i7.

Interrupting a module instance When checking a set of interruption flags,
all flags are checked and in case any signalizes an interruption, a backend must
stop its satisfiability check in order to store its intermediate results for later
executions and to return the result of the check to the invoking module instance.
An interruption process might be continued into upper levels of the strategy
graph, depending on which flag is signalizing the interruption. Once all required
interruptions have been fulfilled, the module instance of the reached level can
continue its processing.

Note, that in case of utilizing preventive measures against oversubscriptions,
a relevant result might be calculated for an NRA formula before all locked
threads are released for their calculations. In this case, the backends of the
released threads do not start any satisfiability check, but directly return unknown

to the invoking module instance.

Almost all of the aspects of the proposed parallelization approach have been
considered at this point, only the aspect of dynamically utilizing multithreading
is missing, which is explained in the next section.

6.4 Full procedure of a parallel SMT solver uti-
lizing strategy graphs

Chapter 3 described the different modular components of SMT-RAT, the newly
developed strategy graph component has been introduced in Chapter 4 and the
application of a parallelization approach for SMT-RAT has been presented in
this chapter. All required components are provided to give a detailed description
of the implementation of the concurrently working manager.



52 Parallelization of SMT-RAT

Before the details of the final and consolidated implementation are examined
with the help of Algorithms 5 and 6, a required method is explained.

numberOfLeaves(graph G): This method calculates the number of leaves for
a given strategy graph G, which can be used as the maximum required
number of threads. If the returned value is greater than 1, it shows, that
the passed strategy graph contains branches and that multithreading can
be utilized.

The implementation of the manager is partitioned into two algorithms. The
first algorithm covers the method solver(..), which is initially invoked for pre-
liminary initializations of global variables. The second implements an enhanced
version of the method runBackends(..), which has initially been presented in
Chapter 3. This method controls the process of SMT solving by applying the
newly introduced capabilities.

Initialization of global variables The method runBackends(..) is recur-
sively invoked and requires a set of global variables, whose preparatory initial-
izations are outsourced into the first Algorithm 5. This algorithm is only called
once at the beginning of each SMT solving process and requires a strategy graph
G and an NRA formula ϕ as parameters. Depending on this strategy graph and
the underlying computer architecture the global variables are dynamically ini-
tialized. First of all, this algorithm finds out whether multithreading can be con-
stituted or not, as proposed in Section 6.2. It can be constituted in case the used
computer architecture offers multiple CPU cores and the passed strategy graph
has more than 1 leave, which is checked with the method numberOfLeaves(..).
In this case, the global flag runsParallel is set to True, otherwise to False. This
flag is exploited by the second algorithm, which is thereby enabled to guide its
program flow either for a sequential or parallel execution. In case multithread-
ing is utilized, threads are needed and they are maintained in the global set T to
allow the manager accesses at any time. Furthermore, the algorithm checks the
possibility of oversubscriptions, which are potentially introduced together with
the multithreading utilization. A simple check tests, whether the number of
leaves exceeds the number of CPU cores. The same method numberOfCores()

as of Section 6.3 is utilized for this purpose. The result of this testing is stored
in the flag potentialOversubscription, which signalizes the following algorithm,
whether to initiate the preventive measure of utilizing priority lockings or not.
In case the risk is given the counter runningThreads is introduced and initially
set to 1, as the Start module already itself runs in a thread. Moreover, the pri-
ority queue PQ is created to store the thread identification numbers of locked
threads in a prioritized way. Besides the aspect of dynamic multithreading uti-
lization and oversubscription, a set of interruption flags F is created to apply
the approach of interrupting the processing of certain module instances. As the
program flow of non-concurrently running SMT solvers is not affected by this
set and for reasons of simplicity, it is introduced, whether module instances do
or do not run concurrently. At the end, the method runBackends(..) of Al-
gorithm 6 is invoked on some initial values in order to invoke the initial module
instances.

Core implementation Including detours via invoked module instances, the
method runBackends(..) of the manager is recursively called. Therefore,
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Algorithm 5 The first algorithm of the manager implementation for initializing
required global variables.

result solver(graph G, formula ϕ)
begin

if numberOfLeaves(G) > 1 ∧ numberOfCores() > 1 then (1)

runsParallel := True; (2)

set of threads T := ∅; (3)

if numberOfLeaves(G) > numberOfCores() then (4)

potentialOversubscription := True; (5)

runningThreads := 1; (6)

thread priority queue PQ := ∅; (7)

else (8)

potentialOversubscription := False; (9)

end if (10)

else (11)

runsParallel := False; (12)

end if (13)

set of interruption flags F := ∅; (14)

return runBackends(G, 0, ϕ, F ); (15)

end

Global variables: runsParallel, T , potentialOversubscription,
runningThreads, PQ

the method exploits several parameters to control its execution flow. A pri-
ority value p is used to determine the current position in the strategy graph
G. Initially the priority value is 0 in order to refer to the Start module,
which invokes the initial module instances of the strategy graph. The method
runBackends(..) retrieves a set of available backends for an invoking mod-
ule instance, and calls for each of these backends the method check(..) on
ϕ, which is the passed formula of the invoking module instance. The last pa-
rameter is a set of interruption flags F . It is not global, as it is individually
determined for each set of the backends to be invoked. At the beginning of the
method, the set is filled with an interruption flag and thereby grows with each
further recursive call.

The goal of the algorithm is to invoke all available backends on the passed
formula ϕ and to return the result to the invoking module instance. For this
purpose, a variable result is initialized with the value unknown, as can be seen
in Line 3. In order to receive the available backends of the invoking module
instance, the method getAvailableBackends(..) of Algorithm 1 of Chapter 4
is utilized, which is outlined in Line 4. Depending on its parameters the method
returns a, possibly empty, set B of backends. The algorithm then utilizes a loop
to invoke all backends in their prioritized order one after the next, whereas
it starts with the backend of highest priority, as outlined by Lines 8 and 9.
For each backend a module instance IM of the corresponding module type M
of the backend is used and a set of interruption flags F is assigned, which is
stated by Line 11. Note, that backends are instances of modules and must be
created when they are initially used. The set of interruption flags consists of the
passed set F including an additional interruption flag added in Line 2. This set
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must regularly be controlled by the corresponding method check(..) of module
instance IM . Depending on whether multithreading can be exploited or not and
whether a backend is the one with the lowest priority of set B, the execution
of IM is then applied differently, as can be seen in Lines 12, 28 and 36. The
first case, which is described in the following, is the one where multithreading is
enabled and all backends, except the one with the lowest priority, are processed.
For utilizing multithreading, a locale set TID of thread identification numbers
must be initialized, as presented by Line 5. This set allows to memorize all
related threads for this pass of the algorithm in order to be able to retrieve
their results at the end.

Processing backends with multithreading When utilizing multithread-
ing, the processing of the corresponding formula is moved into an own thread
for each backend, except for the one with the lowest priority. For this reason, the
thread identification number is received through Algorithm 2 for each backend
in order to forward the execution to its related thread, as can be seen in Line
13. The utilized thread identification number tid is stored in the set TID, as
constituted by Line 14, in order to fetch its result at the end. All threads, which
have once initially been created, are supposed to be reused and are therefore
stored in the global set T of threads before forwarding a backend to them, as
it is presented in the Lines 16 to 20. In case of the usage of multithreading,
several calls of the method runBackends(..) might be processed concurrently.
This implies that write accesses of global variables, which are shared resources,
must be protected by mutual exclusions. The set of threads T , for example, is
subject to this and the lock mutex ensures that no race conditions appear. The
usage of mutual exclusions is a dependent detail of the programming language
and the variable mutex is exemplary used in Lines 15 and 27, 31 and 33 as well
as in Lines 50 and 54 of this algorithm. Once a lock is acquired and the specific
thread t has been retrieved, a reference of the method check(ϕ) of backend
IM can be pushed into it, as represented by Line 21. Before thread t can then
start the execution it must be released, as it is initially locked in order to pre-
vent a potential oversubscription. In case potentialOversubscription is set to
True, the method checkPriorityLocking(..) of Algorithm 3 is utilized. As
described, it takes care whether the passed thread, denoted by its thread iden-
tification number tid, can be unlocked directly or if it is required to stay locked
first. In the opposite case that potentialOversubscription is set to False, the
number of running threads cannot exceed the number of available CPU cores
with the implemented parallelization approach and any thread can always be
unlocked immediately. While a given thread t is starting the processing of its
corresponding method check(ϕ), the initiating thread of the algorithm pro-
ceeds. Note, that due to implementation details, threads offer a possibility to
retrieve their results once their finished.

Processing the lowest prioritized backend When processing the last
backend, which means the one with the lowest priority or the only one avail-
able, the current thread itself is used to invoke the method check(ϕ) of mod-
ule instance IM , as can be seen in Line 35. As explained, this guarantees,
that at least one of the threads is always subsequently reused, even though
multithreading is utilized. In case of potential oversubscriptions, the method
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checkPriorityLocking(..) must be executed beforehand, as the current
thread might as well require to be locked until all threads with higher prior-
ity have finished their executions, as it is presented by Line 32.

Processing backends without multithreading In case it is not meaningful
to utilize multithreading or it simply cannot be applied, just one thread is
utilized to invoke the method check(ϕ) for each backend IM , which executes
them one after the next, as it can be seen in Line 37. The loop of Line 8 is
iterated until one of the backend returns a result unequal to unknown or until
all backends have been processed. Even without multithreading the executions
of the backends are ordered by their priority for each branch in the strategy
graph, whereas the priority orders distributed throughout the whole strategy
graph are not observed. Without maintaining threads, it is not sophisticated
to stop the processing in one branch of the strategy graph, traverse to another
one and then return to the original branch at a later point.

Determining the result In case no threads have been utilized, the value
of result has been determined at this point and can be returned. If threads
were included, further measures are required, as they might need to be locked
again for further executions and their results must be fetched. As mentioned,
the set of thread identification numbers TID has been created for these pur-
poses. It is processed in a loop by removing one thread identification number
tid in each iteration in order to retrieve the corresponding thread t, as can
be seen in Lines 42 and 43. Note, that at this point all threads denoted by
the thread identification numbers of TID might still be processing their cor-
responding method check(ϕ), when no relevant result has been found yet.
When fetching their results, due to implementation details, it is ensured, that
the thread executing the method runBackends(..) is waiting until their re-
sults tmpResult can be supplied. In case a relevant result has been calculated
once, all threads stop their calculations due to their assigned set of interrup-
tion flags F . In case the fetched result tmpResult of a thread t is unequal
to unknown, it is used to overwrite result, as constituted by Lines 45 to 48.
Otherwise the result is dismissed, as it might overwrite a relevant result sub-
sequently. Afterwards potentialOversubscription constitutes, whether method
releasePriorityLocking(..) has to be utilized. In this case, a thread t needs
to be locked in order to enable the unlocking of a different thread, which might
potentially be locked. For this purpose, the loop must be iterated for all threads,
even if a relevant result might already be given. At the end of the algorithm,
the value of the variable result is returned to the invoking module instance. Its
value might be unknown in case the backends were not capable of checking the
formula ϕ or no backends were provided at all. Note, that in the implementa-
tions of SMT-RAT it is ensured, that for the case of unsatisfiability the invoking
module instance can retrieve the infeasible subsets of the involved backends.
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Algorithm 6 Core algorithm of the parallel working manager to run backends
for an invoking module instance. (Part I)

result runBackends(graph G, priority p, formula ϕ, flags F )
begin

interruption flag if := False; (1)

F := F ∪ {if}; (2)

result := unknown; (3)

set of backends B := getAvailableBackends(G, p, ϕ); \\Alg. 1 (4)

if runsParallel = True then (5)

set of thread ids TID := ∅; (6)

end if (7)

while result = unknown ∧ B 6= ∅ do (8)

M := module in B with highest priority p′; (9)

B := B\{M}; (10)

IM := instance of module type M with interruption flags F ; (11)

if runsParallel = True ∧ M not last module of B then (12)

tid := getThreadId(G, p′); \\Alg. 2 (13)

TID := TID ∪ {tid}; (14)

mutex.lock(); (15)

if thread with thread id tid does not exist in T then (16)

create locked thread t with id tid; (17)

T := T ∪ {t}; (18)

end if (19)

t := retrieve thread in TP with thread id tid; (20)

t.push(IM .check(ϕ)); (21)

if potentialOversubscription = True then (22)

checkPriorityLocking(tid, p′, False); \\Alg. 3 (23)

else (24)

t.unlock(); \\ to run IM .check(ϕ) (25)

end if (26)

mutex.unlock(); (27)

else if runsParallel = True ∧ M last module of B then (28)

if potentialOversubscription = True then (29)

tid := getThreadId(G, p); \\Alg. 2 (30)

lock mutex; (31)

checkPriorityLocking(tid, p, True); \\Alg. 3 (32)

unlock mutex; (33)

end if (34)

result := IM .check(ϕ); (35)

else (36)

result := IM .check(ϕ); (37)

end if (38)

end while (39)

. . .
Continued on page 57
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Algorithm 6 Core algorithm of the parallel working manager to run backends
for an invoking module instance. (Part II)

. . .
if runsParallel = True then (40)

while TID 6= ∅ do (41)

tid := choose element in TID; (42)

TID := TID\{tid}; (43)

t := retrieve thread in TP with thread id tid; (44)

tmpResult := t.result(); (45)

if tmpResult 6= unknown then (46)

result := tmpResult; (47)

end if (48)

t.lock(); (49)

mutex.lock(); (50)

if potentialOversubscription = True then (51)

releasePriorityLocking(); \\Alg. 4 (52)

end if (53)

mutex.unlock(); (54)

end while (55)

end if (56)

return result; (57)

end
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Chapter 7

Experimental results

As all demanded approaches of the thesis have been implemented in the pre-
ceding chapters, this chapter can present experimental results comparing the
efficiency of sequential strategies against parallel strategies, which enable their
combined concurrent execution.

7.1 Setup

The adapted SMT-RAT application has been utilized to create altogether five
SMT solvers, which have been involved in the testing. Although some of them
are guided by a sequential strategy, the adapted toolbox could be utilized, as
no multithreading induced overhead must be assumed for their solving process.
The created SMT solvers differ in their contained strategy graphs, which are
presented in the following.

7.1.1 Utilized strategy graphs

The strategy graphs have been chosen in order to outline the exemplary situa-
tion, where it is uncertain whether to utilize just the single CADModule for a given
set of NRA problems or to prefix it with the VSModule. The CADModule contains
a complete procedure, which in general works efficiently for constraints contain-
ing strict inequalities, but is rather inefficient for equations. The VSModule is
more efficient but incomplete. It requires a further SMT-RAT module, for in-
stance the CADModule, to handle polynomials which have a degree greater than
2. The built strategy graphs apply different approaches to tackle this problem.
All of them begin with a sequential composition of the CNFerModule, which
transforms a given NRA problem into CNF, followed by the SATModule, which
implements a DPLL-style less lazy SAT solver. Figure 7.1 illustrates the dif-
ferent strategy graphs, but the composition is only pointed out by the dashed
arrows above each.

sg1 Strategy graph sg1 is a sequential strategy, which intends the CADModule

instance for the solving process only.

sg2 As in the preceding case, the strategy graph sg2 also provides a sequential
strategy, but contains an additional VSModule instance as prefix of the
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Figure 7.1: The strategy graphs utilized for the testing.

CADModule instance. The strategy graphs sg1 and sg2 simulate the case,
where only sequential executions of strategies can be applied.

sg3 The parallel strategy graph sg3 combines the alternative strategies sg1
and sg2. This means, that it enables the concurrent execution of the
CADModule instance and the composition of the VSModule instance and
CADModule instance.

sg4 Strategy graph sg4 bases on strategy sg3, whereas for the invocation of the
single CADModule instance the condition c := contains strict inequalities
is added. This means, that this instance can only be invoked, if a passed
formula contains strict inequalities, where strict inequalities can only con-
tain the operators ‘<’, ‘>’ or ‘ 6=’. The composition of the VSModule

instance and CADModule instance is invoked for all passed formulas, as no
condition is applied for it.

sg5 The last strategy graph sg5 further on bases on sg4 by adding a second
condition to the composition, which is the inverting of condition c. This
means, that always either the single CADModule instance or the composi-
tion can be invoked, but not simultaneously. The strategy graphs sg4 and
sg5 present implications for sg3 when introducing dynamic by conditions.

7.1.2 Benchmark sets

Two benchmark sets, which contain 50 example files each, have been assembled
from a large amount of example files. The first set contains example files selected
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from several different categories of the Meti-Tarski benchmarks of SMT-LIB [2].
The selected example files of the second set also originate from various Meti-
Tarski benchmarks, but have been preprocessed with iSAT [15]. The SMT
solver iSat implements the ICP method, which searches for possible candidate
solutions, in form of an interval box, for the variables of a given NRA formula.
As the method is incomplete, it needs to call a further decision procedure to
check the consistency of its proposed candidate solutions. These calls have been
intercepted in order to create a collection of preprocessed sets from which the
second benchmark set assembles.

7.1.3 Results

All example files have been processed on an Intel R© CoreTM i5-2520M CPU con-
taining four threads (Hyper-Threading) and two cores of 2.5 GHz each. This
means, that all described strategy graphs could occupy enough CPU cores to
execute all intended approaches in parallel. Moreover, a time-out of 15 seconds
and a memory limit of 4 GB have been assigned to each example file. The
obtained results are presented in Table 7.1, which shows how many of the ex-
ample files could successfully be checked by each utilized strategy graph before
a time-out occurred and how much time, in milliseconds, has been required.

The experimental results for the strategy graph sg1, which intends only the
CADModule instance as decision procedure for solving NRA formulas, are the
worst. The module instance did not only solve the least number of examples,
but also required the longest time in both sets. This could be expected, as the
CADModule is complete, but works quite inefficiently.

The strategy graph sg2 already provides improved experimental results. The
table shows, that in many cases it is useful to prefix a CADModule instance with
a VSModule instance in a strategy graph. For the given benchmark sets, the
SMT solver containing strategy graph sg2 was able to check more formulas and
additionally required only around 60 percent of the time of the SMT solver
maintaining sg1. Note, that with the utilization of strategy graph sg1 formulas
could be checked, which could not be checked with sg2, and vice versa.

The SMT solver guided by strategy graph sg3 presents the best experimental
results. For both benchmark sets the most formulas could be checked by sg3
and only one example file has been missed. For the Meti-Tarski benchmark
sets a similar amount of time have been required as with strategy graph sg2.
In the second benchmark set, which have been preprocessed with iSAT, the
required time is significantly reduced. Improved results could be expected, as
both approaches of the strategy graphs sg1 and sg2 have been executed in
parallel.

The strategy graph sg4 added a condition for the single CADModule instance
such that it is only invoked for passed formulas, which contain strict inequal-
ities. Conditions can be meaningfully added to strategy graphs which intend
more concurrently running backends than CPU cores are available. Thereby the
number of concurrently running backends can dynamically be reduced, as it is
done with sg4. In case of the applied condition of sg4, the experimental results
are very close to those of sg3, as only two less example files could be checked.

Whereas strategy graph sg4 just pointed out, that the utilization of condi-
tions might be helpful, sg5 shows, that this can also be disadvantageous. The
SMT solver guided by strategy graph sg5 presents even worse results as the
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one guided by the sequential strategy sg2. For the first benchmark set around
the same time has been required for less formulas. For the second benchmark
set less formulas could be checked whereas even more time has been required.
Strategy graph sg5 illustrates, that for the given benchmark sets it is not ap-
propriate to use a CADModule instance whenever strict inequalities occur in an
NRA formula.

The experimental results illustrate, that the utilization of parallel strategies
is a successful approach for achieving more efficiency for SMT solving.

Meti-Tarski (50) iSAT-Meti-Tarski (50) all (100)
# time # time # time

sg1 32 122074.0 41 110211.0 73 232285.0
sat 26 96491.0 22 73609.0 48 170100.0
unsat 6 25583.0 19 36602.0 25 62185.0

sg2 39 82347.0 49 67954.0 88 150301.0
sat 22 47527.0 25 48600.0 47 96127.0
unsat 17 34820.0 24 19354.0 41 54174.0

sg3 44 82549.0 50 47551.0 94 130100.0
sat 29 65809.0 26 36009.0 55 101818.0
unsat 15 16740.0 24 11542.0 39 28282.0

sg4 43 75585.0 49 39147.0 92 114732.0
sat 28 56375.0 25 27836.0 53 84211.0
unsat 15 19210.0 24 11311.0 39 30521.0

sg5 36 82251.0 41 87971.0 77 170222.0
sat 28 56070.0 20 36129.0 48 92199.0
unsat 8 26181.0 21 51842.0 29 78023.0

Table 7.1: The experimental results.

7.2 Further benchmarks

As SMT-RAT offers many more module implementations as just the CADModule
and VSModule and the utilization of strategy graphs allows a rich possibility
of composing SMT-RAT modules, many more meaningful SMT solvers can be
created, evaluated and compared. Unfortunately, this must be proposed as
future work, because most of the SMT-RAT modules are not thread-safe yet.
Due to constantly occurring race conditions, further created SMT solvers could
not be tested properly. The problem actually does not relate to SMT-RAT
directly, but originates from the integrated library GiNaC [4], which is used
for symbolic computations within the decision procedure implementations. In
order to gain thread-safety for all SMT-RAT modules GiNaC must therefore be
adjusted, which is out of the scope of the thesis.
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Conclusion

The thesis introduced the new strategy graph approach and its complete imple-
mentation in the SMT-RAT application. The toolbox has thereby successfully
been enriched with the following main features:

• The strategy graph approach enhances the expressiveness of strategies by
enabling several alternative backends for a module instance.

• The high self-explanatory and easy to use GUI SMT-XRAT allows even
the inexperienced user to compose strategy graphs without burden.

• The applied parallelization approach of the manager supplies the exploita-
tion of further hardware resources for concurrently executed SMT-RAT
modules. Hereby general accelerations of solving processes can be as-
sumed due to the confident experimental results of the of the previous
chapter.

8.1 Future work

Future work is first of all required for achieving thread-safety for GiNaC and
thereby also for all SMT-RAT modules. After that, a lot of different strategy
graphs can be evaluated in order to gain further knowledge about the strengths
and weaknesses of the different decision procedures and in order to allow a
further fine-tuning of the applied parallelization approach.

Furthermore, during the implementation of the above stated features, many
ideas could be conceived, which have not been applied due to the shortness of
time. The most interesting ones are proposed as future work in the following.

8.1.1 Backlinks

The currently underlying structure of a strategy graph is an acyclic, directed
and weakly connected graph. It is useful to further allow the construction
of cyclic graphs in order to introduce the concept of backlinks. A backlink
is a module-backend-relation from a module instance to a preceding module
instance in the strategy graph. This is useful in case a sequential sequence of
SMT-RAT modules can logically be compounded to a single backend, which
can recursively invoke itself on its calculated passed formulas. The concept
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M1 M2 · · · Mn
...

backlink

Figure 8.1: The concept of backlink utilization.

of backlinks is illustrated by Figure 8.1, where the depicted module instances
M1 to Mn are logically compounded to one backend. The displayed backlink
signalizes, that this backend can invoke further module instances and itself
on a passed formula. Note, that when a compounded backend invokes itself,
a new backend instance is created, which means the same composition with
new module instances must be instantiated for each invocation. Compounding
module instances to one backend is meaningful, in case the contained decision
procedures and simplifying approaches can be iteratively applied on a formula
and its thereby arising passed formulas.

8.1.2 Favoring infeasible subsets over interruptions

When a module instance invokes several concurrently running backends, and one
calculates the unsatisfiability of the passed formula, it might be useful to leave
the remaining backends running instead of interrupting them, as mentioned in
Chapter 6. When preventing an interruption further and maybe even better
infeasible subsets could be obtained from the remaining backends. For this
approach an appropriate balance between further required processing time and
the expected quality of the obtained infeasible subsets must be found, which
could be achieved by machine learning, for instance.

8.1.3 Shared pool of infeasible subsets

The utilization of parallel strategies implies, that several module instances are
checking different passed formulas of the same initial NRA formula. For this
purpose, it is meaningful to propose a shared pool of infeasible subsets, which
can be accessed and enhanced by all module instances of a strategy graph in
order to provide a common overall knowledge to all of them.

8.1.4 Parallel decision procedures

The applied parallelization approach of SMT-RAT is just one step towards con-
currently working SMT solvers. Furthermore, parallel working decision proce-
dures are required, which means, that they itself need to scalable divide their
task of checking a passed formula into several subproblems, which can be con-
currently processed. In this case, even sequential strategies could fully exploit
multiprocessing, as a single decision procedure can thereby occupy all available
CPU cores for its calculation. Moreover, as stated in Chapter 6, the applied
parallelization approach might utilize less CPU cores than available, even for
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parallel strategies. The reason is, that the approach only intends the usage
of one core for each backend, but in case of applying this proposal, remaining
available CPU cores could be utilized by parallel working decision procedures.

8.1.5 Message Passing Interface

After applying the possibility to create SMT solvers containing parallel decision
procedures, the parallelization approach can be further extended by the utiliza-
tion of the Message Passing Interface (MPI). MPI can enable the possibility to
distribute the calculation of the solving process even among multiple computers,
for example using grid computing or supercomputer. This is especially useful
for hard to solve problems, which require a lot of time, in order to justify the
further induced overhead.
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