
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

LEHRSTUHL FÜR THEORIE HYBRIDER SYSTEME

Bachelor Thesis

An Extension of the GiNaCRA Library for the
Cylindrical Algebraic Decomposition

Joachim Redies
Matrikelnr. 289502

1. Examiner: Prof. Dr. Erika Ábrahám
2. Examiner: Prof. Dr. Peter Rossmanith

Supervisor: Ulrich Loup

January 19, 2012

2

Erklärung

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate
kenntlich gemacht habe.

Aachen, den 19.01.2012

(Joachim Redies)

3

4

Contents

1 Motivation 7

1.1 Problem formulation . 7
1.2 Applications . 8
1.3 Related work . 9
1.4 Contribution . 9

2 Real Algebra 11

2.1 Polynomials . 11
2.2 Field extensions . 12
2.3 Sturm sequences . 14
2.4 Representation of roots . 16
2.5 Properties of polynomial roots 18

3 Cylindrical algebraic decomposition 23

3.1 Preliminaries . 23
3.2 Proof of existence . 27
3.3 Algorithm . 30

3.3.1 Elimination phase . 31
3.3.2 Base phase . 33
3.3.3 Lifting phase . 34

4 Satisfiability Modulo Theories 41

4.1 Satisfiability . 41
4.2 Satisfiability Modulo Theories . 42
4.3 Preparations for less-lazy solving of real algebra constraints . . 44

5 Implementation 47

5.1 GiNaC . 47
5.2 GiNaCRA . 47
5.3 Implemented methods . 47

6 Conclusion 51

5

6 CONTENTS

Chapter 1

Motivation

In the first section of this chapter, we describe the general problem. After-
wards, there will be a short section about possible applications in the context
of hybrid systems.

1.1 Problem formulation

In this paper we study (in)equation systems of multivariate polynomials with
real-valued variables and rational coefficients. The aim is to check such (in)equation
systems for satisfiability and to compute a satisfying solution if the system is
satisfiable.

Example 1. Let be given two polynomial equations (x− 1)2 + (y− 1)2 − 1 = 0
and x− y = 0. Geometric interpretations of these equations: The first one is
a circle and the second is a line in the 2-dimensional euclidian vector space
(cf. Figure 1). Common solutions are given by the intersection points of the
circle and the line. In general, the satisfiablity problem can be lead back to
determining the common real roots fo multivariate polynomials.

x

y

Figure 1 – The common roots of circle and a line.

For our example the solutions are ((2−
√

2)
2 , (2−

√
2)

2) and ((2+
√

2)
2 , (2+

√
2)

2).

In this work, we present a technique to represent and find solutions for multi-
variate polynomial (in)equation systems. In contrast to numerical approaches,

7

8 CHAPTER 1. MOTIVATION

exact solutions are provided. The decision prodecure does not suffer from nu-
merical instability. However, the procedures have a much greater complexity
than numerical approaches solving similar problems. In fact, the basic pre-
sented algorithm has doubly exponential complexity. Nevertheless, we sketch
techniques to prune the search.
Despite the complexity drawbacks, the procedure has a structure so that it can
be extended not only to solve simple polynomial (in)equation systems but also
arbitrary Boolean combinations of polynomial (in)equations.

Example 2. Given different polynomial constraints in a boolean structure:

Φ = ∃x∃y (x− 1)2 + (y− 1)2 − 1 = 0∧ (x− y = 0∨ x− y− 1 = 0)

Then, the solutions of our example above are models of the formula. Moreover,
there are two additional models (1, 0) and (2, 1) satisfying the formula Φ.

1.2 Applications

The techniques presented in this paper can be used for model checking in - for
instance - hybrid systems. As an examplary application, we sketch the well
know bouncing ball example.

x = 16
v = 0
t = 0

x ≥ 0
ẋ = v

v̇ = −10
ṫ = 1

x = 0
t > 0

x′ := x
v′ :=
− v

2
t′ := 0

Figure 2 – Hybrid Automaton Model of a bouncing ball.

Example 3. A ball is dropped from an inital height x0 = 16 at time t0 = 0. At
this point, its velocity is v0 = 0. The derivate of v0 is given by −10. From
a physical perspective v̇ is the accerlation (−10 ≈ 9, 81 which is the gravity
of earth). The ball keeps falling and accerlating until it hits the ground. In
the hybrid automaton, contact with the ground is modeled with the self loop
which is guarded by x = 0 ∧ t > 0. The invariant x ≥ 0 of the only location
assures that the discrete transition is taken when the ball reaches the height 0.
The ball bounces up in opposite direction with half of the speed. Nevertheless,
the accerlation is still negative so the ball will start falling eventually. x′ = x
denotes that a new variable x1 is introduced with the value of x0. The same
notation is used to introduce v1 and t1.
For a finite number of bounces k we formalize the above presented model with
the help of polynomials. The formula consists of constraints denoted by φ for
the discret part (the self loop) and constraints denoted by ψ for the continous
part (the single location).

φ(i) := xi = 0 ∧ ti > 0 ∧ vi+1 = −vi

2
∧ xi+1 = xi ∧ ti+1 = 0

1.3. RELATED WORK 9

ψ(i) := xi+1 ≥ 0∧ ti+1 > ti ∧ vi+1 = vi − 10ti+1 ∧ xi+1 = xi − 5t2
i+1

The constraints for velocity vi and position of the ball xi can be deduced from
the model with integral calculus. The overall formula to represent k bounces
is given by

ϕ(k) := x0 = 16 ∧ v0 = 0 ∧ t0 = 0 ∧
k
∧

i=0

φ(i) ∧ ψ(i).

The formula is a conjunction of polynomial constraints. Consequently, we are
able to check whether certain conditions hold for this hybrid system with the
help of the techniques presented in this paper. For instance, whether the ball
exceeds a certain height x in the i-th bounce:

ϕ(k) ∧ xi ≥ x.

1.3 Related work

Tarski showed that the first-order theory of real numbers under multiplica-
tion and addition is decidable by providing a decision procedure [26]. Nev-
ertheless, this decision procedure has a non-elementary complexity bound. A
doubly-exponential time decision procedure called cylindrical algebraic de-
composition for real algebra was introduced by Collins in 1974 [8]. There are
several improvements of the Collins’ basic algorithm [19, 13, 9, 6].
There several implementions of the basic algorithms and its improvements
available: QEPCAD [5] is a C++ implementation of the cylindrical algebraic
decomposition and its improvements by [13]. Redlog [12] is a package of the
computer algebra system Reduce which is based on Lisp. There is also an im-
plementation within the Mathematica computer algebra system [25]. All the
mentoined implementations are closed-source projects. For Mathematica we
did not find a distributed specification of which algorithms and improvements
are implemented.
Apart from cylindrical algebraic decomposition there are other methods to
solve polynomial (in)equations systems like Gröbner basis and the virtual sub-
stiution method.
There is a project called Z3 with the aim to embed different theory solvers into
a SMT framework. Theory solvers for linear arithmetics and array theory are
used in this project. [11]

1.4 Contribution

In this work, we present the basic theoretical foundations of the cylindrical al-
gebraic decomposition. We describe all methods necessary to calculate a cylin-
drical algebraic decomposition for a given polynomial system. Independent of

10 CHAPTER 1. MOTIVATION

the actual constraints all possible constraints can be tested on a complete cylin-
drical algebraic decomposition. Together with this paper, an implementation
of the methods was developed within the GiNaCRA framework [17].
There are several methods to represent a solution of the polynomial (in)equation
system. The interval representation is a representation of polynomial roots
which can be directly transformed into an approximate numeric representa-
tion. These approximation can be refined without suffering from numeric in-
stability. It is possible to check the satisfiability of polynomial (in)equation
systems with other representations. Nevertheless, a cylindrical algebraic de-
composition implementation with interval representation provides both the
satisfiability and a possible sample solution which can be approximated in a
numeric representation.
Furthermore, we describe and illustrate how this implementation can be used
to implement a theory solver which is suited for embedding into an incremen-
tal SMT-Solver.
To our knowledge, this is the first implementation of the cylindrical algebraic
decomposition with interval representations. Furthermore, GiNaCRA is an ex-
tendable open-source C++ library unlike many other implementations. More-
over, those are often closed-source projects or part of computer algebra sys-
tems.

Chapter 2

Real Algebra

In this chapter, the algebraic foundations of the problem and of the presented
approach are given. The first section is about the definition and basic notations
of polynomials. Subsequently, Section 2.2 which is about basic properties of
different fields of polynomials and different field extensions that are necessary
to qualify the solutions. In Section 2.3, we present a general decision procedure
to isolate roots of univariate polynomials with rational coefficients. This is an
important foundation for the techniques presented in Chapter 3. The last two
sections are about basic properties of polynomial roots which are necessary for
Chapter 3.

2.1 Polynomials

Assume in the following an integral domain (D,+, ·), i.e., a commutative ring
that has no zero divisors and which is not the trivial ring D = {0}. Assume
furthermore that (F,+, ·) is the quotient field of D and that F is the smallest
field in which D can be embedded.
An expression

f (X) =
n

∑
i=0

aiX
i

is a polynomial in X with coefficients ai in a ring (D,+, ·). D[X] denotes the set
of univariate polynomials in the variable X with coefficients in D. The set of
univariate polynomials D[X] forms a ring themself.
The set of multivariate polynomials in k variables is defined recursively:

D[X1, X2 . . . Xn] := D[X1, X2 . . . Xn−1][Xn]

That means, a polynomial in D[X1, X2 . . . Xn] is a polynomial in Xn with coef-
ficients in D[X1, X2, . . . Xn−1]. [20, p. 35] We call this variable Xn the main vari-
able. We regard multivariate polynomials as parameterized univariate polyno-
mials. Thus, we can apply algorithms and definitions for univariate polyno-
mials to multivariate polynomials.

11

12 CHAPTER 2. REAL ALGEBRA

Let P be a polynomial in F[X]:

P = anXn + an−1Xn−1 + · · ·+ a1X + a0.

Then, the degree n of the polynomial P is denoted by deg(P). We denote the
leading coefficient an by lcoeff(P). The i-th coefficient ai is denoted by coeffi(P).
The first derivate P′ of the polynomial P is given by

P = nanXn−1 + (n− 1)an−1Xn−2 + · · ·+ a1.

Given two polynomials P, Q ∈ F[X] we call the polynomials similar if there
exists an a ∈ F such that P = aQ.
Let Q ∈ F[X] be another non-zero polynomial. Then A is the quotient denoted
by quo(P, Q) and R is the remainder rem(P, Q) in the equation with deg(P) <
deg(Q)

P = AQ + R.

We say that Q ∈ F[X] is a divisor of P ∈ F[X] if there exists a polynomial
A ∈ F[X] such that

P = AQ.

The greatest common divisor gcd(P, Q) of two non-zero polynomials P, Q ∈ F[X]
is the polynomial with maximal degree which is both divisor of P and Q. If
not both P and Q are zero then there exists a greatest common divisor which
is unique. [3, p. 14ff] [20, p. 35f]
Let A ∈ Fn×n be a quadratic matrix, then we denote the determinant of the
matrix by det(A) = |A|. [28]

Definition 1 (Truncation). Let P = anXn + · · ·+ a0 ∈ F[x]. Then for 0 ≤ i ≤ n
we define

Trui(P) := P = aiX
i + · · ·+ a0.

The set of truncations of a polynomial P ∈ F[x] denoted by Tru(P) is

Tru(P) :=
{ {P} if lcoeff(P) ∈ F ∧ deg(P) = 0
{P} ∪ Tru(Trudeg(P)−1(P)) otherwise.

[3, p. 21f] [14, p. 19]

2.2 Field extensions

Definition 2. A field is an algebraic extension of the field F if every element of L
is a root of a polynomial with coefficients in F and if L ⊃ F is a field extension
of F. A field F is called algebraically closed if every non-constant univariate poly-
nomial P ∈ F[X] has a root in F. The minimal algebraically closed extension
of a field F is called the algebraic closure of F.

2.2. FIELD EXTENSIONS 13

Example 4. The field of the real numbers is not algebraically closed. For in-
stance, the polynomial x2 + 1 has no roots in R. An algebraic field extension
of the real numbers is the field of the complex numbers C. Indeed, it is the
minimal algebraic extension which is algebraically closed.

The focus of this paper is the field of polynomials with coefficients in Q. We
present a decision procedure for constraints over rational multivariate polyno-
mials.
The expressive power of the polynomial ring Q[X] is equivalent to Z[X]. An
arbitrary polynomial in P ∈ Q[X]

P =
pn

qn
Xn +

pn−1

qn−1
Xn−1 + · · ·+ p0

q0

can be transformed into a polynomial Q ∈ Z[X]

Q =
n

∑
i=0

qi · P(X)

with the same roots.
The field of rational numbers is not algebraically closed. For example x2 − 2
has no root in Q.

Definition 3. The algebraic closure of Q is called the field of the algebraic num-
bers. The algebraic numbers are those numbers which are a root of a non-zero
polynomial with integer coefficients. The set of algebraic numbers is denoted
by A. [27]

Example 5. There are both irrational numbers e.g.
√

2 (given by x2 − 2) and
complex numbers e.g. i (given by x2 + 1) within the algebraic numbers. Num-
bers which are not algebraic are called transcendental (e.g. π is a real transcen-
dental number because there is no integer polynomial which has a root that
equals to π).

Definition 4 (Real field). For a field, F we denote by F(2) the set of squares of
elements of F. Furthermore, Σ F(2) is the set of sums of squares of elements of
F. A field F is called real if and only if−1 /∈ Σ F(2). A field F is called real closed
if it is real and every polynomial in F[X] of odd degree has a root in F.

We need this property later on because our basic decision procedure requires a
real closed field. The field of the real numbers R is real closed. In the following
assume F to be a real closed field. As this paper focuses on polynomials with
integer coefficients it is sufficient to regard a subset of the real numbers:

Definition 5 (Real algebraic numbers). The real algebraic numbers Ralg = A∩R

are the real numbers which are root of a univariate polynomial with integer
coefficients.

The real algebraic numbers form a real closed field. Nevertheless, the field
Ralg is not algebraically closed as it does not contain complex roots. For our
purpose, the property that they are real closed is sufficient. [20, p. 297ff] [3,
p. 29f]

14 CHAPTER 2. REAL ALGEBRA

2.3 Sturm sequences

Definition 6 (Signed remainder sequence). Let P, Q ∈ F[X] be non-zero uni-
variate polynomials then the signed remainder sequence SRemS(P, Q) is a se-
quence (SRemS0(P, Q), SRemS1(P, Q), . . . SRemSk(P, Q)) of polynomials in F[X]
defined by

SRemS0(P, Q) := P

SRemS1(P, Q) := Q

...

SRemSk(P, Q) := − rem(SRemSk−2(P, Q), SRemSk−1(P, Q))

0 = − rem(SRemSk−1(P, Q), SRemSk(P, Q)).

We call SRemS(P, P′) a Sturm sequence or Sturm chain.

Intuitively, the signed remainder sequence is similar to the Euclidean algo-
rithm for computation of the greatest common divisor. In contrast to the Eu-
clidean algorithm, it has the negative sign in front of the recursive expression.
Thus, it differs slightly from the polynomial remainder sequence produced by
the Euclidean algorithm.
The algorithm itself has a complexity ofO(n2) with n = max(deg(P), deg(Q))
but it suffers from a significant growth of the coefficients which makes calcu-
lations slow.
We introduce the signum function [29] sgn : R → {−1, 0, 1} for the set of real
numbers:

sgn(x) :=

1 x > 0
0 x = 0
−1 x < 0.

Definition 7 (Number of sign variations). Let a = (a1, a2 . . . an) be a sequence
of non-zero real numbers. Then the number of sign variations Var(a) is given by

Var(a1) := 0

Var(a1, . . . , an) :=
{

Var(a1, . . . , an−1) if sgn(an−1) = sgn(an)
Var(a1, . . . , an−1) + 1 otherwise.

If P = (P1, . . . , Pn) is a sequence of polynomials in F[X] and a ∈ F then
Var(P ; a) := Var(P1(a), . . . , Pn(a)). Furthermore, we define Var(P ; a, b) :=
Var(P ; a)−Var(P ; b).

Theorem 1 (Sturm’s theorem). Let F be a real closed field, a, b ∈ F, a < b and
P ∈ F[X] be a non-zero polynomial with P(a) 6= 0 and P(b) 6= 0. Then

Var(SRemS(P, P′); a, b))

is the number of roots of P in F in the interval (a, b).

2.3. STURM SEQUENCES 15

Theorem 2 (Cauchy bound). [7, p. 122ff] [20, p. 309ff] [3, p. 52] Let F be a real
closed field for every polynomial P = apXp + · · · + aqXq ∈ F[X], p > q, aqap 6= 0
every real root z of P is bounded by

|z| < ∑
q≤i≤p

∣

∣

∣

∣

ai

ap

∣

∣

∣

∣

.

This bound is called the Cauchy bound.

The Cauchy bound provides an upper and lower bound for the search space
for real roots of polynomials in a real closed field. However, the search space
consists of infinitely many real algebraic numbers. Nevertheless, we can use
Sturm’s theorem to divide the search space: The basic idea is to divide the in-
terval (−z, z) into different sub intervals until each interval contains exactly
one root. Details on the algorithm are not part of this paper but we introduce
a function isolateRoots(P) := (a1, b1), . . . (an, bn) which gives us a sequence
of disjoint intervals each containing exactly one root of the polynomial P. Fur-
thermore, countRoots(P) denotes the number of distinct roots of P and the left
(respectively right) limit of an open interval o is denoted by o. left (respectively
o. right). Additionally, for a finite set P ⊂ F[X] of polynomials we define

isolateRoots(P) :=
⋃

P∈P
isolateRoots(P)

and

countRoots(P) :=

∣

∣

∣

∣

∣

⋃

P∈P
isolateRoots(P).

∣

∣

∣

∣

∣

To compute the above sets of roots, we must be able to test two real algebraic
numbers for equality. There is an algorithm to compute the additive inverse
of a real algebraic number [20, p. 331] and an algorithm to compute the sum of
two real algebraic numbers [20, p. 332]. To check whether two real algebraic
numbers α, β are equal, we compute the additive inverse −α of α and check
whether −α + β = 0.

Example 6. Given the polynomial P := X2 − 3X + 1 ∈ Q[X]. The Sturm se-
quence SRemS(P, P′) is

X2 − 3X + 1

2X − 3X

5
4

The Cauchy bound is given by
∣

∣

∣

∣

1
1

∣

∣

∣

∣

+

∣

∣

∣

∣

−3
1

∣

∣

∣

∣

+

∣

∣

∣

∣

1
1

∣

∣

∣

∣

= 5.

16 CHAPTER 2. REAL ALGEBRA

Figure 3 – The polynomial X2 − 3X + 1.

Thus, (−5, 5) is the maximal interval to search for real roots. We compute
Var(SRemS(P, P′),−5, 5) to determine the number of real roots in P:.

Var(SRemS(P, P′);−5, 5) = Var(SRemS(P, P′),−5)−Var(SRemS(P, P′), 5))

= 2

The sign variations of (−5, 5) are bigger than 1. Therefor, we split (−5, 5) into
sub-intervals (−5, 0) and (0, 5), and compute the sign variations of (−5, 0)
and (0, 5). Note that 0 is not a root of P. This procedure is repeated until all
intervals have a sign variation of 1 or 0.

2.4 Representation of roots

As we have seen in the section on Sturm sequences above, our decision pro-
cedure does not compute a numeric representation of the roots. Instead, we
compute an interval for each real root with bounds in Q containing the root.
This corresponds to the representation of real algebraic numbers we use in this
paper:

Definition 8 (Interval representation). A pair (P, o) with P ∈ F[X] and o an
interval (a, b) with a < b, a, b ∈ Q and Var(SRemS(P, P′); a, b) = 1 is called
interval representation and represents a real algebraic number. In addition, if
P(a) = 0 then the real algebraic number a is represented by (P, [a, a]). Note
that [a, a] is a closed interval containing a. For convenience (and for memory
efficiency), we write the value of a ∈ F called numeric representation.

There are other representations of real algebraic numbers like radical expression.
However, in general the roots of a polynomial with integer coefficients are not
representable with radical expressions [2].

2.4. REPRESENTATION OF ROOTS 17

In addition, there are other representations which are capable to represent all
real algebraic numbers like sign representation or order representation. [20,
p. 327] In this work, we present all techinques and algorithms only for interval
representations.
We can easily refine an interval representation of a root given by a interval
and the polynomial. The presented algorithm is a combination of the com-
monly known bisection algorithm [22, p. 250ff] and a special case treat with
Sturm sequences [20, p. 329ff]. We try to avoid the calculation of sign vari-
ations in the Sturm sequence and we try to avoid the calculation of the Sturm
sequence itself. The complexity of the calculation of the Sturm sequence is in
O(deg(P)4). However, the growth of the coefficients in the Sturm sequence
is significant. [14, p. 11ff] Thus, even the evaluation of the Sturm sequence at
different points can be a hard task. The problem is discussed later on in the
section about subresultants.
To avoid unnecessary computations like refinements, we provide procedures
to intelligently guess a numeric representation of roots (like integers or frac-
tions with small numerator and denominators) whenever possible.

Algorithm 1 [Refine]: For an interval representation of a real algebraic number
calculate a representation (P, (a′, b′)) with |a′ − b′| < ε.

Require: P ∈ Z[X], ε > 0, a < b and ε, a, b ∈ R

Output: Interval representation α = (P, (a′, b′) with a ≤ a′ ≤ b′ ≤ b and
|b′ − a′| ≤ ε or (P, [c, c]) with P(c) = 0

sturmSequence← 0
while |a− b| > ε do

c← a+b
2

if P(c) = 0 then

return (P, [c, c])
end if

if P(a)P(b) < 0 then

if P(a)P(c) < 0 then

b← c
else

a← c
end if

else
if sturmSequence = 0 then

sturmSequence← calculateSturmSequence(P)
end if

if Var(sturmSequence; a, c) = 1 then

b← c
else

a← c
end if

end if

end while

18 CHAPTER 2. REAL ALGEBRA

The output of the algorithm is either an exact numeric representation of the
root or a refined interval representation.

2.5 Properties of polynomial roots

Lemma 1 (Common roots). Let P, Q ∈ F[X] be two non-zero polynomials. Then
the number c ∈N≥0 of P and Q in F of common roots is given by

c = deg(gcd(P, Q)).

Proof. Assume p1, . . . , ps are the distinct roots of P and q1, . . . , qt are the distinct
roots of Q. If s = 0 and t = 0 then gcd(P, Q) is a real number and thus
deg(gcd(P, Q)) = 0. Otherwise, P and Q can be written in the form

P = (X − p1)
a1(X − p2)

a2 . . . (X − ps)
as · zp

Q = (X− q1)
b1(X − q2)

b2 . . . (X − qt)
bt · zq

where a1, . . . , as and b1, . . . , bt are the multiplicities of the roots and zp, zq ∈
F, zp 6= 0, zq 6= 0. Moreover, the greatest common divisor can be written in the
form

gcd(P, Q) = (x− r1)
c1 . . . (x− ru)

cu · z
with z ∈ F, z 6= 0, {r1, . . . , ru} = {p1, . . . , ps} ∩ {q1, . . . qt} and for each ri =
pj = qk and i, j, k ∈ {1, . . . , n} we have ci = min(aj, bk). We see that the
greatest common divisor’s degree is the number of the common roots of P and
Q. [14, p. 10] [3, p. 355]

Lemma 2 (Distinct roots). Given a polynomial P ∈ F[X], the number of distinct
roots of P in the algebraic closure of F is

d = deg(P)− deg(gcd(P, P′)).

Proof. If z1, . . . , zn are the distinct roots of the polynomial P and µ1, . . . , µn are
their multiplicities, we see that

P = z ·
n

∏
i=1

(x− zi)
µi .

Moreover, we rearrange the derivate P′:

P′ = z · (
n

∑
i=1

(x− zi)
µi−1

n

∏
i=1 j 6=i

(x− zj)
µ j)

= z · (
n

∑
i=1

(
n

∏
j=1

(x− zj)
µ j−1)(

n

∏
j=1 j 6=i

(x− zj)))

= z · (
n

∏
i=1

(x− zi)
µi−1) · (

n

∑
i=1

(
n

∏
j=1 j 6=i

(x− zj)))

2.5. PROPERTIES OF POLYNOMIAL ROOTS 19

Therefore, we see

gcd(P, P′) = (X − z1)
µ1−1 . . . (X − zn)

µn−1 · z
with z ∈ F. Moreover, deg(P) = ∑

n
i=1 µi and deg(gcd(P, P′)) = ∑

n
i=1(µi − 1),

thus we see that d = n, i.e., d is the number of distinct roots of P. [14, p. 10f]
[3, p. 355]

The two lemmas above give us a way to handle univariate polynomials. Nev-
ertheless, they can not be directly applied to parameterized univariate polyno-
mials.
Example 7. Let P ∈ Z[a, b][X] be the following polynomial:

(a− b)X3 + aX2 + bX + 1.

It is not possible to state a general proposition on the number of roots of P in
A knowing the values of a and b. Therefor, we have to distinguish between
three cases:

- a 6= b: deg(P) = 3

- a = b and a 6= 0: deg(P) = 2

- a = b = 0: deg(P) = 0

The total number of roots depends on the parameters.
The above lemmas are essential for the cylindrical algebraic decomposition.
An efficient way to calculate the greatest common divisor of two polynomi-
als is necessary. For two polynomials P, Q the k-th element in the signed re-
mainder sequence (SRemS0(P, Q), . . . SRemSk(P, Q)) is the greatest common
divisor of P and Q. In fact, the elements of the signed remainder sequence are
similar up to signs to the polynomials produced by the well-known Euclidean
algorithm. [3, p. 16]
Example 8. Given a polynomial P = X7 + X6 − X5 + 1, the signed remainder
sequence of P and P′ is

X7 + X6 − X5 + 1

7X6 + 6X5 − 5X4

20
49

X5 − 5
49

X4 − 1

49
16

X4 − 343
20

X − 1519
80

− 16
7

X2 − 96
49

X +
80
49

799
35

X +
4429
280

− 4833409
2553604

20 CHAPTER 2. REAL ALGEBRA

The bit size of the coefficients in this example grows significantly. This has sev-
eral drawbacks: The memory consumption of the sequence grows, the calcu-
lations necessary to compute the sequence are harder and even the evaluation
of the sequence for specific numbers is harder. Thus, we need a way to handle
deg(gcd(P, Q)) easier. [14] [3, p. 302ff]

Definition 9 (Signed subresultants sequence). Let P, Q ∈ F[X] be two polyno-
mials

P := amXm + am−1Xm−1 + · · ·+ a0

Q := bnXn + bn−1Xn−1 + · · ·+ b0

with m > n. Then, we define the signed subresultants sequence

(sResP0(P, Q), . . . sResPn(P, Q))

as follows:

sResP0(P, Q) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

am . . . a1 a0 Xn−1P
.

...
am . . . a1 a0 XP

am . . . a1 P
bn . . . b1 b0 Xm−1Q

.
...

bn . . . b1 b0 XQ
bn . . . b1 Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For all 0 < i < n

sResPi(P, Q) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

am . . . a1 a0 Xn−i−1P
.

...
am . . . ai+1 ai XP

am . . . ai+1 P
bn . . . b1 b0 Xm−i−1Q

.
...

bn . . . bi+1 bi XQ
bn . . . bi+1 Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In addition, we define sResPn(P, Q) = P. We call sResPi(P, Q) the i-th subre-
sultant for P and Q. Moreover, the i-th principal subresultant coefficient denoted
by sResi(P, Q) is lcoeff(sResPi(P, Q)). [20, p. 250ff] [3, p. 355ff]

We will not describe an algorithm to compute signed subresultants in this pa-
per. Nevertheless, we provide an implementation of a fast signed subresul-
tants computation algorithm described in [16]. The complexity is bounded by
O(deg(P)deg(Q)).

2.5. PROPERTIES OF POLYNOMIAL ROOTS 21

Example 9. Given a polynomial P = X7 +X6−X5 + 1 and P′ = X6 + 6X5− 5X4

from the example above, the signed subresultants sequence for P and P′ is

X7 + X6 − X5 + 1

7X6 + 6X5 − 5X4

20X5 − 5X4 − 49

25X4 − 140X − 155

− 175X2 − 150X + 125

− 1225X2 − 1050X + 875

63920X + 44290

− 2761948.

Even though, the coefficients are bigger than the coefficients of the signed re-
mainder sequence in the example above, the bit size is much smaller. In fact,
the bit size of the coefficients for the signed subresultants sequence of two
polynomials P, Q ∈ Z[X] is bound by O((τ + ρ)(p + q)) where p, q are the
degrees of the polynomials, τ is the maximum bit size of coefficients in P and
Q and ρ is the bit size of p + q. [3, p. 315]
As the signed subresultants sequence’s elements are similar to the elements of
the signed remainder sequences, it can be substituted for many applications.
For example, if not the exact coefficients but the degree of certain elements in
the sequence are of interest.
However, the calculation of the signed remainder sequence to obtain the num-
ber of sign variants in a certain interval (Sturm’s theorem) cannot be avoided
as the exact evaluation of the sequence’s elements is necessary.

Lemma 3. [14] Let P, Q ∈ F[X] be two polynomials with deg(P) > deg(Q). Then
deg(gcd(P, Q)) ≥ j with 0 ≤ j ≤ deg(Q) if and only if

sRes0(P, Q) = sRes1(P, Q) = · · · = sResj−1(P, Q) = 0.

Consequently, subresultants can express both properties from Lemma 1 and
2. This method does not suffer from the bit-size growth of the coefficients as
much as the gcd-calculation with the signed remainder sequence. This is the
fundamental basis for the cylindrical algebraic decomposition.

22 CHAPTER 2. REAL ALGEBRA

Chapter 3

Cylindrical algebraic
decomposition

In this chapter, we describe the decision procedure for rational multivariate
polynomials. It is an extension which uses the Sturm/Cauchy decision proce-
dure for rational univariate polynomials as a base. The basic idea is to project
the multivariate polynomials to a set of univariate polynomials in a certain
way and to interpret the results to obtain multivariate solutions.
The first section is about basic notations to define structures which are nec-
essary for the proof presented in the next section and the description of the
algorithm in the section thereafter.
In the following, F is a real closed field. The provided algorithm is imple-
mented for the field Q and its real closure Ralg. Nevertheless, we want to
describe the methods more general for real closed fields because most of the
methods can be applied to other fields and their algebraic closures.

3.1 Preliminaries

Definition 10 (Semi-algebraic set). Let F be a real closed field. Then, we call
S ⊂ Fk a semi-algebraic subset [3, p. 57ff] of Fk if it can be constructed from
finitely many applications of union, intersection and complementation of sets
of the form

{x ∈ Fk | P(x) ≥ 0}
for some P ∈ F[X1, . . . , Xk]. Each semi-algebraic set can be constructed as a
finite union of sets of the form

{x ∈ Fk | P(x) ♦ 0}
with ♦ ∈ {=, 6=,<,≤,>,≥} and P ∈ F[X1, . . . Xk].

We use a canonical projection denoted by π and defined as follows:

Definition 11 (Canonical Projection). Given a semi-algebraic set

S = {(x1, . . . , xk+1) ∈ Fk+1 | P(x1, . . . xk+1) ♦ 0}.

23

24 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

for some P ∈ F[x1, . . . , xk+1] and ♦ ∈ {=, 6=,<,≤,>,≥}. Then the canonical
projection [3, p. 57ff] of S is

π(S) = {(x0, x1, . . . , xk) ∈ Fk | ∃xk+1 ∈ F P(x1, . . . , xk+1) ♦ 0}.

Example 10. For instance the semi-algebraic set

C = {(x, y) ∈ Ralg | (x− 2)2 + (y− 2)2 − 1 ≤ 0}
has the canonical projection

π(C) = {x ∈ Ralg | 1 ≤ x ≤ 3}.
Figure 4 illustrates the sets C and π(C).

x

y

Figure 4 – The set C and its projection π(C) (in blue).

Given a set S ⊂ Fk for some k ∈N we call S× F the cylinder of S. Figure 5 illus-
trates the cylinder of the set π(C) from the previous example. Applied to the
example above, the cylinder of π(C) is not a circle but an infinite rectangular
shape given by {(x, y) ∈ Ralg | 1 ≤ x ≤ 3}.

x

y

Figure 5 – The cylinder of π(C).

Definition 12 (Decomposition). Given S ⊂ Fk then we call a finite sequence of
disjoint subsets S1, . . . Sn ⊂ S a decomposition of S if

3.1. PRELIMINARIES 25

S =
n
⋃

i=1

Si ∧ ∀i, j ∈ {1, . . . n} Si ∩ Sj 6= ∅⇒ i = j.

A decomposition is semi-algebraic if its components are semi-algebraic sets.

Definition 13 (Stack). Assume a real closed field F, k ∈ N>0, a set R ⊂ Fk and
a cylinder S = R× F. A stack over R is a finite sequence of f1, . . . fn functions of
type R → S with fi(x) < fi+1(x) for all x ∈ F for all 1 ≤ i < n. The functions
f1, . . . , fn define a decomposition of the cylinder S into 2n + 1 subsets:

- n subsets of the form

{(x, y) ∈ R× F | y = fi(x)} ⊂ S

- n− 1 subsets of the form

{(x, y) ∈ R× F | fi(x) < y < fi+1(x)} ⊂ S

- 1 subset of the form

{(x, y) ∈ R× F | y < f1(x)} ⊂ S

- 1 subset of the form

{(x, y) ∈ R× F | fn(x) < y} ⊂ S

Example 11. To understand the concept of stacks, we define three functions
which decompose the cylinder of the open interval (0, 1):

f1 : (0, 1)→ Ralg, x4 − 1
2

f2 : (0, 1)→ Ralg,−x2 + x +
1
2

f3 : (0, 1)→ Ralg,−x4 + x + 1

Due to the definition of stacks, we have 7 disjoint subsets of (0, 1)×Ralg: Three
subsets defined by the graphs of the functions, two subsets which are between
f1 and f2, and between f2 and f3, and the two subsets of points which are above
the graph of f1 and below the graph of f3. Even though f2(1) = f1(1), it is a
valid stack because (0, 1) is an open interval. We see that the decomposition
induced by the stack is semi-algebraic. Figure 6 illustrates the example.

Definition 14 (Cylindrical decomposition). [14] A finite sequence S = (S1, S2 . . . Sk)
is a cylindrical decomposition of Fk if

- S1 is a decomposition of F which only consists of open intervals and
points

26 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Figure 6 – The stack (f1, f2, f3) over (0, 1).

- For each 1 < i ≤ k, let Si−1 be the decomposition Si−1,1, . . . , Si−1,µi−1 of
Fi−1. Then for each i ≤ j ≤ µi−1 there is a stack defining a decomposition
of Si,j of Si−1,j × F.

Cylindrical decompositions induce a tree structure into multidimensional sets
which we make use of later on when we present algorithms to generate de-
compositions.

Example 12. We decompose the set R2 into subsets in the above mentioned
cylindrical way. Initially, we decompose the 1-dimensional set R:

R = (−∞, 0) ∪ 0∪ (0, ∞)

We decompose R2 into subsets defined by the stack only consisting of the func-
tion f (x1) = x1. The resulting decomposition is visualized in Figure 7. The
root node, represents the empty decomposition of the 0-dimensional space.

(−∞, 0)

{x1 < x2}
⊂ (−∞, 0)×R

{x1 = x2}
⊂ (−∞, 0)×R

{x1 > x2}
⊂ (−∞, 0)×R

{0}

{0, 0)}

(0, ∞)

{x1 < x2}
⊂ (0, ∞)×R

{x1 = x2}
⊂ (0, ∞)×R

{x1 > x2}
⊂ (0, ∞)×R

Figure 7 – Decomposition of R2.

All leaf sets as well as all other sets are semi-algebraic.

3.2. PROOF OF EXISTENCE 27

Definition 15 (Cylindrical algebraic decomposition). A decomposition of Fk is
called a Cylindrical algebraic decomposition (CAD) if it is cylindrical and semi-
algebraic. The components of the CAD are called cells.

The decomposition in Example 12 is a CAD. However, it does not have a con-
nection to a polynomial (in)equation system. The properties above are formal
requirements for the solution space. In addition, we need another property to
connect the formal requirements with the polynomial system:

Definition 16 (P -invariant). Assume a finite set P ⊂ F[X1, X2 . . . Xk]. Then a
set S ⊂ Fk is P -invariant if

∀P ∈ P ∀x, y ∈ S sgn(P(x)) = sgn(P(y)).

A CAD S = S1, S2 . . . Sk of Fk is P -invariant if the cells of Sk are P -invariant.

[14] [3, p. 159ff] [20, p. 348ff]

3.2 Proof of existence

The main purpose of this section is to proof the following theorem:

Theorem 3 (Existence of a CAD). For each finite set P ⊂ F[X1, . . . Xk] of polyno-
mials there is a CAD of Fk which is P -invariant.

We intend to proof the theorem by induction on the dimension k of the set
to decompose. Another requirement for the proof is a construction to aid the
proof of the existence of a P -invariant CAD of Fk with the assumption that a
CAD of Fk−1 for a certain set of polynomials is given.

Definition 17 (Elimination). Given a finite set P ⊂ F[X1, . . . Xk−1][Xk] of poly-
nomials we define ElimXk

(P) ⊂ F[X1, . . . Xk−1] consisting of the following el-
ements:

- For all T ∈ Tru(P), lcoeff(T).

- For all P ∈ P with deg(P) ≥ 2, for all T ∈ Tru(P), for 0 ≤ i ≤ deg(T)−
2, sResi(T, T′).

- For all P, Q ∈ P

- If deg(P) > deg(Q), for all 0 ≤ i ≤ deg(Q), sResi(P, Q),

- If deg(P) < deg(Q), for all 0 ≤ i ≤ deg(Q), sResi(Q, P),

- If deg(P) = deg(Q), for all 0 ≤ i ≤ deg(lcoeff(P)Q− lcoeff(Q)P),
sResi(P, lcoeff(P)Q− lcoeff(Q)P)).

This construction encodes properties of the roots of the polynomials in P in
a set of lower-dimensional polynomials. Subsequently, we can remove re-
dundant polynomials such as constant polynomials. Furthermore, we remove
polynomials which are similar to another polynomial. [3][p. 405]

28 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Example 13. Given P := {X2 + Y2 + 1; X + Y3 − 1} ⊂ Z[Y][X] we calculate
the set ElimX(P):
sRes0(X2 +Y2 + 1, 2X) = 4y2 + 4 thus the set contains the similar polynomial

y2 + 1.

In addition, we insert the polynomial sRes0(X2 +Y2 + 1, X +Y3− 1) given by

y6 − 2y3 + y2 + 2

and

−1 + y3

into the set ElimX(P).

Lemma 4. Let P ⊂ F[X1, X2 . . . Xk−1][Xk] be a finite set of polynomials and S ⊂
Fk−1 be a semi-algebraic subset which is ElimXk

(P)-invariant. Then, the degree
deg(P(x)) and the number of distinct roots deg(P(x) − deg(gcd(P(x), P′(x)))
is constant for all x ∈ S, P ∈ P . Furthermore, the number of common roots
deg(gcd(P(x), Q(x))) is constant for all P, Q ∈ P and x ∈ S.

Proof. The polynomials T ∈ Tru(P) for all P ∈ P , lcoeff(T) fix the degree of
each P ∈ P over S. If there is a maximal j with lcoeff(Truj(P)) = 0 then
deg(P) = deg(Truj(P)) over S.
The polynomials P ∈ P , for all T ∈ Tru(P), sResi(T, T′) fix the number of
distinct roots over S (c.f. Lemma 1 and Lemma 3). In addition, we insert all
truncations T of polynomials P in case the leading coefficient of P (or of one of
the truncations) is zero (cf. Example 7). Moreover, it is not necessary to fix the
number of distinct roots for polynomials or truncations with degree smaller
than 2 because in this case the number of distinct roots is always constant.
The polynomials P, Q ∈ Tru(P), deg(P) 6= deg(Q), sResi(P, Q) fix the num-
ber of common roots of P and Q. Analogously to the case above, we have to
encode the property for all combinations of truncations of P and Q. Regarding
Lemma 1 and 3, we see that the construction is correct. There are maximal
deg(P) common roots. Thus, it is sufficient to add the first deg(P)− 1 subre-
sultants coefficients to the set.
In summary, the degree and the number of distinct roots is fixed for every
P ∈ P over S, and the number of common roots for polynomials P, Q ∈ P is
fixed over S.

Lemma 5. Let P ⊂ F[X1, . . . Xk] be a finite set of polynomials and S ⊂ Fk−1 be a
semi-algebraic subset with constant degrees, distinct roots and common roots of poly-
nomials in P over S. Then, for the cylinder S × F of S there is a semi-algebraic
decomposition defined by the functions f1 < · · · < fr : S → F. Given x′ ∈ S then
the set { f1(x′), . . . fr(x′)} is exactly the set of roots of polynomials P ∈ P . The sets

- {(x′, fi(x′)) ∈ S× F}

- {(x′, y) ∈ S× F | fi(x′) < y < fi+1(x′)}

3.2. PROOF OF EXISTENCE 29

- {(x′, y) ∈ S× F | y < f1(x′)}

- {(x′, y) ∈ S× F | fn(x′) < y}

are semi-algebraic and P -invariant.

Proof. Wlog we distinguish between two cases:

- Given a polynomial P ∈ P with distinct roots z1 . . . zr for a fixed x′ ∈ S.
We write P(x′, x) as

P = (x− z1)
µ1 . . . (x− zt)

µt .

Thus, z1 . . . zt are the roots with multiplicities µ1 . . . µt of P for a fixed x′ ∈
S. We define sets Di := {w ∈ S | |w− zi| < ri} ⊂ S which are commonly
known as the open disk centered at zi of radius ri for each 1 ≤ i ≤ t. For
every zi we choose ri such that there is exactly one root of multiplicity
µi of P(x′, x) in Di. In addition, the radiuses ri are chosen such that the
disks Di are disjoint for all 1 ≤ i ≤ t. Moreover, there are continuous
functions fi : S → F such that for x′ ∈ S fi(x′) is a root of P for every
1 ≤ i ≤ t. Furthermore, the sets of the form {(x′, fi(x′)) ∈ S × F} are
P-invariant. For every 1 ≤ i < t the sign of P(a) with a ∈ (zi, zi+1) is
constant. Subsequently, the other sets are also P-invariant.

As S is a semi-algebraic set, it can be expressed with a FO-formula Φ(x′)
over the domain of real algebraic constraints. Furthermore, we can ex-
press the set {(x′, fi(x′)) ∈ S× F} an FO-formula Ψ:

Ψ(Xk) =Φ(X′) ∧ ∃ Y1 ∃ Y2 . . . ∃ Yt (Y1 < Y2 < . . . Yt ∧
∀ Y (P(X′, Y) = 0⇒ (Y = Y1 ∨Y = Y2 ∨ . . . Y = Yt∧
Xk = Yi))).

There is an equivalent quantifier-free formula Ψ′ [3][p. 70] [20][p. 361]
[23]. Thus, the set expressed by Ψ′ (and Ψ) is semi-algebraic. A similar
construction works for the other sets. Hence, we deduce that the above
mentioned sets are semi-algebraic and defined by continuous functions.

- Given two polynomials P, Q ∈ P . Then we denote the distinct roots of
PQ(x′, x) by z1 . . . zt for a fixed x′ ∈ S.

The multiplicities of z1 . . . zt for P(x′, x) are µ1 . . . µt respectively ν1 . . . νr

for Q(x′, x). Note that if zi is not a common root of P and Q with 1 ≤ i ≤ t
then either µi = 0 or νi = 0.

We define the sets Di := {w ∈ S | |w− zi| < ri} and choose r such that
there is exactly one root of PQ with multiplicity µi + νi in Di and such
that all disks are disjoint for 1 ≤ i ≤ t.

Subsequently, there are s ≤ t continuous functions fi defining the roots
with min(µi, νi) > 0 for 1 ≤ i ≤ t of PQ in S. For all other s− t functions

30 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

the construction above can be applied. The resulting sets {(x′, fi(x′)) ∈
S× F} are both P- and Q-invariant. We can use an analog construction
to encode the sets {(x′, fi(x′)) ∈ S× F} with FO-formulas over the do-
main of real algebraic constraints. Consequently, we can use the same
argument to proof that the sets are semi-algebraic.

The proof can be extended to finite sets of polynomials of arbitrary size by
induction on the number of elements.

Proof of Theorem 3. [3, p. 164ff] The proof is by induction of the dimension k on
the set to decompose. The induction basis is the case k = 1: We know that
there is a decomposition of F into subsets

F = F1 ∪ F2 ∪ · · · ∪ Fm

such that

∀1 ≤ i ≤ m ∀P ∈ P ∀x, y ∈ Fi sgn(P(x)) = sgn(P(y)).

The decomposition consists of the open intervals (sgn 6= 0) and points (sgn
= 0).
The induction hypothesis is that there is a ElimXk

(P)-invariant CAD S ′ of
Fk−1. For every leaf cell C in S ′ there is a stack of functions which decomposes
C intoP -invariant cells (c.f. Lemma 4 and 5). Thus, there is a P -invariant CAD
of Fk.

3.3 Algorithm

In this section, an algorithm [14] which calculates a P -invariant CAD for a
given set of multivariate polynomials P is presented. First, we sketch the al-
gorithm abstractly so that the reader gets an overview of the techniques used
in the algorithm.
The algorithm consists of three phases. We first give a brief description of the
purpose of the phases and afterwards we see how they interact to calculate the
CAD.

- Elimination phase

Given a finite set of polynomials P ⊂ F[X1, . . . Xk]. Then the elimination
operator Elim is called recursively for k− 1 variables. The result is a set
of polynomials P1 ⊂ F[X1]. We denote P by Pk. We obtain k sets of
polynomials including Pk. The index indicates the main variable of the
set, e.g., for P1 the main variable is X1 and so on (c.f. Figure 8).

- Base phase

For the setP1 we use the results on Sturm sequences and Cauchy bounds
to decompose the space F into finitely many P1- invariant cells. We
represent these cells with algebraic numbers. These representations are
called sample points and the result forms a set A1 ⊂ F (c.f. Figure 8).

3.3. ALGORITHM 31

- Lifting phase

Starting with the set P2 ⊂ F[X1, X2] the variable X1 is substituted with
each sample points from the base phase. The result is a new polynomial
for each sample point from the base phase and each polynomial in P2

(c.f. Figure 8). These polynomials are evaluated with the methods used
in the base phase. We obtain several samples for each base phase sample
point and polynomial in P2. Moreover, we combine the new sample
points and the old samples points to 2-dimensional sample vectors. The
sample vectors form a set A2 ⊂ F2. The set A2 is applied to the set P3

and so on. This is repeated recursively until a set Ak−1 is applied to Pk.
Furthermore, this cylindrical decomposition of Fk is the result and is in
fact a P -invariant CAD.

P = Pk ⊂ F[X1, . . . Xk]

Pk−1 ⊂ F[X1, . . . Xk−1]

Pk−2 ⊂ F[X1, . . . Xk−2]

...

P1 ⊂ F[X1] A1 ⊂ F

A2 ⊂ F2

A3 ⊂ F3

...

Ak ⊂ Fk

ElimXk
(Pk)

ElimXk−1(Pk−1)

ElimXk−2(Pk−1)

ElimX2(P2)

Solve P1

Subs. X1; Solve P2 ⊂ F[X2]

Subs. X1, X2; Solve P3 ⊂ F[X3]

Subs. X1 . . . X3; Solve P4 ⊂ F[X4]

Subs. X1 . . . Xk−1; Solve Pk ⊂ F[Xk−1]

Figure 8 – The phases of the algorithm

3.3.1 Elimination phase

In our context, elimination is a way to project a set of polynomials in n vari-
ables to a set of polynomials in n − 1 variables without loss of information
about n− 1-dimensions of roots of the original polynomial system. Applying
this procedure recursively, we can project the problem to a set of univariate
polynomials and solve it with the approaches presented in Section 2.3.
First, we introduce the non-recursive version of the elimination algorithm namely
Algorithm 2 which is based on the Elim-operator from Definition 17:

32 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Algorithm 2 [Elimination]: Calculate a set of polynomials Pk−1 which satisfies
Lemma 4
Require: P ⊂ F[X1 . . . Xk−1][Xk]
Output: Pk−1 ⊂ F[X1 . . . Xk−1]

return ElimXk
(P)

Let m := max
P∈P

(deg(P)). Moreover, there are |P|2 polynomial pairs to con-

sider and for each polynomial there are at most m truncations. Furthermore,
the encoding of the distinct roots and the degree depends only linear on s. In
contrast, the encoding of the number of common roots depends quadratic on
the number of polynomials. Subsequently, the number of signed subresultants
calculations is bounded by O(m2s2). A subresultants calculation with the al-
gorithm we use requires at most O(m2) operations. In summary, the overall
complexity of Algorithm 2 is O(m4s2).
The output set of Algorithm 2 consists of at most O(m3s2) polynomials be-
cause in each step which treats a polynomial pair at most m − 1 polynomials
are added to the output set. The degree of the subresultants of two polynomi-
als P, Q ∈ F[X1 . . . Xk] is bound by O(max(deg(P), deg(Q))2). Moreover, the
maximal degree of polynomials in the output set is O(m2).

Algorithm 3 [Recursive Elimination]: Calculate the sequence of recursive
elimination sets
Require: P ⊂ F[X1 . . . Xk−1][Xk]
Output: A sequence C = (P1 ⊂ F[X1] . . .Pk−1 ⊂ F[X1 . . . Xk−1],Pk ⊂

F[X1 . . . Xk])

i ← k
C[k] ← P
while i > 1 do

C[i− 1]← ElimXi
(C[i])

i ← i− 1
end while

return C

To study the complexity of the recursive Algorithm 3, we assume a less strict
bound for Algorithm 2 which is O((ms)3). If for instance k = 3 then the
first step is to compute a set P2 with O((ms)3) elements. Then the set P1 has
O((ms)3 · (ms)3) = O(ms)32

elements and so on. This leads to the general
formula

k−1

∏
i=1

(ms)3 ∈ O((ms)3k−1
)

for the number of elements in P1 for arbitrary k. Subsequently, the number of
elements in P1 is doubly exponential in k. [3][p. 407]

3.3. ALGORITHM 33

3.3.2 Base phase

The base phase is based on the results on Sturm sequences and Cauchy bounds
in Section 2.3. Despite the representation of roots, we need to extend the results
to represent the non-root subsets of F with real algebraic numbers.

Algorithm 4 [Base phase]: Calculate the set of sample pointsA
Require: P ⊂ F[X]
Output: A set of real algebraic numbers A ⊂ F

roots← isolateRoots(P)
count← countRoots(P)
for i = 1 to count-1 do

A = A∪ { roots[i]. right+ roots[i+1]. left
2 } ∪ {roots[i]}

end for

A = A ∪ {roots[1]− 1}
A = A ∪ {roots[count] + 1} ∪ {roots[count]}
return A

The base phase consist of two parts: The calculation of the isolating intervals
and the calculation of additional sample points. The computational complex-
ity and the drawbacks of the methods on how to isolate roots have been stud-
ied in Chapter 2. The effort necessary to compute the additional sample points
depends on the number of roots of polynomials in P . Thus, it is bound by
O(m · |P|).

Definition 18 (Sample point). A sample point is a representation of a cell in
a CAD. If the represented cell has a zero-sign with respect to the polynomial
which defines the cell, then, an interval representation is necessary to represent
the cells as a sample point. Otherwise, it is sufficient to choose an arbitrary
numeric within the cell.

Example 14. Given the polynomial P = X2 − 3X + 1 ∈ Z[X] (cf. Example 6).
We continue the procedure in Example 6 until each interval consists of exactly
one root:

isolateRoots(P) = ((0, 2); (2, 4)).

Moreover, we apply Algorithm 4 to {P}:

(−1; (0, 2); 2; (2, 4); 5).

Each of these five real algebraic numbers represent one connected semi-algebraic
subset of Ralg. The two intervals represent the cells which have a zero-sign
with respect to P, −1 and 5 represent cells with a positive sign as numerics
and 2 represents the cells with a negative sign.

34 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

3.3.3 Lifting phase

Given the elimination sets C = (P1, . . . ,Pk) we assume to have a P1-invariant
decomposition of F (cf. Algorithm 4). The next thing to do is to extend the
decomposition of F to a CAD of F2. Therefor, it is necessary to regard all poly-
nomials in P2 substituted with all real algebraic numbers representing the P1-
invariant decomposition. The substitution process is referred to as lifting.
To lift a multivariate polynomial with a real algebraic number, we have to dis-
tinguish between the cases: Lifting a polynomial with a real algebraic number
represented by a numeric representation and lifting a polynomial with an real
algebraic number represented by an interval representation.

Algorithm 5 [NumericLift]: Lifts the first k− 1 variables of a polynomial with
a real algebraic point

Require: P ∈ F[X1 . . . Xk] and r ∈ Qk−1

Output: P ∈ F[Xk]

for i = 1 to k− 1 do

Substitute Xi with r[i] in P
end for

return P

The number of substitutions done by Algorithm 5 is exactly k− 1. So the com-
plexity is bounded by O(k) univariate polynomial evaluations.
Without loss of generality, we assume that a representation of a real algebraic
number is either a numeric representation in each dimension or an interval
representation in each dimension.
To substitute a variable with a real algebraic number in interval representation
form, we need a method to evaluate the sign of a real algebraic number for a
univariate polynomial:

Lemma 6 (Sign determination for real algebraic numbers). Given a real algebraic
number α = (P, o) ∈ Ralg and a univariate polynomial with integer coefficients
Q ∈ Z[X]. Then the sign of Q evaluated at α is determined by

Var(SRemS(P, P′ ·Q); o. left, o. right).

We denote this expression by sgn(α, Q).

Example 15. Given a polynomial 2X2 + 4Y2 + Z3 ∈ Z[X, Y, Z] and two alge-
braic numbers α = (X2, (− 1

10 , 1
10)) and β = (X3 − 2X + 1, (9

10 , 1 1
10)).

We lift Y with α and Z with β.
The sign of 4Y2 evaluated at α can be calculated by means of Lemma 6:

sgn(4Y2, α) = 0.

If the sign of 4Y2 at α is 0 then this coefficient vanishes for α. Thus, the resulting
polynomial is

3.3. ALGORITHM 35

2X2 + Z3.

Furthermore,

sgn(Z3, β) = 1.

Unfortunately, the coefficients necessary for the sign check are not that homo-
geneous in general. To lift z in the following polynomial

(Z2 +YZ3)X2 + ZX

we have to "collect" the coefficients containing Z first. For ZX this is simply
coeff(ZX) but the first expression (Z2 +YZ3)X2 is more complicated. It is nec-
essary to regard coeff((Z2 + YZ3)X2) = Z2 + YZ3. This approach is a projec-
tion of the 3-dimensional problem into to several two dimensional problems.
This concept is implemented as recursive calls in the following algorithm.

Algorithm 6 [IntervalLift]: Lifts the first variable of a k− i dimensional poly-
nomial with a real algebraic number

Require: P ∈ F[Xi . . . Xk], interval representation (P, o) and i ≥ k
Output: P ∈ F[Xi−1 . . . Xk] or F[Xk] if i− 1 = k

if i = k+1 then

for j = 0 to deg(P) do

C← coeffXi−1
j (P)

P← P− C · X j
i

if sgn((P, o), C) 6= 0 then

P← P + C(o. left+o. right
2) · X j

i−1
else

for j = 0 to deg(P) do

C← coeffXi−1
j (P)

P← P− C · X j
i−1

P← P + IntervalLift(C, (P, o))
end for

end if

end for

end if

In contrast to Algorithm 5, this algorithm does not lift k− 1 variables at once
but only one variable. Subsequently, it has to be applied k − 1 times to com-
pletely lift a k-dimensional polynomial. The number of sign determinations is
bound by O(degXi

(P) · degXi+1
(P) . . . degXk

(P)).
The algorithm can easily be extended to lift the first k− 1 variables like Algo-
rithm 5 but we avoid this here for the sake of of readability.

Example 16. Due to the cylindrical structure of the CAD, it is not sufficient
to lift all the polynomials at once. Different stacks with potentially different

36 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

polynomials emerge and the lifting has to be done in each stack. To clarify this
we introduce a simple example of CAD calculation. Let P = {X2 +Y2 − 1} ⊂
Z[X, Y] be the set of polynomials to decompose. Then, the elimination sets are
given by

P2 = {X2 +Y2 − 1}
P1 = {X2 − 1}.

We apply the base phase algorithm to X2 + 1 and obtain sample points repre-
senting the decomposition of Ralg. We represent (visually and algorithmically)
this decomposition with a tree with an empty root node and real algebraic
numbers as siblings:

−3

(X2 − 1, (−2, 0))

0

(X2 − 1, (0, 2))

3

Figure 9 – Decomposition of Ralg after the base phase.

The only polynomial in P2 = {X2 + Y2 − 1} has to be lifted for each sample
point in Ralg visualized in Figure 9. Due to the symmetry of the example, we
only extend the silblings 3 and (X2 − 1, (−2, 0)):
Starting with 3, we substitute X in X2 +Y2 − 1 with 3:

Y2 − 8.

The next step is to apply the base phase algorithm on Y2 − 8 and to extend
the tree by appending the resulting sample points to the 3-node. We repeat
this procedure with the (X2 − 1, (−2, 0))-node and obtain three additional
samples to append to the node. The siblings of the nodes 3 and −3, and
(X2− 1, (−2, 0)) and (X2− 1, (2, 0)) are equivalent. Furthermore, if we substi-
tute X with 0 in X2 + Y2 − 1 the result is

Y2− 1

which is up to variable names similar to the first level of the tree in Figure 4.
Thus, extending the tree in Figure 10 with the above mentioned additional
samples results in a complete tree of height 2.

In general, this tree is called a sample tree. A sample tree of a finite polynomial
set P ⊂ F[X1, . . . , Xk] is a complete tree of height k constructed in the above
mentioned manner. The complete sample tree contains all the information
necessary to compute the set of samples points for a P -invariant CAD.

3.3. ALGORITHM 37

−3

(X2 − 1, (−2, 0))

−2

(Y2, (−1, 1))

2
0

(X2 − 1, (0, 2))

3

−10

(Y2 − 8, (−9, 0))

0

(Y2 − 8, (9, 0))

10

Figure 10 – Lifting and extension of (X2 − 1, (−2, 0)) and 3.

Starting from the empty root node, each path (v0, . . . , vk) of length k + 1 to a
leaf node represents sample point of dimension k. As the nodes of the tree are
real algebraic numbers, the paths are real algebraic vectors in F.
To clarify the capabilities of the sketched decision procedure, we present a
more complex example:

Example 17. The problem is a slightly modified version of the motivational
Example 1. Let P be a set of polynomial in-equations:

P = {X +Y + 1 ≤ 0, X2 +Y2 − 1 < 0}
The according set of polynomials is denoted by P2. Moreover, the set P1 =
ElimX(P) is given by

{Y2 − 1, Y2 + Y, Y + 1}.
The set of sample pointsA1 is given by

{−2,−1,−1
2

, 0,
1
2

, 1, 2}.

The sample pointsA1 represent the possible values of the Y-coordinate of each
sample point.

38 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

−1 0

−1

0

Figure 11 – Solution space of P.

Note, there are no interval representations because an algorithm to intelli-
gently guess the simple solutions has been applied. In general, it is not possible
to guess numeric representations for all interval representation.

In each polynomial in P2 the variable Y is substituted with each sample point
in A1:

−2 X2 + 3 X − 1
−1 X2 X

− 1
2 X2 − 3

4 X + 1
2

0 X2 − 1 X + 1
1
2 X2 − 3

4 X + 3
2

−1 X2 X + 2
−2 X2 + 3 X + 3

Table 1 – Substituted Y with each sample point for each polynomial in P2.

By applying the base algorithm to the polynomials and combining them with
the according sample points in A1, we obtain A2:

3.3. ALGORITHM 39

(0,−2); (1,−2); (2,−2);

(0,−2);

(−1,−1); (0,−1); (1,−1);

(−1,−1); (0,−1); (1,−1);

(−5
2

,−1
2
); (]− 9

16
,−15

32
[,−1

2
); (1,−1

2
);

(−11
4

,−1
2
); (]− 7

8
,−105

128
[,−1

2
); (0,−1

2
); (]

105
128

,
7
8
[,−1

2
); (

11
4

,−1
2
);

(−2, 0); (−1, 0); (0, 0);

(−2, 0); (−1, 0); (
1
2

, 0); (1, 0); (2, 0);

(−7
2

,
1
2
); (]− 25

16
,−95

64
[,

1
2
); (1,

1
2
);

(−11
4

,
1
2
); (]− 7

8
,−105

128
[,

1
2
); (0,

1
2
); (]

105
128

,
7
8
[,

1
2
); (

11
4

,
1
2
);

(−4, 1); (]− 33
16

,−63
32

[, 1); (1, 1);

(−1, 1); (0, 1); (1, 1);

(−5, 2); (]− 49
16

,−3[, 2); (1, 2);

(0, 2)

In matter of clarity, we only state the intervals to represent the interval rep-
resentations according to the polynomials above (each line corresponds to a
polynomial from left to right and line wise cf. Table 1). To check whether the
constraints are satisfiable, we have to check whether at least one sample point
α ∈ A2 models P. Therefor, we search for a sample point α with sgn(P, α) = 1
for each P ∈ P1 (cf. Lemma 6).
The sample points (] − 9

16 ,− 15
32 [,− 1

2) (marked in red) which is actually given
by ((X − 1

2 , (− 9
16 ,− 15

32)),− 1
2) = (− 1

2 ,− 1
2) is a solution of P. Hence, P is satis-

fiable.

40 CHAPTER 3. CYLINDRICAL ALGEBRAIC DECOMPOSITION

Chapter 4

Satisfiability Modulo Theories

4.1 Satisfiability

Satisfiability (SAT) is the problem to decide whether there is a satisfying as-
signment for a given boolean formula. The set of boolean formulas is denoted
by propositional logic. Propositional logic formulas are built from of atomic
propositions TRUE and FALSE and a finite number of variables Var. An as-
signment is a function α : Var→ {TRUE, FALSE}. Furthermore, if ϕ and ψ are
propositional formulas then

- ϕ ∧ ψ

- ¬ϕ

are propositional logic formulas. Moreover, operators like ∨,← or↔ are de-
fined as combination of the operators above. We say that α models a proposi-
tional formula if α assigns all variables to an atomic proposition and the for-
mula is valid.

The SAT problem is NP-complete. If we assume that P 6= NP then there exists
no algorithm with polynomial complexity in the number of variables which
solves this problem. SAT-Checkers or SAT-Solvers are programs that decide
whether a propositional formula is satisfiable or not. They have been studied
intensively in the past years. If a SAT-Checker is applied to a certain proposi-
tional logic formula it either returns a satisfying assignment or it returns UN-
SAT. Furthermore, it returns a minimal unsatisfiable core for unsatisfiable for-
mulas. A minimal unsatisfiable core is a minimal unsatisfiable sub formula of
the original propositional formula. Even though the problem is NP-complete
it is successfully applied in the industry for instance for circuit planning. [10]
A successful approach which uses conflict-clause learning and conflict-driven
backtracking is called DPLL. This approach is still widespread in the list of top
SAT-Checkers. [15, p. 28ff]

41

42 CHAPTER 4. SATISFIABILITY MODULO THEORIES

4.2 Satisfiability Modulo Theories

The Satisfiability modulo theories (SMT) is an approach combing the SAT
problem and first order (FO) formulas. The idea is to divide the tasks into
solving the underlying boolean structure with a fast SAT-Solver and to study
the first order constraints with another tool called theory solver.
A theory is a set of FO-formulas over a certain signature Σ. Let T be a theory
over Σ. Then we say that a FO-Formula ϕ is a satisfiable modulo of T if {T} ∪
ϕ is satisfiable. We say that a theory is decidable if there exists a decision
procedure which checks whether a quantifier free formula over Σ is satisfiable.
The theory of real algebra which is studied in this paper is decidable. [26]
A theory solver T is a decision procedure to decide whether a conjunction of
atomic propositions for a certain formula is satisfiable. If T is satisfiable the
theory solver returns a satisfying assignment otherwise it returns UNSAT.
There are theory solvers for various theories like the Simplex algorithm for
the theory of linear arithmetic or theory solvers for uninterpreted functions.
In fact, the algorithm described in Chapter 3 can be used as a theory solver
for the theory of real algebra. For a certain set of polynomials, we obtain a
set of sample points. To decide whether the set of polynomial (in)equalities is
satisfiable, we have to check if the set of sample points contains a sample point
with proper signs for all the polynomials (in)equations in the set (cf. Example
17). [1]

Example 18. Given a formula

ϕ := (x = y ∨ x > 0) ∧ x + y = 0∧ 2y ≥ 0

from the theory of linear arithmetic. We calculate a propositional logic for-
mula called boolean abstraction of ϕ. The boolean abstraction introduces a new
variable for every new theory constraint and keeps the boolean structure:

(a ∨ b) ∧ c ∧ d

The boolean abstraction is denoted by boolAbs(φ). We assume, the first sat-
isfying assignment the SAT-Checker returns for the boolean abstraction is the
assignment b, c, d to TRUE and a to FALSE. Subsequently, we have to apply the
theory solver for linear arithmetic (e.g. Simplex) to the following set of linear
constraints:

{x > 0, x + y = 0, 2y ≥ 0}
It is easy to see that this set of constraints it not satisfiable. Hence, the SAT-
Checkers learns a conflict clause resulting in an extended boolean abstraction:

(a ∨ b) ∧ c ∧ d ∧ ¬(b ∧ c ∧ d)

Moreover, we assume that the next assignment is setting a, c, d to TRUE and b
to false. The resulting set

{x = y, x + y = 0, 2y ≥ 0}

4.2. SATISFIABILITY MODULO THEORIES 43

is satisfiable. The solution for these linear constraint is x = y = 0.

ϕ

boolAbs(ϕ)

SAT-Checker

Set of constraints Conflict clause

Theory solver T SAT

UNSAT

Figure 12 – Fully-lazy SMT.

For a unsatisfiable formula, we add conflict clauses to the formula until the
SAT-Checker indicates the unsatisfiability of the formula. Assuming we have
a fitting theory solver, we can apply this approach to arbitrary theories. This
approach is called full-lazy SMT (cf. Figure 12). The solvers and their results
are marked in blue, the boolean extension of FO-properties and the set of FO-
Properties are marked in green and the boolean abstractions of the original
formula and the unsatisfiable set of constraints are marked in red.

It is likely that calculations in the theory solver are done multiple times. Re-
sults from former calculations are not re-used to improve the speed of new
calculations.

Another approach is called less-lazy SMT. The theory solver is not just called
whenever the SAT-Solver has found a full assignment but also earlier to check
if the current partial assignment is already unsatisfiable. The theory solver
must be able to include constraints incrementally so that the calculation does
not start over once a new constraint is added. Thus, the theory solver has to
make use of older results. [1] [15]

44 CHAPTER 4. SATISFIABILITY MODULO THEORIES

4.3 Preparations for less-lazy solving of real algebra con-

straints

We can already provide a theory solver for full-lazy SMT. The algorithm pre-
sented in Chapter 3 is a decision procedure for a set of multivariate polynomial
(in)equality constraints.
We extend the constructions in Chapter 3 so that we can provide techniques
used by the less-lazy approach. We have to enable incremental addition of
polynomials constraints to elimination sets without recomputing the hole set.
We see in the definition of the elimination operator (cf. Definition 17) that the
first two conditions concern one polynomial only and that the other polynomi-
als do not effect the result. We separate these two conditions and define new
elimination operators:

Definition 19 (Incremental elimination). Given a polynomial P ∈ F[X1 . . . Xk−1][Xk]
we define IncElima

Xk
(P) ⊂ F[X1, . . . Xk−1] containing the following elements:

- For all T ∈ Tru(P), lcoeff(T).

- For all T ∈ Tru(P), for 0 ≤ i ≤ deg(T)− 2, sResi(T, T′).

Given two polynomials P, Q ∈ F[X1, . . . Xk−1][Xk] we define IncElimb
Xk
(P, Q) ⊂

F[X1, . . . Xk−1] containing the following elements:

- If deg(P) > deg(Q), for all 0 ≤ i ≤ deg(Q), sResi(P, Q),

- If deg(P) < deg(Q), for all 0 ≤ i ≤ deg(Q), sResi(Q, P),

- If deg(P) = deg(Q), for all 0 ≤ i ≤ deg(lcoeff(P)Q − lcoeff(Q)P),
sResi(P, lcoeff(P)Q− lcoeff(Q)P)).

A combination of the two new elimination operators forms a complete elimi-
nation set according to Definition 17:

ElimXk
(P) =

⋃

P∈P
IncElima

Xk
(P) ∪

⋃

P,Q∈P
IncElimb

Xk
(P, Q)

To add a polynomial to existing elimination set, the following property can be
used:

ElimXk
(P ∪ {Q}) = ElimXk

(P) ∪ IncElima
Xk
(Q) ∪

⋃

P∈P
Elimb

Xk
(P, Q)

Compared to recalculating the entire elimination set, this approach decreases
the number signed subresultant calculations to add a new constraint signifi-
cantly.
Another way to increase the performance of the theory solver is not build up
the sample tree level-wise but build it in a depth-first-search- manner (DFS).
A possible sample point satisfying the set of constraints can be found before

4.3. PREPARATIONS FOR LESS-LAZY SOLVING OF REAL ALGEBRA CONSTRAINTS45

the whole sample tree is built. These satisfying sample points can be evalu-
ated for other polynomial constraints without calculating an elimination set
and without changing the sample tree. If the sample point does not satisfy
the new polynomial constraint the old sample tree can be extended to avoid
recomputing old calculations.

Example 19. We assume that the constraints given to the theory solver are

X2 +Y2 − 1 > 0,

X2 + Y2 − 109 > 0.

These are simple constraints as all points in Ralg which are not in a circle of
radius 200 around the point (0, 0) are valid solutions.

−3

(X2 − 1, (−2, 0))

0

(X2 − 1, (0, 2))

3

−10

(Y2 − 8, (−9, 0))

0

(Y2 − 8, (9, 0))

10

Figure 13 – Lifting and extension of (X2 − 1, (−2, 0)) and 3.

Building a sample tree in the DFS-manner, we find the solution (3, 10) ∈ Ralg

to be a solution before building up the whole sample tree.
Moreover, we add the second polynomial constraint to the theory solver. We
check whether (3, 10) is a valid solution but as 32 + 102 = 109 the sign of the
real algebraic number on the second constraint is 0. Instead of building a new
sample tree, we extend the first sample by appending new silblings to 3. The
elimination set of X2 +Y2− 109 is similiar to the elimination set of X2 +Y2− 1:

C = (X2 − 109, X2 +Y2 − 109)

Furthermore, we substitute X in X2 +Y2 − 109 with 3 and obtain

Y2 − 100.

46 CHAPTER 4. SATISFIABILITY MODULO THEORIES

The result of the base phase algorithm applied to this polynomial is:

(−109
8

; (Y2− 100, (
101

8
)),−101

16
)); 0; (Y2 − 100, (0, 101)); 102)

Hence, we extend our sample tree and see that (3, 102) is a solution.

−3

(X2 − 1, (−2, 0))

0

(X2 − 1, (0, 2))

3

− 109
8

(Y2− 100, (101
8))

−10

(Y2− 8, (−9, 0))

0

(Y2− 8, (9, 0))

10

Figure 14 – Lifting and extension of (X2 − 1, (−2, 0)) and 3.

Chapter 5

Implementation

In this section, we present the already completed implementations concerning
the techniques presented in this paper.

5.1 GiNaC

GiNaC is a C++-library for symbolic computations and especially for the effi-
cient handling of multivariate polynomials. It was initially intended to solve
problems in theoretical quantum field theory. Nevertheless, it is applied in
different fields and the project is recently in development. In contrast to com-
puter algebra systems like Maple or Mathematica, it is entirely written in C++.
Subsequently we show, that it can be directly integrated in fast object oriented
C++-applications or library extensions.
Moreover, it is distributed under terms of the GNU general public license.
Most of the above mentioned and commonly known computer algebra sys-
tems are commercial software products. [4]

5.2 GiNaCRA

GiNaCRA is a C++-library for efficient decision procedures within the field
of real algebra. It is currently developed by Ulrich Loup, Sebastian Junges
and Joachim Redies. It is the framework and library for the implementation
of the algorithms in this paper. GiNaCRA is based on the GiNaC library and
distributed under GNU general public license as well. [17]

5.3 Implemented methods

We sketch the general structure of GiNaCRA and how the algorithms pre-
sented in this paper interact with the framework (cf. Figure 15). Several abbre-
viations are used in this figure: RealAlgebraicNumber (RAN), IntervalRepre-
sentation (IR), NumericRepresentation(NR) and UnivariatePolynomial(UniPol).
In the actual implementation within the GiNaCRA framework, we avoid ab-
breviations (despite a few exceptions). The figure is a simplification of the

47

48 CHAPTER 5. IMPLEMENTATION

GiNaCRA framework. For instance the data structures do not contain the ob-
jects themself but pointers due to C++ issues. Furthermore, this is just a small
subset of the classes within the GiNaCRA framework. For example, the inher-
itance chain of UnivariatePolynomial is longer. Nevertheless, it displays the
most important classes and methods necessary to compute CADs.

ex
...

UniPol
...

UniPolSet
...

set
...

CAD

tree<RAN> SampleTree
vector< <vector<UniPol> > EliminationSets

CAD(P: UniPolSet)
elimination(P: UniPol): list<UniPol>
elimination(P,Q: UniPol): list<UniPol>
complete()

RAN
...

RANNR
...

RANIR
...

Figure 15 – Class relation of classes of STL(green), GiNaC(blue) and GiNaCRA
(red).

The class ex is originated in the GiNaC framework. It represents a general
mathematical expression. In the GiNaCRA framework we inherit its proper-
ties and extend it with the restriction to be an univariate polynomial. How-
ever, an univariate polynomial can be parameterized. Thus, it is a multivariate
polynomial in an univariate representation (cf. p. 11). We use a container class
UnivariatePolynomialSet inherited from the Standard Template Library (STL)
class set to avoid redundancies in the different sets within the CAD. [24]
The class CAD is both an instance of a cylindrical algebraic decomposition and
a collection of methods to compute it. The methods elimination(P) and elim-
ination(P, Q) correspond to Definition 19 for the incremental computation of
elimination sets. These methods can be used statically without a CAD object.
The classical elimination operator (cf. Algorithm 2) is implemented in the con-
structor CAD of the class and it creates a vector of univariate polynomials for
each elimination set. To generate the sample points and store them in the sam-
ple tree of the CAD instance, we use the method complete which generates
all possible sample points. The CAD as an instance of a cylindrical algebraic
decomposition contains a representation of the sample tree. For this tree we
used an STL-like implementation namely tree.h which is distributed under

5.3. IMPLEMENTED METHODS 49

GNU general public license [21]. The classes RealAlgebraicNumber and its
specialization refer to the different representations of real algebraic numbers
presented in this paper (cf. Definition 8). Notice that the description above
is a simplification of both the structure and the actual usage of the methods.
Nevertheless, there is an extensive documentation of the framework available
[18].
To explain the usage of the above mentoid classes and methods, we introduce
a minimal code example:

1 # include <g inacra/g inacra . h>
2
3 using namespace GiNaCRA ;
4
5 i n t main ()
6 {
7 symbol x (" x ") , y (" y ") ;
8 Univar iatePolynomial p (pow(x , 2) +pow(y ,2)−1 , x) ;
9 vector <symbol> v ;

10 v . push_back (x) ;
11 v . push_back (y) ;
12
13 UnivariatePolynomialSet P ;
14 P . i n s e r t (p) ;
15
16 CAD C (P , v) ;
17 C . complete () ;
18 }

The examplary program calculates the elimination sets. Moreover, it generate
all possible sample points.

50 CHAPTER 5. IMPLEMENTATION

Chapter 6

Conclusion

In this paper, we have presented the foundations and the methods necessary
to calculate and evaluate a CAD. We have seen how it is implemented within
the GiNaCRA framework. Furthermore, the techniques can be applied and
modified to work as a theory solver for an incremental less-lazy SMT-Solver.
During the implementation, of the methods we noticed that some of the sub
algorithms even for simpler tasks like for example basic calculations with real
algebraic numbers have an unfortunate complexity bound.
We think there are several sub algorithms which can be improved with heuris-
tics to decrease the overall runtime of the CAD algorithms:

- Selection of subtrees to extend in the extension phase

- Selection of extended subtrees which will be used for the generation of
sample points

- Transformation of interval representations into exact numeric root repre-
sentations whenever possible

Moreover, there are faster versions of the subresultant algorithm and the elim-
ination operator which can be implemented. Further challenges arise when
embedding the theory solver in a SMT-Solver.

51

52 CHAPTER 6. CONCLUSION

Bibliography

[1] E. Ábrahám, U. Loup, B. Becker, V. Bertacoo, R. Drechsler, and M. Fujita.
Smt-solving for the first-order theory of the reals. Algorithms and Applica-
tions for Next Generation SAT Solvers, Dagstuhl Seminar, 2010.

[2] H. Anai, K. Yokoyama, and Fujitsu Laboratories. International Institute
for Advanced Study of Social Information Science. Radical representation
of polynomial roots. IIAS-RR-. International Institute for Advanced Study
of Social Information Science, Fujitsu Ltd., 1994.

[3] S. Basu, R. Pollack, and M.F. Roy. Algorithms in real algebraic geometry,
volume 10. Springer-Verlag New York Inc, 2006.

[4] C. Bauer, A. Frink, and R. Kreckel. Introduction to the ginac framework
for symbolic computation within the C++ programming language. Journal
of Symbolic Computation, 33(1):1–12, 2002.

[5] Christopher W. Brown. Qepcad b: A program for computing with semi-
algebraic sets using cads. SIGSAM BULLETIN, 37:97–108, 2003.

[6] C.W. Brown. Improved projection for cylindrical algebraic decomposi-
tion. Journal of Symbolic Computation, 32(5):447–465, 2001.

[7] A.M. Cohen, H. Cuypers, and H. Sterk. Some tapas of computer algebra.
Springer Verlag, 1999.

[8] George E. Collins. Quantifier elimination for real closed fields by cylindri-
cal algebraic decomposition–preliminary report. SIGSAM Bull., 8:80–90,
August 1974.

[9] George E. Collins and Hoon Hong. Partial cylindrical algebraic decompo-
sition for quantifier elimination. J. Symb. Comput., 12:299–328, September
1991.

[10] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM Symposium on Theory of Computing, pages 151–158.
ACM, 1971.

[11] L. De Moura and N. Bjørner. Z3: An efficient smt solver. Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 337–340, 2008.

53

54 BIBLIOGRAPHY

[12] Andreas Dolzmann and Thomas Sturm. Redlog computer algebra meets
computer logic. ACM SIGSAM Bulletin, 31:2–9, 1996.

[13] H. Hong. An improvement of the projection operator in cylindrical al-
gebraic decomposition. In Proceedings of the international symposium on
Symbolic and algebraic computation, pages 261–264. ACM, 1990.

[14] M. Jirstrand. Cylindrical algebraic decomposition: An introduction. LiTH-ISY-
R. Linköpings university, 1995.

[15] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point
of View. Springer-Verlag, 2008.

[16] Henri Lombardi, Marie-Françoise Roy, and Mohad Safey El Din. New
structure theorem for subresultants. Journal of Symbolic Computation,
29:663–690, 2000.

[17] U. Loup and E. Ábrahám. Ginacra: A C++ library for real algebraic com-
putations. NASA Formal Methods, pages 512–517, 2011.

[18] Ulrich Loup. Ginacra - ginac real algebra package. Website, 2012. Avail-
able online at http://ginacra.sourceforge.net/doc/index.html.

[19] S. McCallum. An improved projection operation for cylindrical algebraic
decomposition. In EUROCAL’85, pages 277–278. Springer, 1985.

[20] B. Mishra. Algorithmic algebra. Texts and monographs in computer sci-
ence. Springer-Verlag, 1993.

[21] Kasper Peeters. tree.hh documentation. Available online at
http://tree.phi-sci.com/tree.pdf.

[22] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Texts in
Applied Mathematics. Springer, 2000.

[23] A. Seidenberg. A new decision method for elementary algebra. The An-
nals of Mathematics, 60(2):365–374, 1954.

[24] B. Stroustrup. C++. John Wiley and Sons Ltd., 2003.

[25] Adam Strzebonski. Cylindrical algebraic decom-
position. Website, 2012. Available online at
http://mathworld.wolfram.com/CylindricalAlgebraicDecomposition.html.

[26] A. Tarski. A decision method for elementary algebra and geometry. Rand re-
port. Rand Corp., 1948.

[27] Eric W. Weisstein. Algebraic number. Website, 2011. Available online at
http://mathworld.wolfram.com/AlgebraicNumber.html.

[28] Eric W. Weisstein. Determinant. Website, 2011. Available online at
http://mathworld.wolfram.com/Determinant.html.

http://ginacra.sourceforge.net/doc/index.html
http://tree.phi-sci.com/tree.pdf
http://mathworld.wolfram.com/CylindricalAlgebraicDecomposition.html
http://mathworld.wolfram.com/AlgebraicNumber.html
http://mathworld.wolfram.com/Determinant.html

BIBLIOGRAPHY 55

[29] Eric W. Weisstein. Sign. Website, 2011. Available online at
http://mathworld.wolfram.com/Sign.html.

http://mathworld.wolfram.com/Sign.html

	Motivation
	Problem formulation
	Applications
	Related work
	Contribution

	Real Algebra
	Polynomials
	Field extensions
	Sturm sequences
	Representation of roots
	Properties of polynomial roots

	Cylindrical algebraic decomposition
	Preliminaries
	Proof of existence
	Algorithm
	Elimination phase
	Base phase
	Lifting phase

	Satisfiability Modulo Theories
	Satisfiability
	Satisfiability Modulo Theories
	Preparations for less-lazy solving of real algebra constraints

	Implementation
	GiNaC
	GiNaCRA
	Implemented methods

	Conclusion

