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Chapter 1

Introduction

Sequential function charts (SFC) are a graphical programming language fre-
quently used in combination with programmable logic controllers (PLC). As-
sembly lines, technical systems and power plants are realized by dozens of
inter-operating PLCs controlling chemical, technical and atomic processes. It is
crucial that these processes are safe in the manner that nothing miscellaneous
will happen. To ensure this the verification of SFCs is an important research
topic. A special challenge is the verification of SFCs considering its application
context. That means the behavior of e.g. the plant or factory in which the SFC
(on the PLC) is applied.
There exist several approaches to verify SFCs under consideration of the dynamic
behavior of the plant [HKD98,BCMP]. Usually the plant is completely modeled
by a hybrid automaton. In the verification process, the dynamic behavior of the
automaton can be combined with the discrete behavior of the SFCs to check the
reactions on dynamically changing environment conditions.
It is a difficult task to model a complete chemical plant and in general the
resulting automaton will be large, such that verification algorithms will have
difficulties in analyzing those systems due to the state space explosion and it
will be annoying to restart the verification in case of an error in the model.
As described in [NÁ12] we avoid the creation of a complete plant model and
represent its dynamic behavior by conditional ordinary differential equation
(ODE) systems, which we introduce in the preliminaries in Chapter 2. Such
conditional ODE systems can be added to steps of the SFC, which we introduce
in Section 2.2.1, resulting in a hybrid SFC (HSFC). The following transformation
into a hybrid automaton and a Counter Example-Guided Abstraction Refinement
(CEGAR) based on reachability analysis can be used to verify an SFC in its plant
context under consideration of different environment settings. Advantages are
the smaller state space in comparison to approaches, which build the complete
model of a plant and the ability to test the SFC with dedicated settings. That
means it is possible to model the dynamic plant behavior arbitrarily abstract
what can be useful to locate constitutional errors or to allow fast analysis due to
small models.
The idea of the CEGAR approach is to iteratively refine an assignment of con-
ditional ODE systems to steps of an SFC (Figure 1.1). On a given SFC with
a specific assignment of conditional ODE systems we do a reachability test for
a set of forbidden states. If we can reach one or more of them we get a coun-
terexample, which describes a run through the automaton, where (for spurious
counterexamples) at least one ODE is not satisfied. In this case additional
dynamic behavior is added along this run, what means, that we change the
assignment of conditional ODE systems to steps of the SFC and a new iteration
of the reachability analysis is started. We do this until we either find a correct
assignment or until the model provides a concrete counterexample.

Currently, the approach in [NÁ12] supports only a restricted syntax for SFCs.
So parallel branching, nested SFCs and memory-/time-related action qualifier,
which we introduce in the preliminary Section 2.2.1, are not supported by HSFCs.
It is part of this bachelor thesis to extend the syntax and semantics of HSFCs
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Figure 1.1: CEGAR based refinement.

to memory- and time-related action qualifiers and to give formal instructions for
the transformation of those adapted HSFCs to hybrid automata.
Figure 1.2 illustrates our approach. Based on the transformation of (H)SFCs
into hybrid automata and their extension to conditional ODE systems described
in [NÁ12] (upper branch in Figure 1.2), we begin by giving transformation in-
struction for (H)SFCs, which contain memory-related action qualifiers (the lower
branch in Figure 1.2) and in the following the transformation under consideration
of conditional ODE systems. Using memory-related action qualifiers we are able
to set and reset actions independent of any step activity. That means actions,
which are always mapped to steps of an SFC (Section 2.2.1), are in general
only executed if its corresponding step is active. Using memory-related action
qualifiers, we can execute an action independent of the step activity.
Next we introduce the syntax and the semantics of SFCs and the transformation
of time-related action qualifiers (central branch in Figure 1.2). This allows to
execute actions for a specific duration or after a delay. In this way we are able
to increase the potential of executing actions of an (H)SFC.
Finally we will analyze our concepts with respect to space complexity to indicate
the practical usability.

This thesis is structured as follows: In Section 2 we give some preliminary
definitions, which we need afterwards to define the syntax and semantics as
well as the transformation of memory- and time-related (H)SFCs. In Section 3
we introduce memory-related action qualifiers. We explain their characteristics
and define the syntax and semantics. A transformation of memory qualifier
afflicted SFCs into hybrid automata and its complexity analysis is given at the
end of this chapter. Section 4 addresses the timed action qualifiers. Also in
this case we begin with an explanation of the characteristics and continue with
the definition of its syntax and semantics. As in the chapter before we close
by giving transformation instructions and a complexity analysis. We provide a
practical example in Section 6 to demonstrate the transformation instructions,

2 Memory- and time- related action qualifiers in HSFCs
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Figure 1.2: The transformation overview.

introduced in the foregoing chapters. At the end we give a conclusion of our
results in Section 7.

Memory- and time- related action qualifiers in HSFCs 3
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Chapter 2

Preliminaries
In this chapter we introduce some basic principles. We begin by giving a
benchmark, which is used to explain the following concepts and definitions. We
continue by defining SFCs and HSFCs. Thereby we give intuitive explanations
and present the formal syntax and semantics. Afterwards we continue by
introducing hybrid automata, and give formal definitions for the transformation
of SFCs and HSFCs into those, automata.

2.1 Example plant

Throughout the paper, we use the following example plant to give a demonstrative
impression of transforming set-, reset- and time-qualified SFCs into hybrid
automata. It is relatively small, but allows the understanding of fundamental
ideas. We provide a second, more complex example in Section 6 to demonstrate
the transformation in a more realistic context.

2.1.1 Simple mixer model

TI
T1

L0
max1

L0
min1

NO

P1

TI
T2

L0
max2

L0
min2

M1

Figure 2.1: Simple mixer model.

The simple mixer model (Figure 2.1) consists of two tanks T1 and T2. While
T1 provides a liquid, T2 contains a mixer M1 to mix the incoming fluid. A pump
P1 is able to decant the liquid from T1 into T2.
The tanks are equipped with sensors min1,min2 and max1,max2. maxi is true,
if the tank Ti is completely filled and mini is false, if it is empty. If mini is true
and maxi false, the waterlevel of Ti is within the allowed bounds.
We introduce a variable mixer, which is true, if the mixer M1 is running, otherwise
it is false. In the same way, to determine the sensor states, we introduce variables
minj,maxj, j ∈ {1, 2}. The mixer M1 allows us to give intuitive examples for
the usage of set/reset and timed action qualifiers, e.g., we can switch the mixer
on after a given time delay.

2.2 Sequential Function Charts

Sequential Function Charts (SFCs) are a graphical programming language often
used to program PLCs (Programmable Logic Controllers). They are originally
introduced in the industry standard 61131 [Int03]. Because of ambiguous and
not fully specified parts in the SFCs semantics, a first enhancement was given
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by [BHLE04] and further refined in [Bau04]. We follow in our definition mainly
[NÁ12], which bases on the aboved mentioned contributions.

2.2.1 SFC syntax

Action blocksStep

Action qualifier Action

s1

P1 a1
N a2
P0 a3

(a) Step and actions.

s1

(b) Initial step.

Transition guards1

s2

g1

(c) Transition with guard.

Figure 2.2: Example SFC.

An SFC consists of a set Steps of steps, which are graphically represented as
rectangular boxes commonly labeled with an identifier (Figure 2.2a). Each SFC
has exactly one initial step s0 ∈ Steps, in which the execution starts, i.e., which
is active at the beginning (Figure 2.2b).
A set of action blocks is allocated to each step (Figure 2.2a). This set can also
be empty. The union of all action blocks in the SFC is called BAct. Action
blocks b = (q, a) are tuples containing the action qualifier q ∈ {P1, N, P0} and
the action a ∈ Act, where Act is the set of Actions. In [NÁ12] the qualifier set
is restricted to N, P1 and P0, but it is part of this thesis to extend this set.
The time an action is executed is specified by the action qualifier: An entry (P1)
qualified action is executed only once if a step becomes active. In contrast to this
an exit (P0) qualified action is executed only once if the assigned step becomes
inactive and do (N) qualified actions are executed as long as the assigned step is
active. To determine the execution order of the step allocated actions, an action
priority @ is given. The relation a1 @ a2 means that action a1 is executed before
action a2.

An action can be an assignment of a value to a variable or an SFC. In the
latter case we call them nested or child SFCs. Furthermore, an SFC maintains a
set of typed variables Var, which can be grouped into input (Varinput), output
(Varoutput) and local (Varlocal) variables. It is also possible that a variable is
an input as well as an output variable. The standard [Int03] provides different
variable types, e.g., int, real, bool, string, time and date.
Let us call the union of all variable type domains D. A type-preserving func-
tion σ : Var → D, which assigns to each variable a value from its domain, is
called a state. Let Σ be the set of all states. Furthermore, a state transforma-
tion is a function f : Σ→ Σ. The set of all state transformations is denoted by F .

Steps can be connected via transitions (Figure 2.2c), that means each tran-
sition has a set of source and a set of target steps. A transition begins at
the bottoms of its source steps and ends at the tops of its target steps. This
represents the execution direction. Regarding the target steps we distinguish
two cases, which we call branching and parallel branching. The first is a short
form for conditional branching (Figure 2.3a), while in the latter case all target

6 Memory- and time- related action qualifiers in HSFCs
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s0

s1 sn...

g1 gn

(a) Conditional branching.

s0

s1 sn...

g1

(b) Parallel branching.

Figure 2.3: Different branch types.

steps are simultaneously activated (Figure 2.3b) and the actions of the target
steps are executed in parallel. Parallel branching must eventually end into a
single path, that means we can join parallel branchings in a step.
Transitions are guarded (Figure 2.2c). That means they can only be taken, if
all source steps are active and the system state satisfies the guard. Guards are
boolean expressions. We say that a guard g is satisfied by a state σ written
σ |= g if the variable valuation of σ fulfills g. We denote the set of all guards
over the SFC variables by GVar.
Transitions are urgent, that means if the guard is satisfied by a state, the transi-
tion must be taken immediately. If a step has several outgoing transitions with
satisfied guards, a transition priority ≺ determines which transition will be taken.
The relation t1 ≺ t2 means that we take the transition t1 before transition t2.
The set of all guarded transitions is denoted with Trans.
In [NÁ12], we consider only SFC, which do not have parallel branching. So we
define source(t) := si and target(t) := sj with t = (si, gi, sj) ∈ Trans to get the
source and target steps of a given transition t. We extend this notation to sets
by defining source(T ) =

⋃
t∈T source(t) and target(T ) =

⋃
t∈T target(t)

At last we define the history flag Hist. If the flag is set for an SFC, the execution
will be continued in the state in that it was left after its last activation. Otherwise
the execution always starts in the initial step. We call an SFC, which is not an
action of another SFC, a root SFC. The history flag of a root SFC is always set
to zero.

Definition 1 (SFC) A Sequential Function Chart ( SFC) is a tuple C =
(Var, Steps,Act, s0, T rans,Blocks,@,≺,Hist) with

• Var: a finite set of variables,

• Steps: a finite set of steps,

• Act: a finite set of actions,

• s0 ∈ Steps the initial step,

• Trans ⊆ (2Steps\{∅})×GVar × (2Steps\{∅}): a finite set of transitions,

• Blocks : Steps→ 2BAct ,

• @⊆ Act×Act: a total order on the actions,

• ≺⊆ Trans× Trans: a partial order on the transitions and

• Hist ∈ {0, 1}: a history flag.

Memory- and time- related action qualifiers in HSFCs 7
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In the following it will be useful to access resources of the root SFC and all
its nested SFCs of all levels recursively.

Definition 2 (Nested SFCs) Let C = (Var,StepsC ,ActC , s0C ,TransC ,BlocksC ,
@C ,≺C ,HistC) be an SFC and {C1, ..., Cn} nested SFCs with Ci = (Var,StepsCi ,
ActCi , s0Ci

,TransCi ,BlocksCi ,@Ci ,≺Ci ,HistCi) for i ∈ {1, ..., n}, which can be
child of the root SFC or another child SFC. We define:

C := {C, C1, ..., Cn} : C contains the root SFC and all its nested SFCs
at all levels.

Steps := StepsC ∪ StepsC1
∪ ... ∪ StepsCn : Steps contains the steps of the

root SFC and its nested SFCs at all levels.

Trans := TransC ∪TransC1
∪ ...∪TransCn : Trans contains the transitions

of the root SFC and its nested SFCs at all levels.

Act := ActC ∪ ActC1
∪ ... ∪ ActCn : Act contains the actions of the root

SFC and its nested SFCs at all levels.

We will now recall the simple mixer model from Section 2.1.1.

Start P0 StartMixer

RunPump
P1 StartPump
P1 StartMixer

Empty

P1 StopPump
P1 StopMixer
N RefillT1
N EmptyT2

g1 := min1 ∧ ¬max2 ∧mixer

g2 := ¬min1 ∨max2

g3 := max1 ∨ ¬min2

Figure 2.4: Simple mixer model SFC.

Let StartMixer be an action, which starts the mixer M1 of tank T2 and
StartPump an action, which starts the pump P1. Their reverse actions, which
stop the mixer/pump are StopMixer and StopPump. We introduce two further
actions, which allow to restore the initial situation. RefillT1 refills the tank T1

and EmptyT2 drains tank T2.
The SFC (Figure 2.4) models the following process: First the mixer M1 of tank
T2 will be activated. If the mixer is running and T2 is not full (¬max2) and T1

is not empty (min1), the pump P1 will be activated in the next step. The fluid
flows now from tank T1 to tank T2, until tank T1 is empty (¬min1) or tank T2

is full (max2). Pump and mixer will be stopped, tank T1 refilled and the tank
T2 decanted. The process can restart as soon as max1 ∧ ¬min2 holds.
Following Definition 1, we can describe the SFC of Figure 2.4 as follows:

8 Memory- and time- related action qualifiers in HSFCs



CHAPTER 2. PRELIMINARIES 9

Example 1 (SFC: Simple mixer model)
SFCmixer = (Varmixer, Stepsmixer, Actmixer, Start,

Transmixer, Blocksmixer, @mixer, ∅, 0)

• Varmixer := {min1, max1, min2, max2, mixer}

• Stepsmixer := {Start, RunPump, Empty}

• Actmixer := {StartMixer, StartPump, StopPump,
StopMixer, RefillT1, EmptyT2}

• Transmixer := {(Start, g1,RunPump), (RunPump, g2,Empty),
(Empty, g3,Start)}

• Blocksmixer := {Start 7→ {(P0,StartMixer)},
RunPump 7→ {(P1,StartPump), (P1,StartMixer)},
Empty 7→ {(P1,StopPump), (N,RefillT1),
(P1,StopMixer), (N,EmptyT2)})}

• @mixer:= StartPump @ StopPump @ RefillT1 @ EmptyT2
@ StartMixer @ StopMixer

2.2.2 SFC semantics

Now we define the semantics of SFCs. Therefore we take a look at the work
cycle of a PLC. The run of a PLC depends on the so called cyclic scanning mode.
It can be divided into three single steps.

1. Read the input variables from the environment.

2. Execute the program on the stored input data.

3. Update the output with the computed values.

As in [NÁ12], we omit the first and the third step, where the communication
with the environment is realized, and focus on the second step, where the SFC
is executed. In case of SFC programmed PLCs - considered in this thesis -, we
can subdivide the second step. A PLC executes an SFC by taking the SFCs
transitions and applying the active actions with respect to the given order. After
that it determines the active steps and actions for the next cycle. A characteristic
of PLCs is that two cycles must not have the same runtime. Reasons for that are
branches or loops, which can differ in their length. We follow [NÁ12] and define
a lower bound δl and an upper bound δu for the execution time of one cycle.
We introduce the semantics given in [NÁ12] that is based on [Bau04]:
For an SFC C = (Var, Steps,Act, s0, T rans,Blocks,@,≺,Hist) we extend the

system state (Section 2.2.1) by (σ, readyS, activeS, activeA) ∈ Σ × 2Steps ×
2Steps × 2Act, where σ is the current state and readyS is the set of steps, which
are ready for activation. The set activeS contains the currently active steps and
the sequence activeA the currently active actions. In contrast to activeS, readyS
contains also the last active steps of inactive SFCs with true history flags.
We denote the set of all configurations by Conf and define the initial configu-
ration to be c0 = (σ0, {s0 | Ci ∈ C, s0 initial step of Ci}, activeS0, activeA0),
where σ0 is the initial valuation assigning initial values to all variables: Boolean

Memory- and time- related action qualifiers in HSFCs 9
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variables are set to false and numerical variables are set to zero. The sets activeS0

and activeA0 are computed by executing the function computeActiveSets (Algo-
rithm 1) with the initial mappings.

Let c = (σ, readyS , activeS , activeA ) be the current state of an SFC C. To
compute the successor configuration, we first introduce the enabled and taken
sets:

• enabled(C, c) := {(S, g, S′) ∈ Trans(C) | S ⊆ activeS ∧ c |= g}

• taken(C, c) :=
{t = (S, g, S′) ∈ enabled(C, c) | ∀t1 = (S1, g1, S‘1) ∈ enabled(C, c) :

t 6= t1 → (t1 ≺ t ∨ S ∩ S1 = ∅)}

The enabled function returns all transitions, which are enabled in the current
cycle. That means all transitions with active source steps and satisfied transition
guards. The taken function considers additionally the transition priority. Thereby
it takes the set computed by the enabled function and removes all transitions,
which may not be taken, since there exists a transition with a higher priority.
Now we can compute the successor configuration:

Definition 3 (Transition relation) The transition relation →⊆ Conf×Conf
is defined as a configuration change. For a transition (c, c′) ∈→ with
c := (σ, readyS , activeS , activeA ) → (σ′, readyS′, activeS′, activeA′) =: c′, we
define

• readyS′ = (readyS \ source(taken(C, c))) ∪ target(taken(C, c)).

• (activeS′, unsortedActiveA) =
computeActiveSets(readyS′, ∅, ∅, C, c, activeA ∩ C)

• activeA′ = sort(unsortedActiveA′, @).

• σ′ = f(σ) = (am ◦ ... ◦ a1)(σ) with activeA′ = am ◦ ... ◦ a1 and f ∈ F .

The function computeActiveSets is defined in Algorithm 1 and the function sort
arranges the actions descending with respect to the given order @.

Algorithm 1 works as follows: First (line 1 - 4) the set of active steps for
the currently regarded SFC C will be computed. We do this recursively for all
nested SFCs (line 10-13). If the history flag was set or the SFC was already
active in the cycle before, the current set of active steps can be computed by
taking the intersection of the set readyS’, which contains in particular the last
active steps of inactive SFCs1, and the steps of the currently considered SFC C.
If for an SFC the history flag is not set and it was not active in the cycle before
the only active step will be the initial step s0.
Next we compute the set of active actions (line 5-8) for the given SFC C. We
first add the actions which were computed in the recursive calls of the function
before and add the exit (P0) qualified actions from the steps which were left,
the entry (P1) qualified actions of the steps which were entered, and the do (N)
qualified actions of the active steps. Thereby we test whether the sequence of
active actions activeA′ already contains the action. If this is the case the action

1with true history flag

10 Memory- and time- related action qualifiers in HSFCs
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Algorithm 1: computeActiveSets(readyS′,
activeS , activeA , C, c, activeSFCs)

input : readyS′, activeS , activeA ,
C = (Var,Steps,Act, s0,Trans, Blocks,@,≺,Hist),
c, activeSFCs

output: activeS′, activeA′

/* Add the local active steps of C to activeS′. */

if Hist = 1 ∨ C ∈ activeSFCs then1

activeS′ := activeS ∪ (Steps ∩ readyS′);2

else3

activeS′ := activeS ∪ {s0};4

/* Collect the local active actions and their qualifiers. */

activeA′ := activeA ;5

foreach s ∈ Steps, b = (q, a) ∈ Blocks(s) do6

if (q = P0 ∧ s ∈ source(taken(C, c))) ∨ (q = P1 ∧ s ∈7

target(taken(C, c))) ∨ (q = N ∧ s ∈ activeS′) ∧ a /∈ activeA′ then
activeA′ := activeA′ ◦ a;8

end9

/* Compute activeA′ and activeS′ for each active nested SFC */

foreach s ∈ Steps ∩ activeS ′, b = (q, a) ∈ Blocks(s) do10

if a ∈ C then11

(activeS′, activeA′) :=12

computeActiveSets(readyS′, activeS′, activeA′, a, c, activeSFCs);13

end14

return (activeS′, activeA′);15

will not be added twice. The reason for that is the following: If a step contains
the same action multiple times (with the same or different qualifiers), we consider
them as one action in the execution. We can simulate the P qualifier, which is
also introduced in the IEC standard [Int03] and which will execute an action
at the beginning and the ending of a step activation by adding the P-qualified
action P0- and P1-qualified to the corresponding step.
Finally we compute the active steps and actions recursively for each active nested
SFC (line 10 - 13).
In conclusion, Algorithm 1 computes all actions and their corresponding steps,
which become active in the next cycle.

2.2.3 Additional semantic definitions for SFCs

We define some functions over SFCs, to enable more intuitive descriptions of
definitions and examples. We begin by defining functions, which return the P0-,
N- and P1-qualified actions of a step.

Definition 4 (Specific action set function) Let
C = (Var,Steps,Act, s0,Trans,Blocks,@,≺,Hist) ∈ SFC be an SFC and c = (σ,
readyS , activeS , activeA ) ∈ Conf its current configuration. We define

• Entry : Steps→ 2Act with Entry(s) = {a | (P1, a) ∈ Blocks(s)}

• Do : Steps→ 2Act with Do(s) = {a | (N, a) ∈ Blocks(s)}

Memory- and time- related action qualifiers in HSFCs 11
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• Exit : Steps→ 2Act with Exit(s) = {a | (P0, a) ∈ Blocks(s)}

Entry(s),Do(s) and Exit(s) return the corresponding actions of a step. We intro-
duce three further functions, which consider nested SFCs and parallel branching.
Thereby we regard all steps, which are in the current state active.

• EntryNested : Conf→ 2Act with EntryNested(c) =
⋃
s∈activeS Entry(s)

• DoNested : Conf→ 2Act with DoNested(c) =
⋃
s∈activeS Do(s)

• ExitNested : Conf→ 2Act with ExitNested(c) =
⋃
s∈activeS Exit(s)

2.3 Hybrid Sequential Function Charts

Hybrid Sequential Function Charts (HSFCs) are an extension of SFCs introduced
by [NÁ12]. They allow to add a conditional ordinary differential equation (ODE )
system to an SFC. In this way, the dynamic plant behavior can be integrated
into an SFC by mapping the conditional ODE system to specific steps of the
SFC. The result are hybrid SFCs, which can be used to verify an SFC regarding
the dynamic behavior of the plant.

2.3.1 HSFC syntax

We start by defining conditional ODE systems. A conditional ODE system
consists of a set of ordinary differential equations and a condition. The equations
model specific plant behavior under the premise that the associated condition
holds. An equation is defined over a set of continuous variables, which are, in
contrast to a SFC, part of the HSFCs.

Definition 5 (Conditional ODE system) Let Var be a set of variables,
VarC ⊆ Var a set of continuous variables and ODEVarC be the set of all ordinary
differential equations over the set VarC . Let Conds be the set of all conditions
being quantifier-free linear real arithmetic formulas over the set Var (extended
with boolean variables). We call a tuple (cond : equ) with cond ∈ Conds and
equ ⊆ ODEVarC conditional ODE system and denote the set of all conditional
ODE systems over VarC by CODEVarC .

These conditional ODE systems can be assigned to steps of an SFC, which we
call HSFC in the following. We give some example conditional ODE systems to
get an intuition and define them in a formal way accordingly.
Let us regard the simple mixer model (Section 2.1.1). We define the following
conditional ODEs:

¬ min1 ∨max2 ∨ ¬ P1 ∨ ¬ mixer : h′2 = 0, h′1 = 0 (2.1)

min1 ∧ ¬ max2 ∧ P1 ∧mixer : h′2 = c2, h′1 = −c1 (2.2)

¬P1 ∨ ¬ mixer : h′2 = 0, h′1 = 0 (2.3)

The first conditional ODE (2.1) describes that if the tank T1 is empty, the tank
T2 is full or the pump or the mixer are deactivated the water levels of tank T1

and tank T2 will not change. The second conditional ODE (2) has also two
equations. If the tank T1 is not empty and tank T2 not full and mixer M1 and
pump P1 are running, the water level of tank T2 will increase with a value c2 per
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RunPump

min1 ∧ ¬ max2 ∧ P1 ∧mixer :
h′2 := c2, h

′
1 := −c1

P1 StartPump
P1 StartMixer

Figure 2.5: Step RunPump with two assigned conditional ODEs.

time unit, while the water level of tank T1 will decrease with speed c1. The last
conditional ODE (3) is a kind of safety criterion. Only if pump P1 and mixer
M1 are running the water level may change.
A graphical representation of a HSFCs step is given in Figure 2.5. The conditional
ODE system will be added to a differentiated part of the rectangle containing
the label. That means we split each rectangle into two parts where the lower
will be equipped with the conditional ODE system.

A second, more complex example can be considered in Section 6.
We recall the definition of HSCFs from [NÁ12].

Definition 6 (HSFC Syntax) An HSFC is a tuple HSFC = (Var, Steps,
Act, s0, Trans, Blocks, Dyn, @, ≺, Hist). Steps, Act, s0, Trans, Blocks, @
and ≺ can be adopted from Definition 1 (SFC Syntax).

• Var := VarSFC ∪VarC , where VarSFC is the variable set of Definition 1
and VarC the set of continuous variable from above (Definition 5).

• Dyn : Steps → CODE∗VarC
is a function, mapping a list of conditional

ODEs (cond1, equ1), ..., (condns , equns), condi ∈ Conds, equi ⊆ ODEVarC , i ∈
{1, ..., ns}, s ∈ Steps to each step.

Conditional ODE systems can be derived from the hardware specification and
the plant environment. They allow the verification of an SFC under consideration
of its application area.

2.3.2 HSFC semantic

In contrast to an SFC, an HSFC C = (Var,Steps,Act, s0,Trans,Blocks,Dyn,@
,≺,Hist), needs a configuration tuple c = (σ, readyS , activeS , activeA , activeD )
∈ Σ × 2Steps(C) × 2Steps(C) × 2Act × 2ODEVarC with one additional set activeD,
which contains the currently active ODE s. Active ODE s are the first conditional
ODE systems of steps, which fulfill the ODE condition.
An ODE models dynamic, continuous parts, while an SFC follows a discrete,
step behavior. This leads to an adaption of the SFC semantics, especially the
cyclic scanning mode of Section 2.2.2. We add a fourth step - we will call it
time step - in which we update the time advance and continuous variables. That
means we measure the time elapse δl ≤ t ≤ δu of each cycle and update the
continuous variables according to the active ODE s and the time t.
We recall the definition of HSCF semantics from [NÁ12].

Definition 7 (Time steps) We define the time step transition relation →⊆
ConfHSFC × ConfHSFC as follows:
(σ, readyS , activeS , activeA , activeD )→ (σ′, readyS , activeS , activeA ,
activeD′) iff

Memory- and time- related action qualifiers in HSFCs 13
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– activeD′ :=⋃
s∈activeS {d | ∃ (condi, Oi) ∈ Dyn(s) ∧ d ∈ Oi ∧ σ |= condi ∧

∧i−1
j=1 σ 2

condj}

– σ′(v) = σ(v) for all v /∈ VarC and σ′|VarC = f(t) for f a solution of
activeD with f(0) = σ|VarC and δl ≤ t ≤ δu.

2.4 Hybrid automata
We introduce hybrid automata following [ACH+95] and explain the basic princi-
ples to use them in the transformation of an SFC.
A hybrid automaton (Figure 2.6) has a set of real-valued variables Var and
a set of locations. We call a function v ∈ V, v : Var → R, which assigns to
each variable a value, a valuation of Var. We write v[x := 0] for the valuation
v′ with v′(x) = 0 and v′(y) = v(y) for all y 6= x. We introduce a function
h : V × Var× R→ V with h(v, a, z) = v[a := z] and define the order @ of the
assignment executions in transitions. For a valuation function v ∈ V , values
z, z′ ∈ R and variables a, b ∈ Var we write h(v, a, z) @ h(v, b, z′), if the assign-
ment h(v, a, z) will be executed before h(v, b, z′). In this case we execute the
assignments as follows: h(v, a, z) = v′ and h(v′, b, z′). We denote the set of
all assignment functions with Asg. A state (l, v) of a hybrid automaton is a
combination of a location l ∈ Loc and a variable valuation v ∈ 2R.

Definition 8 (Hybrid automata) A hybrid automaton is a nine-tuple H =
(Loc,Var, Edge,Act, Inv, L, sync, Init,@) with:

• Loc: a finite set of locations,

• Var: a finite set of real variables,

• Edge ⊆ Loc× 2V × 2V × Loc: a finite set of edges,

• Act: a function assigning time-invariant functions f : R≥0 → V to a
location,

• Inv : Loc→ 2V : a function assigning an invariant to each location,

• L: a set of synchronization labels,

• sync : Edge→ L: a function assigning a synchronization label to an edge,

• Init ⊆ Loc× V : a set of initial states and

• @ ⊆ Asg×Asg a total order on the assignment functions.

There are two different transition types in hybrid automata. We distinguish
discrete state changes (jumps) and time delay (flows). The first represents
a location change, while the second one models time elapse and changes the
variable valuation according to actions Act, which are allocated to currently
active locations. The location invariant must be always satisfied. A location
cannot be entered if its invariant is not fulfilled. As in SFCs, transitions are
guarded. A transition can only be taken if its guard is satisfied. In addition, a
transition is able to assign values to variables. So we can manipulate the state
by taking a transition.

14 Memory- and time- related action qualifiers in HSFCs
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Figure 2.6: Example: Hybrid automaton.

2.5 Transformation to hybrid automaton

To enable the verification of hybrid sequential function charts, we give a trans-
formation into hybrid automata. On hybrid automata we can apply available
tools, which are not available for SFCs or other less formalized structures.
We start by recalling the transformation of an (H)SFC into a hybrid automaton
as introduced in [NÁ12]. We do this in two steps, beginning with the transfor-
mation of an SFC and continue by extending this transformation to work on
HSFCs (Figure 2.7).

SFC HA HATimed HATimed + ODE

HA + ODE

HASet HASet + ODE

Figure 2.7: Overview of the transformations.

2.5.1 Transformation of an SFC

The method of [NÁ12] can be partitioned into three main ideas. The first
describes the transformation of the SFC steps, especially the initial step. The
second explains how to model the PLC induced time elapse and the third gives
instructions for transferring the SFC transitions into the hybrid automata under
consideration of formerly defined priorities.
We will begin with the introduction of the PLC induced time elapse.
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Synchronization automaton

To model the cyclic scanning mode of a PLC, we recall our definitions of upper
δu and lower δl bounds for the cycle time (Section 2.2.2). A state change must
happen until δu but may not begin before δl time units has passed.
To handle this, we create a dedicated automaton - the synchronization automaton
- which is used to synchronize the cycle times of several components (Figure 2.8).

read synch

t′ = 1
t ≤ 0

start
action synch

t′ = 1
0 ≤ t ≤ δut := 0

read synch

t ≤ 0

action synch

δl ≤ t ≤ δu → t := 0

Figure 2.8: Synchronization automaton.

The automaton consists of two locations, which are connected via transitions.
The first, initial location waits for the read synchronization. The synchronization
takes place, if the transition to the next location will be taken. This happens
immediately, because the location invariant t ≤ 0 of the initial location becomes
invalid by any time ellapse.
The transition from the initial step to the second step is labeled with read synch.
That means transitions in other automata, which are labeled with the same
identifier, will be taken simultaneously.
In the synchronization automaton, we have a second transition leading from the
the second location back to the initial location. It is labeled with the identifier
action synch and will be taken while the time t is within the lower bound δl and
the upper bound δu of a PLC cycle.
The idea is to model the different steps of a PLC cycle in this way. Input values
will be read at the beginning of each PLC cycle and may not change within
the cycle. Therefore we take a read synch transition, which allows to copy the
current input values into other variables to fix their value for the duration of the
cycle. The action synch transition allows to execute actions in dependency to
the read values, within the bounds of a PLC cycle. The synchronization label
ensures that the corresponding transitions in related automata will be taken
simultaneously and within the bounds. So we get unambiguous behavior in the
hybrid automata, which is comparable to the behavior of a PLC executing an
SFC.

The transformation

Steps are directly transformed to locations, that means every step in the SFC
has an equivalent location in the hybrid automaton, especially the initial step
of the SFC is equal to the initial step of the automaton. Since we model the
cyclic scanning mode through the synchronization automaton running in parallel,
we do not need to add invariants or activities to the locations of the hybrid
automaton. But we will do this later on at the transformation of HSFCs.
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The action blocks of steps are modeled by adding the actions to the transitions
in dependence to their action qualifier. For each transition in the SFC, we
create a transition in the hybrid automaton, labeled with action sync. Taking a
transition the hybrid automaton executes the P0-qualified actions of the source
and the P1- and N-qualified actions of the target step considering the defined
order @ (Figure 2.9). To realize the execution of N actions, each location in the
hybrid automaton will be equipped with a self-loop, labeled with action sync
as well. If no outgoing transition guard is satisfied the self loop will be taken
and the assigned N actions executed. The transition guard of the self-loop is
the negated conjunction of all guards assigned to outgoing transitions.
The transition priority ≺ will be modeled by simply adding the SFC guards of the
transitions to the automata transitions. For the transitions with lower priority
the conjunction of the negations of the foregoing higher-priority transition guards
are added as well. To realize the handling of input variables, each location will
be also equipped with a read sync labeled transition, which stores the input
variables as described above.
We recall the transformation definition of [NÁ12] in the following:

Definition 9 (SFC → Hybrid automaton) Let C = (Var,Steps,Act, s0,
Trans,Blocks,@,≺,Hist) be an SFC without parallel branching and nested SFCs.
Then its transformed hybrid automaton is H = (Loc,VarH ,Edge,ActH , Inv, L,
sync, Init,@H) with:

• Loc := Steps,

• VarH := Var ∪ {aglobal | a ∈ Varinput},

• Edge := ∪s∈StepsEdges, where for each step
s ∈ Steps with outgoing transitions t1, ..., tn ∈ Trans and priority t1 � ... �
tn, Edges := EdgeActionSync ∪ LoopActionSync ∪ LoopReadSync with

– EdgeActionSync := {(s, µi, si) | ∃i ∈ {1, ..., n}ti = (s, gi, si) ∈ Trans},
labeled with action sync and µi := {(v, v′) | v |= gi ∧

∧i−1
j=1 ¬gj ∧

an ◦ ... ◦ a1(v) = v′}, with a1 @ ... @ an, {a1, ..., an} = Exit(s) ∪
Entry(si) ∪Do(si)

– LoopActionSync := {(s, µ, s) | s ∈ Steps}, labeled with action sync and
µ := {(v, v′) | v |=

∧n
j=1 ¬gj ∧an ◦ ... ◦a1(v) = v′}, with a1 @ ... @ an,

{a1, ..., an} = Do(s)

– LoopReadSync := {(s, µ, s) | s ∈ Steps}, labeled with read sync and
µ := {(v, v′) | v |V ar= v′ |V ar ∧∀ a ∈ V ar : v′(a) = v′(aglobal)},

• ActH(s) = {f : R≥0 → V | ∀ t ≥ 0 : f(t) = f(0)} For all s ∈ Loc and
v′ = 0, ∀ v ∈ VarH ,

• Inv(s) = ∅ for all s ∈ Loc,

• L := {action sync, read sync},

• sync : Edge→ L with

L(t) =

{
action sync if t ∈ EdgeActionSync ∪ LoopActionSync

read sync if t ∈ LoopReadSync

,
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• Init := {(s0, v0)}, where v0 is the initial variable valuation of VarH and

• @H⊆ Asg×Asg with for all v ∈ V and for all variables b = act−1
1 (R), c =

act−1
2 (R) ∈ Act : h(v, b, act1) @H h(v, c, act2) iff act1 @ act2.

In the following we denote the assignment of global input variables a := aglobal, a ∈
Varinput by readInput to allow understandable examples.
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action sync
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true →

read sync

readInput

...

(b) Hybrid automaton transformation.

Figure 2.9: Transformation process: SFC → HA.

If we apply the transformation algorithm on the simple mixer benchmark,
we get the hybrid automaton depicted in Figure 2.10.

2.5.2 Transformation of an HSFC

The transformation of an HSFC into a hybrid automaton is the extension of the
transformation of an SFC, shown above (Section 2.5.1).
We have seen in Section 2.3.1 how we extend an SFC by a set of (conditional)
ordinary differential equation systems to get an HSFC, which is able to model
dynamic plant behavior. Since we already know how to translate an SFC into
a hybrid automaton (Section 2.5.1), the challenge is to extend this method by
adding ODEs to the resulting hybrid automaton.
For a location l in the hybrid automaton, which represents a step s in the
corresponding SFC with allocated ODEs Dyn(s) = (cond1 : ODE1, ...,
condn : ODEn), we subdivide l into locations l1, ..., ln+1 (Figure 2.11). The
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Figure 2.10: Simple mixer hybrid automaton.
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condition condi, will be added to the invariant of location li and the equation
ODEi to its actions for i ∈ {1, ..., n}. The n+ 1’th location represents the case
in which no condition holds and chaotic behavior is assumed for the continuous
variables. We introduce a function cl, which replaces every <,> with ≤,≥. The
reason is, that the invariants of the locations depends only on the context of
the process and not on variables, which we can influence directly by transition
assignments. So we avoid the case that a transition can never be taken because
the invariants of the target steps becomes never valid.
The created locations are pairwise connected via transitions, which allows switch-
ing between ODEs depending on their condition. Thereby we introduce a variable
x, which will be increased in each split location for every time unit and reset by
transitions. So we eliminate Zeno behavior, what means to take infinitely many
transitions in finite time.
We recall the definition of [NÁ12]:

Definition 10 (HSFC → Hybrid automaton) Let
C = (Var, Steps, Act, s0, Trans, Blocks, Dyn, @, ≺, Hist) be an HSFC as
defined in Definition 6. That means in particular without parallel branching and
nested SFCs. We transform it into a hybrid automaton H = (Loc,VarH ,Edge,
ActH , Inv, L, sync, Init,@H) with:

• Loc :=
⋃
s∈Steps Locs

Locs := {si | 1 ≤ i ≤ |Dyn(s)|+ 1}

• VarH := Var ∪ {aglobal | a ∈ Varinput} ∪ {x}

• Let s ∈ Steps and Dyn(s) = ((cond1 : ODE1), ..., (condm : ODEm)). If s
has outgoing transitions t1, ..., tn ∈ Trans with ordering t1 � ... � tn then
Edge := EdgeActionSync ∪ LoopActionSync ∪ LoopReadSync ∪ EdgeCopyTrans:

– EdgeActionSync := {(sj , µ, sik) | sj ∈ Locs, s
i
k ∈ Locsi , (s, gi, s

i) =
ti ∈ Trans}, labeled with action sync and

µ := {(v, v′) | v |= gi ∧
∧i−1
j=1 ¬gj ∧an ◦ ... ◦a1(v) = v′} with a1 @ ... @

an, {a1, ..., an} = Exit(s) ∪ Entry(si) ∪Do(si)

– LoopActionSync := {(sk, µ, sk) | sk ∈ Locs, s ∈ Steps}, labeled with
action sync and
µ := {(v, v′) | v |=

∧n
j=1 ¬gj ∧ an ◦ ... ◦ a1(v) = v′} with a1 @ ... @ an,

{a1, ..., an} = Do(s)

– LoopReadSync := {(s, µ, s) | s ∈ Steps}, labeled with read sync and
µ := {(v, v′) | v |Var= v′ |Var ∧∀ a ∈ Var : v′(a) = v′(aglobal)},

– EdgeCopyTrans := {(sk, µ, sl) | k 6= l, sk, sl ∈ Locs, s ∈ Steps}, labeled
with copy trans and
µ := {(v, v′) | v |= x ≥ ε ∧ v′ = v[x := 0]} for some 0 < ε << 1.

• ∀ s ∈ Steps with Dyn(s) = ((cond1 : ODE1), ..., (condm : ODEm)),
Locs = {s1, ..., sm+1} : Act(si) = ODEi ∪ {x′ = 1}, ∀ i ∈ {1, ...,m} and
Act(sm+1) = {x′ = 1},

• ∀ s ∈ Steps with Dyn(s) = ((cond1 : ODE1), ..., (condm : ODEm)),

Locs = {s1, ..., sm+1} : Inv(si) = condi∧(
∧i−1
j=1 cl(¬condj)), ∀ i ∈ {1, ...,m}

and Inv(sm+1) = (
∧m
j=1 cl(¬condj)),
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condn∧∧n−1
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Figure 2.11: Splitting a step for each assigned conditional ODE plus one,
containing all conditions negated.

• L := {action sync, read sync, copy trans},

• sync : Edge→ L with

L(t) =


action sync, if t ∈ EdgeActionSync ∪ LoopActionSync

read sync, if t ∈ LoopReadSync

copy trans, if t ∈ EdgeCopyTrans

,

• Init := {(s0, v0)}, where v0 is the initial variable valuation of VarH and

• @H⊆ Asg×Asg with for all v ∈ V and for all variables b = act−1
1 (R), c =

act−1
2 (R) ∈ Act : h(v, b, act1) @H h(v, c, act2) iff act1 @ act2.

The function cl replaces each > with ≥ and each < with ≤

RunPump1
ODE; x′ = 1

cond

RunPump2
x′ = 1
¬(cond)

x ≥ ε → x := 0

x ≥ ε → x := 0

Figure 2.12: The splitting of step RunPump (Figure 2.5) with cond := min1 ∧
¬max2 ∧ P1 ∧mixer and ODE := h′2 = c2;h′1 = c1.
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Chapter 3

Set- and reset-qualifiers

In the IEC standard [Int03] the syntax of SFCs is given. Besides the action
qualifiers presented in [NÁ12], the industry standard introduces some more
qualifiers. Two of these qualifiers are the set (S) and the reset (R) qualifier. In
the following, the set of action qualifiers, which is supported by (H)SFCs, will
be extended to the set and the reset qualifiers.
Actions qualified by set will be executed repeatedly until a reset takes place.
That means if an action was set, it will be executed even if the containing step is
deactivated, i.e. when this action does not appear in an action block of an active
step. In addition to the reset of S-qualified actions, the reset qualifier allows
to prevent the execution of N-, P1- and P0-qualified actions. That means if
e.g. an N-qualified action is active and then the same action, but R-qualified
becomes active, the action will not be further executed. If a step contains the
same action both set- and reset-qualified, the reset dominates and the action will
not be executed. Furthermore a set- or reset-qualified action will be executed
before all other actions. That means changes, which are made in the set-qualified
action influence the effect of other actions. In particular, actions which are reset
will never be executed as long as a step, which contains the reset action, is active,
even if the same action occurs N-, P1-, P0-qualified in the set of active actions.
We begin by extending our simple mixer model to set and reset qualifiers.
Afterwards we continue by defining the syntax and semantics of SFCs, which
contains set- and reset-qualified actions and describe in the last part of this
chapter the transformation of an (H)SFC into a hybrid automaton (Figure 3.1).
In the following we call the set of (H)SFCs, which contains set- and reset-qualified
actions (H)SFCSet. The set of hybrid automata, which contain set- and reset-
qualified actions is denoted with HSet. We introduce an extension of the syntax
and semantics of [NÁ12], so that HSFCs are able to handle (re)set qualified
actions. Furthermore, we give a method to transform this adapted HSFC into a
hybrid automaton, which enables verification of set- and reset-qualified SFCs.

SFC HA HATimed HATimed + ODE

HA + ODE

HASet HASet + ODE

HASet+Timed HASet+Timed + ODE

Figure 3.1: Overview of the transformations.
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3.1 Simple mixer model - Set extension

Start S MixT2

RunPump P1 StartPump

Empty

P1 StopPump
N RefillT1
N EmptyT2
R MixT2

g1 := min1 ∧ ¬max2 ∧mixer

g2 := ¬min1 ∨max2

g3 := max1 ∧ ¬min2

Figure 3.2: Simple mixer model SFC.

We extend our simple mixer model with set/reset qualifiers, by replacing the
actions StartMixer and StopMixer through one action MixT2, which will be set
in the first and reset in the last step (Figure 3.2).

3.2 SFCSet syntax
In this first step we extend the SFC syntax given in Definition 1 to set and reset
qualifiers. Therefore we adapt the definitions and descriptions of Section 2.2.1.
From now on the set action qualifier will be abbreviated with S and the reset
action qualifier with R.
An SFC C ∈ SFCSet is an SFC whose action qualifiers are chosen from the set
{N,P0, P1,S,R}.

Definition 11 (SFCSet) An SFC C = (Var,Steps,Act, s0,Trans,Blocks,@,≺,
Hist) ∈ SFCSet with set and reset qualifiers consists of

• Var, Steps, Act, s0, Trans, @, ≺, Hist as in Definition 1 and

• Blocks : Steps→ 2BAct with
BAct := {(q, a) | a ∈ Act, q ∈ {P1, N, P0,S,R}}

3.3 SFCSet semantics
We regarded the syntax of the set and reset action qualifiers in Section 3.2. Now
we define the corresponding semantics. Therefore we extend the semantics of
SFCs introduced in Section 2.2.2.
The main variation to Section 2.2.2 depends on the computation of active
actions. In Section 2.2.2, we computed the set of active actions by considering
the currently active steps. For an active step, we check each of its action blocks
and add the corresponding action to the set of active actions in dependency to
its action qualifier. That means, e.g., a P1-qualified action will be added to
the sequence of active actions if the corresponding step becomes active and a
P0-qualified action, if it becomes inactive. We will now consider the two new
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action qualifiers set and reset. With set it is possible to add an action to the set
of active actions independently from its step activity. That means, an action
once set in an active step will be executed in the following steps and cycles until
it will be reset. In addition to the reset of set actions the reset qualifier can also
prevent the execution of P1-, N- and P0-qualified actions
We can conclude: The set of active actions, which we have computed in Section
2.2.2 will now extended to set-qualified actions, which are not reset and reduced
by those P1-, N- and P0- qualified actions, which were reset.

Let us now introduce the SFCSet configuration tuple (σ, readyS , activeS ,

activeA , storedA ) ∈ Σ × 2Steps × 2Steps × 2Act × 2Act to handle set and reset-
qualified actions. Let ConfSet be the set of all configuration tuples. We add a set
storedA, which contains set actions. An action will be added to the set of stored
actions storedA, if it occurs set-qualified in an active step and will be removed
from it, if it occurs reset-qualified. Thereby the reset qualifier dominates.
We need this set of stored actions storedA to know in the following steps, in
which the set actions not explicitly appear, that they are set and thus they must
be executed.
The set of set actions must be added to the computed sequence of active actions.
We use the function computeActiveSetsSet to compute activeA′ (Algorithm 2).

Definition 12 (Transition relation) The transition relation →⊆ ConfSet ×
ConfSet is defined as a configuration change. For a transition (c, c′) ∈→ with
c := (σ, readyS , activeS , activeA , storedA ) and

(σ′, readyS′, activeS′, activeA′, storedA′) =: c′, we define

• readyS′ = (readyS \ source(taken(C, c))) ∪ target(taken(C, c)).

• (activeS′, unsortedActiveA, storedA′) =
computeActiveSetsSet(readyS′, ∅, storedA , C, c, activeA ∩ C, storedA , ∅)

• activeA′ = sort(unsortedActiveA′,@).

• σ′ = f(σ) = (am ◦ ... ◦ a1)(σ) where activeA′ = am ◦ ... ◦ a1 and f ∈ F .

The function computeActiveSetsSet is defined in Algorithm 2 and sort arranges
the actions descending with respect to the given order @ as a sequence.

Algorithm 2 is an extension of Algorithm 1. They are distinguishable in the
additional function of Algorithm 2, which allows to consider (re)set-qualified
actions.
Therefore we add two additional cases to the if-branch in line 8. If an active
step contains a set-qualified action it must be added to the sequence of active
actions activeA′ (if it is not already contained) and to the set actions storedA′.
But if an active step contains a reset-qualified action, it must be removed from
the set of active actions activeA′ and the set of stored actions storedA′.
Because of the dominance of reset-qualified actions, we must consider the case
that a reset arrives before a set. Therefore we introduce a set resetA, which
stores all reset-qualified action. We check if an action is member of this set,
before we add it to the sequence of active actions activeA′ or to the set actions
storedA′.
To handle the case that an action will be set in a nested SFC, we add resetA to
parameters of the recursive function call in line 17. This allows us to compute

Memory- and time- related action qualifiers in HSFCs 25



26 CHAPTER 3. SET- AND RESET-QUALIFIERS

Algorithm 2: computeActiveSetsSet(
readyS′, activeS, activeA,C, c, activeSFCs, storedA, resetA)

input : readyS′, activeS, activeA,
C = (Var, Steps,Act, s0, T rans,
Blocks,@,≺,Hist), c, activeSFCs, storedA, resetA

output: activeS′, activeA′, storedA′

/* Add the local active steps of C to activeS′. */

if Hist = 1 ∨ C ∈ activeSFCs then1

activeS′ := activeS ∪ (Steps ∩ readyS′);2

else3

activeS′ := activeS ∪ {s0};4

/* Add the former setted actions to the set of active

actions. */

activeA′ := activeA;5

/* Stores the former set actions. */

/* Added: */

storedA′ := storedA;6

/* Collect the local active actions and their qualifiers. */

foreach s ∈ Steps, b = (q, a) ∈ Blocks(s) do7

if ([q = exit ∧ s ∈ source(taken(C, c))) ∨ (q = entry ∧ s ∈8

target(taken(C, c)))∨(q = do∧s ∈ activeS′]∧a /∈ activeA′∧a /∈ resetA)
then

activeA′ := activeA′ ◦ a;9

/* Add set actions, which are not resetted. */

/* Added: */

else if (q = set ∧ s ∈ activeS′ ∧ a /∈ resetA) then10

storedA′ := storedA′ ∪ {a};11

else if (q = reset ∧ s ∈ activeS′) then12

resetA := resetA ∪ {a};13

storedA′ := storedA′\{a};
activeA′ := activeA′\a

end14

/* Compute activeA′ and activeS′ for each active nested SFC */

foreach s ∈ Steps ∩ activeS′, b = (q, a) ∈ Block(s) do15

if a ∈ C then16

(activeS′, activeA′, storedA′) :=17

computeActiveSetsSet(readyS
′, activeS′, activeA′,

a, c, activeSFCs, storedA′, resetA);
end18

/* Add active stored actions to the active actions. */

/* Added: */

foreach a ∈ storedA′ ∧ a /∈ activeA′ do19

activeA′ := activeA′ ◦ a;20

end21

return (activeS′, activeA′, storedA′);22
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the set of active actions including the set actions for an SFC and its nested child
SFCs.
Because a reset affects set-qualified actions as well as N-, P1- and P0-qualified
actions, we must adapt the branch in line 8 to check, whether an action is already
reset. Following this reason we also remove a reset action from the sequence of
active actions (line 13). So a reset-qualified action is absolutely dominant and
able to prevent any other qualified actions from being executed.
Let us consider the case that an action appears N-qualified, while it was already
set in a step before. In that case we will only execute the action once. The
algorithm checks whether an action is already member of the execution sequence
before it will be added.
Algorithm 2 returns an unsorted sequence of active actions. Therefore we apply
the sort(...) function on it, which arranges the sequence descending with respect
to @.

3.3.1 Additional semantic definitions for SFCSet

We extend Definition 4, which provides functions to get N-, P0- and P1-qualified
actions of an SFC, with six further definitions. As in Definition 4 we define
functions to get the sets of set- and reset-qualified actions, both nested and for
a local step.

Definition 13 (Specific action set function) Let
C = (Var,Steps,Act, s0,Trans,Blocks,@,≺,Hist) ∈ SFCSet an SFC and c = (σ,
readyS , activeS , activeA , storedA ) ∈ ConfSet a configuration of C. We define

• Set : Steps→ 2Act with Set(s) = {a | (S, a) ∈ Blocks(s)}

• Reset : Steps→ 2Act with Reset(s) = {a | (R, a) ∈ Blocks(s)}

• Setter : Steps→ 2Act with Setter(s) = Set(s) ∪ Reset(s)

We extend our definition to nested SFCs as follows:

• SetNested : ConfSet → 2Act with SetNested(c) =
⋃
s∈activeS Set(s)

• ResetNested : ConfSet → 2Act with ResetNested(c) =
⋃
s∈activeS Reset(s)

• SetterNested : ConfSet → 2Act with SetterNested(c) =
⋃
s∈activeS Setter(s)

We will now explain the transformation process of a SFCSet and come to its
formal definition in the following.

3.4 HSFCSet → Hybrid automaton
Now we give a transformation from HSFCSet to hybrid automata. In contrast
to HSFCs, there exist several approaches to analyses and thus verify hybrid
automata [ACH+95].
We begin by defining a method for the transformation of SFCs to hybrid automata
and extend it to HSFCs in the following. The transformation is based on the
transformation of an SFC, which is described in Section 2.5.1.
We extend the variable set VarH of the automaton, which is the result of an
SFC transformation (Definition 9), with setter variables VarSet. That means we
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add one variable for each action, that can be set. These variables can be seen
as boolean flags. The setter variables of set-qualified actions are per default
initialized to 0.

Definition 14 (Setter variables) The set of setter variables is defined as

VarSet := {ξa | (q, a) ∈ Set(s), s ∈ Steps}

An appearing S qualifier will assign the value 1 to the corresponding setter
variable, while an appearing R qualifier will assign the value 0 to it (Definition
15). Since an action will only be executed if the corresponding setter variable is
true, we control the execution of actions.
A set- or reset-qualified action in an SFC step influences all other actions of
the step. That means if, e.g., a new value was assigned to a variable x by a
set-qualified action the following actions of the step must use this adapted value
of the variable x in their computations. Therefore set and reset actions are
higher priorized and executed before other actions. Within these (re)set actions
it holds that set actions are executed earlier than reset actions. This behavior is
defined in [BHLE04].
We define an action aSetξ , which valuates a setter variable ξ to true and an action

aResetξ , which valuates it to false. These actions will be executed first, before all
other actions. Thereby a set action must be executed before a reset action, since
the reset action dominates and the setter variable valuation will not further
change after the reset was executed. The priorization within the setter actions
will be adopted from the priorization of their corresponding set actions.

Definition 15 (Set/ Reset Control Action) For each setter variable ξ ∈
VarSet we define actions aSetξ , aReset

ξ with

• aSetξ : ξ := 1

• aReset
ξ : ξ := 0.

We write a◦ξ if an action sets or resets a variable and define the following action
priority. Let C = (Var,Steps,Act, s0,Trans,Blocks,@,≺,Hist) be an SFC. We
extend the order @ and the set of actions Act to Act∪{aSetξ , aResetξ | ξ ∈ VarSet}
as follows:

• ∀ξ ∈ VarSet ∀a ∈ Act : a◦ξ @ a

• ∀ξai , ξaj ∈ VarSet : ai @ aj ⇒ a◦ξai
@ a◦ξaj

• ∀ξi, ξj ∈ VarSet : aSetξi
@ aReset

ξj

Due to the new introduced variables, we now need to introduce adapted transition
guards. Our approach bases on the idea of [NÁ12] to decode the action blocks
of an SFC into transitions of the hybrid automata (Section 2.5.1).
The aim is to execute those actions where the corresponding setter variable
is valuated to true. Because there are different possible combinations of true-
valuated setter variables, we provide for each of these combinations one transition,
which executes the corresponding actions. That means we extend the guard of
the transitions (computed in Section 2.5.1) by setting the true-valuated setter
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variables and the negated false-valuated variables in conjunction to the already
existing guards (Figure 3.3). We do this for every existing action sync labeled
transition and for each possible evaluation of the setter variables. Finally we
have exactly one transition for each combination of setter variables and for each
existing transition, which executes the corresponding actions.

s1 s2

g ∧ ξ1 ∧ ¬ξ2 ∧ ... ∧ ¬ξn

g ∧ ¬ξ1 ∧ ξ2 ∧ ¬ξ3 ∧ ... ∧ ¬ξn

g ∧ ξ1 ∧ ξ2 ∧ ¬ξ3 ∧ ... ∧ ¬ξn

...

g ∧ ξ1 ∧ ξ2 ∧ ... ∧ ξn

Figure 3.3: All combinations of true-valuated setter variables be added.

As future work we could apply a reachability analysis on a given SFC, before
the transformation starts. In SFCs it is possible that some steps will never be
reached with a dedicated set of true-valuated setter variables. We could also
check, whether an action will be reset. If this is the case, we can omit its setter
variable.

In the following we provide an algorithm, which computes all possible setter
transitions. We begin by describing the idea of the algorithm in an informal way.
After that we give a formal definition, which enables the implementation.
Because of efficiency considerations, we need an algorithm, which computes each
combination only once and aborts if all combinations are found. The idea is to
iterate over the amount of possible combinations. We consider a given iteration
in its binary representation. Each place of the binary expression represents one
setter variable (Figure 3.4) and we take those setter variables, which have ones
in the corresponding places of the boolean expression. Because every number
has a unique binary representation, we get for each number a unique set of
setter variables, which we can set to true. In particular we get each combination
exactly once.

...

ξn ... ξ7 ξ6 ξ5 ξ4 ξ3 ξ2 ξ1

Binary number :

V ariables :
MSB LSB

Figure 3.4: Each place represents one setter variable.

Let us assume that we have n setter variables and we want to compute all
possible combinations. We can set each of these setter variables true or false.
That means in our binary representation: We can set the corresponding places
either to one or to zero.

# combinations : 2 ∗ ... ∗ 2︸ ︷︷ ︸
n

= 2n (3.1)
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So we can choose n times between two different states (zero and one) and get
the number of possible combinations 2n. We conclude: We must count from 0
to 2n − 1 to get all possible combinations of n different variables.

We are now able to iterate over all possible combinations, but need a function,
which concatenates the setter variables, respectively. Therefore we define the
guard function:

Algorithm 3: guard(n, combination).

input : n, combination
output: setterVars
/* Initialize the output. */

setterVars := ∅;1

/* For each place in the number: */

for pos = 1 to n do2

/* Check for the first place if it is one. */

if 1 & combination then3

setterVars := setterVars ∪ {ξpos};4

/* Shift the number and increment the position. */

combination := combination >> 1;5

end6

return (setterVars);7

The algorithm extracts the different combinations of setter variables from a
number in binary representation. Thereby it shifts a number with n places n
times right, where left is the most significant bit (MSB)1. In every step we take
the conjunction of the shifted number with one and check in this way, whether
the first place contains a one. If this is the case, we add the corresponding
variable to the set of setter variables setterV ars.
To get all possible combinations we must execute the algorithm for every number
from 0 to 2n − 1, where n is the number of setter variables.

We will now take a look on the efficiency of the algorithm. For n setter
variables we must execute the algorithm 2n times. For each number we do n
right shifts so we get a time complexity of O(n2n). We regard the practical
usability of the transformation, in particular of this algorithm, in Section 7.

To keep it intuitive we begin with the definition of the edge set and give the
definition of the whole transformation in the following. Thereby we collect all
actions assigned to a step and add transitions for each combination of activated
actions to the step. Every transition will only execute a specific set of actions
and the taken transition depends on the different possibilities to reset some
actions. Through a reset we can prevent that an action will be executed. The
reset remains preventing as long as the corresponding step is active. So e.g. if
an action occurs N- and R-qualified in a step, it will not be executed.

Example 2 (Guard function) Let {ξ1, ξ2, ξ3} be a set of n = 3 setter
variables. Their exists 23 = 8 possible combinations and we want to compute

1We abbreviate least significant bit with LSB.
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the fifth combination (combination = 5) guard(3, 5):

- pos = 1 : 1 0 1 & 1⇒ setterV ars := setterV ars ∪ {ξ1}
1 0 1 >> 1 = 0 1 0, pos = pos+ 1

- pos = 2 : 0 1 0 & 1
0 1 0 >> 1 = 0 0 1, pos = pos+ 1

- pos = 3 : 0 0 1 & 1⇒ setterV ars := setterV ars ∪ {ξ3}
0 0 1 >> 1 = 0 0 0, pos = pos+ 1

We computed the set: setterV ars = {ξ1, ξ3}.
Applying the algorithm we extract a set of setter variables from a given number
(Example 2). We execute the Algorithm 3 for each combination of setter variables
(Example 3) and add those setter variables negated, which are not part of the
combination.

Example 3 (Guard function) Let VarSet := {ξ1, ξ2, ξ3} be the setter
variable set with |VarSet| = p = 3. We compute:⋃23−1
i=0 {p, i)} =

⋃7
i=1{guard(p, i)}

• i = 0 : guard(3, 0) :
0 = 0 0 0→ {¬ξ1,¬ξ2,¬ξ3}

• i = 1 : guard(3, 1) :
0 = 0 0 1→ {¬ξ1,¬ξ2, ξ3}

• i = 2 : guard(3, 2) :
0 = 0 1 0→ {¬ξ1, ξ2,¬ξ3}

• i = 3 : guard(3, 3) :
0 = 0 1 1→ {¬ξ1, ξ2, ξ3}

• i = 4 : guard(3, 4) :
0 = 1 0 0→ {ξ1,¬ξ2,¬ξ3}

• i = 5 : guard(3, 5) :
0 = 1 0 1→ {ξ1,¬ξ2, ξ3}

• i = 6 : guard(3, 6) :
0 = 1 1 0→ {ξ1, ξ2,¬ξ3}

• i = 7 : guard(3, 7) :
0 = 1 1 1→ {ξ1, ξ2, ξ3}

We will now introduce three functions for notational convenience.

Definition 16 (conj- function) Let VarSet be the set of all setter variables
and set ⊆ VarSet. We define the conjunction function conj : 2VarSet → GVarSet

as

conj(set) :=
∧
ξ∈set ξ ∧

∧
ξ′∈VarSet\set ¬ ξ

′.
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The conj - function will give the conjunction of all variables ξ in the set set and
the negated variables ¬ξ, which are not member of the set VarSet\set.
We will define the second function, which returns the corresponding actions for
a set of setter variables:

Definition 17 (acts- function) Let VarSet be the set of all setter variables
and set ⊆ VarSet. We define the function acts : 2VarSet → 2Asg as

acts(set) := {a | ξa ∈ set}.

Since the acts function returns a set of actions we define a sort(...) function,
which arranges a set as a descending sequence with respect to a given order @.

Definition 18 (sort- function) For a set set = {a1, ..., an} of assignments
with a1 @ ... @ an. We define the function sort : 2Asg × 2@ → Asg∗ as

sort(set,@) := an ◦ ... ◦ a1.

Before we finally introduce the whole transformation from an SFCSet into a
hybrid automaton, we show how we can create its transitions. This is one of the
main parts of the transformation and moreover the most complex.
The definition of the Edge set (Definition 19) follows two main ideas. First
the adaption of the transition guard in dependency to the current set of setter
variables and secondly the controlling of setter variables by executing (re)setter
control actions (Definition 15).
We add for each combination of setter variables and each transition one further
transition. The combinations, which we had computed using the guard function,
determines the assignments of actions to the added transitions. So we will add
those actions, where the corresponding setter variable was set in the guard. We
do this for transitions from one location to another as well as for variables, the
corresponding actions will be executed.
The valuation of a setter variable will be influenced by incoming transitions,
where (re)setter actions are assigned in relation to the set/ reset-qualified actions
in the SFC. That means a (re)set action in an SFC will be (de)activated by
adding (re)setter actions to the incoming transitions of the corresponding location
in the hybrid automaton. Since actions, which are not set, must be reset in each
cycle anew, we add (re)set control actions for N- and P0-qualified actions to
the self loop. The corresponding action will be assumed as set in each cycle and
a later executed resetter action can prevent its execution. Reset control actions
are only added to a self loop to prevent the execution of actions, which occurs
reset-qualified in the same step. So we handle the case that an action occurs N
or P0 and R-qualified in the same set of action blocks, which is assigned to a
step. Because we exclude parallel branches and nested SFCs, we can only reset
a N, P1 or P0-qualified action by adding the action reset-qualified to the same
step. But as a future work, we can assume that an action will be in a nested
SFC or a parallel branch reset. Then the action must be again executed after
the reset action becomes inactive.
To enable true-valuated setter variables in the initial state of the SFC, we must
adapt the initial valuation of setter variables in the hybrid automaton. So the
corresponding setter variable of an action, which was set but not reset in the
initial state, will be valuated to true in the beginning.
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Definition 19 (Edge set - EdgeSet) Let SFCSet C = (Var,Steps,Act, s0,
Trans,Blocks,@,≺,Hist) ∈ SFCSet be an SFC without parallel branches and
nested SFCs. Let s ∈ Steps be a step with outgoing transitions t1, ..., tq ∈ Trans,
tj = (s, gj , sj) for j = 1, ..., q. Let t1 ≺ ... ≺ tq be the transition priorities. We
define Edgeset := EdgeActionSync ∪ LoopActionSync ∪ LoopReadSync, with

– EdgeActionSync := {(s, µi,j , sj) | j ∈ {1, ..., q}, i ∈ {1, ..., 2p}}, labeled with
action sync and
µi,j := {(v, v′) | v |= gj ∧

∧j−1
k=1 ¬gk ∧ conj(guard(p, i)) ∧

sort(acts(guard(p, i)) ∪ ((Do(sj) ∪ Entry(sj) ∪ Exit(s))\Reset(sj)),@) ◦
sort(Settercontrol1 ,@)(v) = v′}, with

Settercontrol1 = {aSetξa′
| a′ ∈ Set(sj)} ∪ {aReset

ξa′
| a′ ∈ Reset(sj)} and

p = |
⋃
s′∈Steps Set(s′)|,

– LoopActionSync := {(s, µi, s) | i ∈ {1, ..., 2p}}, labeled with action sync and
µi := {(v, v′) | v |=

∧q
k=1 ¬gk ∧ conj(guard(p, i)) ∧

sort(acts(guard(p, i))∪(Do(s)\Reset(s)),@) ◦ sort(Settercontrol2 ,@)(v) =
v′}, with

Settercontrol2 = {aSetξa′
| a′ ∈ Set(s)} ∪ {aReset

ξa′
| a′ ∈ Reset(s)} and

p = |
⋃
s′∈Steps Set(s

′)|,

– LoopReadSync := {(s, µ, s) | s ∈ Steps}, labeled with read sync and µ :=
{(v, v′) | v |V ar= v′ |V ar ∧∀ a ∈ V ar : v′(a) = v′(aglobal)}.

The functions guard(...), conj(...), acts(...), sort(...) are defined in Algorithm 3,
Definition 16, Definition 17, Definition 18.

Now we can define the transformation from an SFCSet to a hybrid automaton
as follows. Thereby we extend Definition 9, which describes the transformation
of an SFC.

Definition 20 (SFCSet → Hybrid automaton) Let C = (Var,Steps,Act, s0,
Trans,Blocks,@,≺,Hist) be an SFC without parallel transitions and without
nested SFCs and H = (Loc,VarH ,Edge,ActH , Inv, L, sync, Init,@H) its trans-
formation into a hybrid automaton with

• VarH = Var ∪VarSet

• Edge = EdgeSet with EdgeSet as in Definition 19.

• Loc, ActH , Inv, L, sync, Init and @H are defined similarly as in Definition
9.

Our simple mixer model with only one setter action and two N-qualified
actions can be computed by adding all possible combinations of set actions to the
locations (Figure 3.5). So e.g. let us consider the location Start. If we transform
Start into a hybrid automaton without consideration of set actions, we get only
one self loop, which executes the assigned N action (Figure 2.10). But if we
consider set actions, we must duplicate the number of self loops, because we
need one, which will be taken if the action is not set and one, if it is set.
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Startstart

RunPump

¬g1 ∧ ξ →
StartMixer

¬g1 ∧ ¬ξ →

¬g2 ∧ ξ →
StartMixer

¬g2 ∧ ¬ξ →

g1 ∧ ξ →
StartPump;StartMixer

g1 ∧ ¬ξ →
StartPump

...

... ...

...

Figure 3.5: Simple Mixer Model (restricted to two steps) - Hybrid automaton.

We have shown how to transform an SFC with (re)set-qualified actions into
a hybrid automaton. Let us now consider how to transform an HSFC with
(re)set-qualified actions into a hybrid automaton.
Definition 10 describes how to transform a common HSFC into a hybrid automa-
ton. It begins by transforming the corresponding SFC into a hybrid automaton
using Definition 9.
Definition 10 adds conditional ODEs to a hybrid automaton, which was created
before by Definition 9. Because we do not change anything on the conditional
ODE semantics and syntax, we are able to apply the Definition 10 on our (re)set-
qualified SFC transformation Definition 20.
In this way we can transform an HSFCSet with (re)set-qualified actions into a
hybrid automaton.

3.4.1 Complexity consideration

In the following we will give an overview about the complexity of transformations.
Thereby we consider the amount of locations, variables and transitions, which
will be created in the different transformations. We begin with the analysis of
the transformation of an SFC into a hybrid automaton and contrast it to the
transformation of a HSFC into a hybrid automaton. Based on this results we
will analyses the transformation of an SFC, which contains setter actions.

SFC → HA

Let C be an SFC with n steps, m transitions and k variables.
We create for each step one location in the hybrid automaton, so we have n
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locations. We do not change the set of variables. Therefore we get k variables in
the hybrid automaton. For each transition in the SFC we create a transition in
the hybrid automaton and additionally we provide each step with a self loop.
We further add one synchronization transition per step for the synchronization
automaton. So we get m+ 2n transitions in the hybrid automaton.

HSFC → HA

Let HSFC be an HSFC with n steps, m transitions, k + k′ variables and p
conditional ODEs. k′ represents the number of continuous variables. Let ps be
the number of ODEs mapped to a step s.
We can now compute the number of locations, which will be created by the
transformation as follows: ∑

s∈Steps
(ps + 1) ≤ n ∗ (p+ 1) (3.2)

We can estimate that ps = p in the worst case. This is the case if all conditional
ODEs are mapped to every step. So we can estimate the number of locations as:

O(np) (3.3)

If a step contains no conditional ODEs we count it as one, what means the
unaltered step itself. If it contains conditional ODEs we add one, to count the
step, which will be taken if no condition holds.
The set of variable will be extended with one variable, which is needed to
prohibit zeno behavior, so that we get k+ k′+ 1 variables in the resulting hybrid
automaton. The number of transitions can be computed as follows:

2 ∗
∑

s∈Steps
(ps + 1) +

∑
s∈Steps

out(s) ∗ (ps + 1) +
∑

s∈Steps

ps∑
i=1

2 ∗ (ps − i) (3.4)

The first sum represents the number of self loops (action sync and read sync),
which must be added to the locations, while the second counts the transitions,
which are also part of the SFC. out(s) returns the number of outgoing transitions
of step s. The last sum counts the transitions, which will be added between
splitted locations. These are the locations, where the corresponding step in the
HSFC contains a conditional ODE system.
We transform the last sum into a closed formula and with the assumption above
we get ∑

s∈Steps
(p2 + p+ p ∗ out(s) + out(s) + 2). (3.5)

∑
s∈Steps out(s) = m, because the sum of all outgoing transition is equal to the

number of all existing transitions. So we can estimate the number of transitions
needed for the transformation with:

O(np2 + pn+ pm+m+ 2n) (3.6)
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setter SFC → HA

Let C be an SFC with n steps, m transitions and k variables. u represents the
number of set-qualified actions.
Our approach does not add any further locations to the hybrid automaton and
bases on the transformation described in Definition 9. So we get n locations in
our resulting hybrid automaton.
Because we create for each set-qualified action one setter variable, which repre-
sents its activation, the resulting hybrid automaton contains k + u variables.
We decode the number of set and reset qualifiers in the transitions of the au-
tomata. Therefore we add for each transition all possible combinations. The
idea for the complexity analysis is that we select l variables from a set of k + u
variables. These variables are indistinguishable and we cannot select one variable
twice. We get the following equation:

u∑
i=0

u!

(u− i)!i!
= 2u (3.7)

We do this for each transition in the SFC and the self loops, which we create in
the hybrid automaton. So we get the following number of transitions:

(n+m) ∗ 2u + n (3.8)

The additional summand n describes the read sync transitions, which are not
adapted by the transformation. In our approach we can transform a setter
HSFC into a hybrid automaton by transforming first its SFC part into a hybrid
automaton. We apply the HSFC transformation thereafter. Therefore we can
compute the amount of needed space for the transformation of a HSFCSet by
applying the equations given above.

Analyse results

We give an overview of the space complexity in the following table:

Steps/
Locs.

Variables Transitions Set.
act.

(H)SFC n k + k′ m u
SFC →
HA

n k m+ 2n u

set. SFC
→ HA

n k + u (m+ n) ∗ 2u + n u

HSFC →
HA O(np) k+k′+ 1 O(np2 + pn+ pm+m+ 2n) u

set.
HSFC →
HA

O(np) k+k′+ 1 O(np2 + pn+ p2u + 2u + 2n) u

We see that if we use setter variables, the number of needed transitions in-
creases exponentially. Therefore optimizations on the transformed automaton
can be useful. We give some ideas in the conclusion (Section 7).
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Chapter 4

Timed action qualifier
Additionally to the qualifiers regarded in Chapter 2 and to the (re)set qualifiers
presented in Chapter 3, we will now introduce timed action qualifiers. They
allow to define a delay or an activation period, after or during the action will be
executed. We can further add a set attribute to those timed action qualifiers,
which allow an activation of actions independently from the step activity or the
delayed set of an action.
We extend the syntax and semantics of SFCs and give instructions to transform
a timed SFC (SFCTimed), that is an SFC, which contains time-qualified actions,
into a hybrid automaton. An SFC, which contains both (re)set- and time-qualified
actions will be denoted with SFCSet+Timed. Our approach is based on the hybrid
automaton that we get by applying the SFC transformation of Chapter 2 or the
SFCSet transformation of Chapter 3, if it contains setter variables (Figure 4.1).

SFC HA HATimed HATimed + ODE

HA + ODE

HASet HASet + ODE

HASet+Timed HASet+Timed + ODE

Figure 4.1: Overview transformations - Timed.

We give instructions to transform a hybrid automaton (HA or HASet) into a
hybrid automaton, which is able to model timed actions HATimed and show in
the following how to extend it to an automaton, which considers the conditional
ODE systems (HATimed + ODE).
We begin by introducing the different timed action qualifiers and explain their
characteristic in detail. Thereafter we come to their syntax and semantics and
give the transformation instructions.

4.1 Timed action qualifier characteristics

The difference between the qualifiers of the foregoing chapters and timed action
qualifiers is an additional time condition, which has an effect on the time point
of the execution of the action.
We distinguish five different timed action qualifiers: Limited (L), Delayed (D),
Delayed Set (DS), Set Delayed (SD) and Set Limited (SL).
A variable d of type TIME is attached to each of them. This will determine the
activation time or a delay. For this account, we extend the definition of action
blocks (Section 2.2.1) following [BHLE04]. Thereby we convert the variable
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d into a real-valued variable. A variable of type TIME is introduced by a
keyword TIME# or its abbreviation T#. The keyword can be written both
in lower case or in capital letters. We can further specify five different time
spaces separately in one variable of type TIME. These are days (d), hours (h),
minutes (m), seconds (s) and milliseconds (ms). To specify a time, we can
write them, with a leading number, directly one after another or separated by
underlines (Example 4). Thereby the specification of the time values represents
a descending sequence, that means the highest time type will be placed left and
the next highest thereafter and so on. The time values can flood, what means
that it is also possible to specify 25 hours without changing the number of days.

Example 4 (Variable of type TIME) Let us assume we want to specify
25 days, 6.3 hours, 5 minutes, 1 second and 30 milliseconds. We can write

– time#25d6.3h5m1s30ms, or

– T#25d 6.3h 5m 1s 30ms.

We can now remove the minutes and write the data type as follows:

– t#25d6.3h1s30ms, or

– TIMED#25d 6.3h 1s 30ms.

This will not be a good format for doing computations on them. Therefore
we assume only one value, which is equal to the time specified in the TIME
format and can be easily computed by converting the time into a millisecond
representation. For Example 4 it is 2, 182, 980, 130ms.
With these preparations we can now define timed action blocks.

Definition 21 (Timed Action Block) For a ∈ Act, d ∈ R and q ∈ {D,L,
DS, SD, SL} the tuple ((q, d), a) is a timed action block. We use BAct,Timed to
denote the set of all timed action blocks and BAct+Timed := BAct ∪ BAct,Timed

for the set of all action blocks.

Now let us take a closer look on the different timed action qualifiers. Let
tact,s be the point in time, where a step s ∈ Steps becomes active and tdeact,s
the point in time, where s becomes inactive.
An L-qualified action ((L, d), a) ∈ Blocks(s) will be active for a duration d
(Figure 4.2: L), but becomes directly inactive, if the corresponding step s
becomes inactive. I.e., the execution time of a is min(d, tdeact,s − tact,s). Of
course the action can be reset while execution. Then the execution time depends
on the point in time, where the reset becomes active.
For a D-qualified action ((D, d), a) ∈ Blocks(s) the execution of a will be delayed
for a duration d (Figure 4.2: D). The action will only be executed if the time
delay is over before the step is deactivated. That means a will only be executed
if d ≤ tdeact,s − tact,s.
We can write an S as prefix of D, L and get SD and SL. Actions which are
SD-, SL-qualified will be executed independently from the step activation. That
means an SL-qualified action will be executed for a duration d in either case
unless the action will be reset at time point 0 < treset < d and a SD-qualified
action will be executed after a delay of d time units in either case unless it will
be reset before (Figure 4.2: SL, SD).
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A DS-qualified ((DS, d), a) ∈ Blocks(s) action depends in contrast to an SD-
qualified action on the activation time of the step. That means the corresponding
action will be only set after a delay of d time units and if the step s is still active
after that period of time. In both cases the actions are active until they will be
reset (Figure 4.2: DS).

tact timetact + d tdeact

tact timetact + d tdeact

tact timetdeact tact + d

tact timetdeact tact + d

tact timetact + d tdeact

D:

L:

SL:

SD:

DS:

d

d

d

execution

execution

execution

execution

execution

Figure 4.2: L, D, DS, SD, SL qualifier.

A reset does not influence the elapsed time of timed action qualifiers but
prevents the execution of the reset action. That means, e.g., an L-qualified
action with a duration d will not be executed after the reset disappears for a
duration d. Instead the execution time is the difference between the duration d
and the time the action was reset. In particular it is possible that an action will
never be executed. This is e.g. the case if an L-qualified action is reset for the
whole time from begin of activation until its execution duration elapses.
It is not possible to reassign another value d to a timed qualifier during execution
time.

4.2 Timer/counter

To enable the time-dependent execution of actions we must introduce timer-
s/counters, which are able to measure the elapsed time. Counters are related
to steps, while timers are directly related to actions. Set actions, which are
independent from the step activity will be mapped to timers, while all other
actions will be mapped to counters. The reason for that is the deactivation
of nested SFCs with set true flags. Set actions will be executed independently
from its containing SFC and thus their timers must not be stopped if the SFC
becomes inactive. In contrast, the timers of actions, which are not set, must
be stopped upon the deactivation of their SFCs and possibly continued if the
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containing SFC becomes active again and if its history flag is set.
So we must be able to stop the counter in case of deactivation of the maintaining
SFC. If the history flag is set the counter continues after reactivation, where it
was stopped. Both, timer and counter can be reset to zero. We give a formal
definition for counters and timers following [BHLE04]:

Definition 22 (Timer/Counter)

• A counter ΘCounter
s for a step s is a real-valued variable. We denote the set

of all counters with ΘCounter
S and define a function f : ΘCounter

S → {0, 1}
with f(ΘCounter

s ) = 1, if the counter ΘCounter
s ∈ ΘCounter

S is running, and
f(ΘCounter

s ) = 0, if the counter is stopped.

• A timer ΘTimer
a for an action a is a real-valued variable. The set of all

timers is denoted with ΘTimer
A . We extend the function f to f : ΘCounter

S ∪
ΘTimer
A → {0, 1} and illustrate the timer characteristic, a timer cannot be

stopped, by f(ΘTimer
a ) = 1 for all ΘTimer

a ∈ ΘTimer
A .

Timer and Counter can be reset to zero. We write Θ = ΘCounter
S ∪ΘTimer

A for
the set of all timers and counters.

4.3 SFCTimed syntax
With the timed action blocks introduced in Definition 21 and timers and counters
described in Definition 22 we are now able to define timed SFCs following
[BHLE04].
This is an extension of the SFCSet syntax (Definition 11), where the function,
which assigns an action block to a step, will be adapted to assign also timed
action blocks to a step. Furthermore we extend the SFC to hold the timers and
counters of time-qualified actions.

Definition 23 (SFCTimed) We extent the definition of SFCs (Definition 11).
Let C = (Var, Θ,Steps,Act, s0,Trans,Blocks,@,≺,Hist) ∈ SFCTimed be an SFC
with

• Var, Steps, Act, s0, Trans, @, ≺, Hist as in Definition 11.

• Blocks : Steps→ 2BAct+Timed .

• Θ the set of timers/counters.

In the following, we call SFCs, which contain time-qualified actions, timed
SFCs or SFCTimed to distinguish them from the foregoing defined SFCs. The
set timed qualifiers SD, SL and DS are called setter time qualifier.

4.4 SFCTimed semantics
We adapt the semantic of SFCs given in Section 3.3 to deal with timed action
qualifiers. In the syntax definition we follow [BHLE04].
A configuration tuple for an SFCTimed C = (Var, Θ,Steps,Act, s0,Trans,Blocks,@
,≺,Hist) depends additionally on the valuation of counters and timers. Therefore
we introduce the timed configuration (σ, υ, readyS , activeS , activeA , storedA ,

storedDA, storedLA) ∈ Σ× 2R × 2Steps × 2Steps × 2Act × 2Act × 2Act × 2Act and
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let Conft be the set of all timed configurations.
To model time elapse, we introduce the timed transition relation →δ ⊆ Conft ×
Conft. Timed transitions are executed between instantaneous transitions, which
we denote with →a ⊆ Conft × Conft. We use →δ to adapt the valuation of the
timer and extend →a to execute actions.
A run on a SFCTimed consists of alternating discrete and timed transition rela-
tions. The difference between the two transition relations is that the discrete
transition relation is used to execute actions and the timed transition relation
changes the timer/counter values in dependence to the elapsed time. We can
introduce a transition relation →⊆→δ ∪ →a, which comprises the two transition
relations.
We need two further sets (storedLA,storedDA) to store set delay (SD) and set
limited actions (SL). In this way we can check for each of these actions the
elapsed time at the beginning of a cycle and execute them respectively, also if
their corresponding steps become inactive in the meantime. To model the time
elapse we add υ to the configuration tuple, which maps rational numbers to
timers and counters.

Definition 24 (Timed configuration) Let c = (σ, υ, readyS , activeS , activeA ,
storedA , storedDA, storedLA) be a configuration of an SFCTimed C, with

• σ, readyS , activeS , activeA , storedA as in Definition 3,

• υ represents the valuation of timers and counters,

• storedDA⊆ Act is the set of stored delay actions,

• storedLA⊆ Act is the set of stored limited actions.

We denote the set of all timed configurations with Conft.

In contrast to the transition relation of foregoing chapters, we must extend the
algorithm, which collects the active actions, to deal with timed action qualifiers.
Additionally we give instructions to control the timers and counters.
A counter will be reset, if the corresponding step becomes active and a timer will
be reset if the corresponding action occurs in the action block of a step, which
becomes active.
We will now extend the transition relation and introduce the timed transition
relation in the following:

Definition 25 (Transition relation) The transition relation →a ⊆ Conft ×
Conft is defined as a configuration change. For a transition (c, c′) ∈→a with
c := (σ, υ, readyS , activeS , activeA , storedA , storedDA, storedLA) and

(σ′, υ′, readyS′, activeS′, activeA′, storedA′, storedDA′, storedLA′) =: c′, we de-
fine

• readyS′, σ′ as in Definition 12,

• (activeS′, unsortedActiveA, storedA′, storedDA′, storedLA′) =
computeActiveSetsTimed(readyS′, ∅, storedA, C, c, activeA ∩ C,

storedA , ∅, ∅, ∅),

• activeA′ = sort(unsortedActiveA′,@),
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• υ′(ΘCounter
s ) := 0 ∀s ∈ activeS′\activeS and

υ′(ΘTimer
a ) := 0 ∀a ∈ ((storedLA′\storedLA)∪ (storedDA′\storedDA)).

The function computeActiveSetsTimed is defined in Algorithm 4 and the function
sort(...) arranges the actions descending with respect to the given order @.

Let us now take a closer look at the algorithm, which collects the active
actions:
For the computation of the sets storedDA′ and storedLA′, we extend Algorithm
2 to deal with timed action qualifiers. We extract from the algorithm the part,
which collects the active actions and put it into an external function collec-
tActiveActions (Algorithm 5) to keep clarity. The remaining part results in
Algorithm 4. Algorithm 5 can be described as follows:
For every timed action qualifier we add one further case to the if-branch (lines
1-15). If we get an L-qualified action (line 6), we check whether the corresponding
step is active and how long it has been active. If the activation time of the step
is shorter than the limit time d given by the action qualifier, the action will
be executed. Analogously for the case D (line 8). The action will be executed,
when the step has been active for the delay time d. If the corresponding step
of a D-/ L- qualified action is deactivated in the meantime the actions will no
longer be considered.
A special case is the DS qualifier (line 10). As L and D, it will only be considered
as long as the corresponding step is active, but after a delay d the action will
be added to the set of stored actions. That means in contrast to the L and D
qualifier, the action might be executed several times independently from the
step activity. We use the set of stored actions storedA′ introduced in Section 4.4
to store an executed DS-qualified action and enable its periodical execution.
Independently from the step activation time are the qualifiers SD and SL, which
are considered in the branches line 12 and line 14. An SD-qualified action will
be added to the set of stored delayed actions, if it is not already part of the set,
if it is not reset and if the corresponding timer valuation is lower or equal to the
delay time. In contrast to the SD action qualifier, an SL-qualified action will
be added to the stored limited action set, if the corresponding timer valuation is
lower than the given limited time.
An SD-/ SL-qualified action will be periodically executed until it will be reset.
Because we can reset an SD- or SL-qualified action before its delay/limit time
is reached, we adapt the reset case (line 16) by removing actions from the
storedDA/storedLA set, if they appear reset-qualified in one of the active steps.
Finally, the algorithm searches for actions, which must be executed in the current
cycle (line 8 - part 2). Thereby an action will be added to the set of active
actions activeA′, if the corresponding time condition is satisfied.
Time-qualified actions will not be executed exactly in time. The reason for that
is the cyclic scanning mode. Active actions were determined at the end of the
cycle before. If, e.g., a D-qualified action has its execution time in the meantime
of two collections of active actions, the action will be further delayed or, if it is
L-qualified then longer executed until this second collection. In the worst case
the delay time of an action elapses directly after a collection of active actions.
Than the execution will delay nearly a cycle time long. Additionally, the cycle
time differs in each cycle, so that we do not know whether a time-qualified action
becomes active in the next cycle.
In contrast to set-qualified actions we add not only the action to the set of
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stored actions, but also the whole action block. In this way we can add multiple
timed actions with different duration times. We can check whether one of these
action blocks is satisfied and if so, we can add them to the set of active actions,
respectively.

For the functionality of the algorithm it is important, that the valuation of
the timer will be updated in each cycle. Therefore we introduce timed transition
relations in the following.
Counters will only be updated if their corresponding step is active, while clocks,
which cannot be deactivated, will be always updated.

Definition 26 (Timed transition relation) The timed transition relation
→δ ⊆ Conft × Conft is defined as a configuration change. For a transition
(c, c′) ∈→δ with
c := (σ, υ, readyS , activeS , activeA , storedA , storedDA, storedLA) and

(σ, υ′, readyS , activeS , activeA , storedA , storedDA, storedLA) =: c′ we define

• υ′(ΘCounters ) := υ(ΘCounters ) + δ, ∀ s ∈ activeS, where δ is the execution
time for the foregoing PLC cycle.

• υ′(ΘTimera ) := υ(ΘTimera ) + δ, ∀ ΘTimera

Based on the transition relation and the timed transition relation we are now
able to introduce timed runs:

Definition 27 (Timed run) A timed run is an alternating sequence of discrete
and timed transitions
〈c0 →δ0 c1 →a c

′
1...→δi ci+1 →a c

′
i+1...〉, where δl ≤ δi ≤ δu for all i ∈ N0.

Now we have defined the semantics of SFCTimed. We know the characteristics
of the different timed qualifiers and how we can deal with them in SFCs.
In the following we give some more definitions for timed SFCs, which allow
intuitive definitions for the transformation of SFCTimed.

4.4.1 Additional semantic definitions for timed SFCs

As in the chapters before we provide functions, which return all actions, which
are qualified with a dedicated qualifier. We do this for a local step and with
consideration of nested SFCs.

Definition 28 (Specific action set function)
Let C = (Var, Θ,Steps,Act, s0,Trans,Blocks,@,≺,Hist) ∈ SFCTimed be an SFC
with configuration c = (σ, υ, readyS , activeS , activeA , storedA , storedDA,
storedLA) ∈ Conft. We define

• L : Steps→ 2Act with L(s) = {a | (L, a) ∈ Blocks(s)},

• D : Steps→ 2Act with D(s) = {a | (D, a) ∈ Blocks(s)},

• SL : Steps→ 2Act with SL(s) = {a | (SL, a) ∈ Blocks(s)},

• SD : Steps→ 2Act with SD(s) = {a | (SD, a) ∈ Blocks(s)},

• DS : Steps→ 2Act with DS(s) = {a | (DS, a) ∈ Blocks(s)}.
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Algorithm 4: computeActiveSetsTimed(
readyS′, activeS, activeA,C, c, activeSFCs, storedA,
storedDA, storedLA, resetA)

input : readyS′, activeS, activeA,
C = (Var, Θ, Steps,Act, s0, T rans,Blocks,@,≺,Hist), c,
activeSFCs, storedA, storedDA, storedLA, resetA

output: activeS′, activeA′, storedA′, storedDA′, storedLA′

/* Add the local active steps of C to activeS′. */

if Hist = 1 ∨ C ∈ activeSFCs then1

activeS′ := activeS ∪ (Steps ∩ readyS′);2

else3

activeS′ := activeS ∪ {s0};4

/* Collect the local active actions and their qualifiers. */

activeA′ := activeA;5

/* Stores the former set actions. */

storedA′ := storedA;6

/* Stores the former timed-set actions. */

storedDA′ := storedDA;7

storedLA′ := storedLA;8

/* Collect the active actions. */

collectActiveActions(activeS′, activeA′, C, c, storedA, storedDA,9

storedLA, resetA);
/* Compute activeA′ and activeS′ for each active nested SFC */

/* Edited: */

foreach s ∈ Steps ∩ activeS′, b = (q, a) ∈ Block(s) do10

if a ∈ C then11

(activeS′, activeA′, storedA′, storedDA′, storedLA′) :=12

computeActiveSetsTimed(readyS′, activeS′, activeA′, a, c, activeSFCs,
storedA′, storedDA′, storedLA′resetA);

end13

/* Add active stored actions to the active actions. */

foreach a ∈ storedA′ do14

if a /∈ activeA′ then15

activeA′ := activeA′ ◦ a16

end17

/* Add active delayed/ stored actions to the active actions.

*/

foreach b = ((q, d), a) ∈ storedDA′ do18

if ΘTimera ≥ d ∧ a /∈ activeA′ then19

activeA′ := activeA′ ◦ a20

end21

foreach b = ((q, d), a) ∈ storedLA′ do22

if d ≥ ΘTimera ∧ a /∈ activeA′ then23

activeA′ := activeA′ ◦ a24

end25

return (activeS′, activeA′, storedA′, storedDA′, storedLA′);26
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Algorithm 5: collectActiveActions(
activeS′, activeA′, C, c, storedA,
storedDA, storedLA, resetA)

input : activeS′, activeA′,
C = (Var, Θ, Steps,Act, s0, T rans,Blocks,@,≺,Hist), c,
storedA, storedDA, storedLA, resetA

foreach s ∈ Steps, b ∈ Blocks(s) do1

if b = ((q, d), a) then2

/* Add L actions, which are not resetted. */

if3

(q = L ∧ΘCounters ≤ d ∧ s ∈ activeS′ ∧ a /∈ activeA′ ∧ a /∈ resetA)
then

activeA′ := activeA′ ◦ a;4

/* Add D actions, which are not resetted. */

else if5

(q = D ∧ΘCounters ≥ d ∧ s ∈ activeS′ ∧ a /∈ activeA′ ∧ a /∈ resetA)
then

activeA′ := activeA′ ◦ a;6

/* Add DS actions, which are not resetted. */

else if (q = DS ∧ΘCounters ≥ d ∧ s ∈ activeS′ ∧ a /∈ resetA) then7

storedA′ := storedA′ ∪ {a};8

/* Add SD actions, which are not resetted. */

else if (q = SD ∧ΘTimera ≥ d ∧ s ∈ activeS′ ∧ a /∈ resetA) then9

storedDA′ := storedDA′ ∪ {b};10

/* Add SL actions, which are not resetted. */

else if (q = SL ∧ΘTimera ≤ d ∧ s ∈ activeS′ ∧ a /∈ resetA) then11

storedLA′ := storedLA′ ∪ {b};12

else if b = (q, a) then13

if ([(q = exit ∧ s ∈ source(taken(C, c))) ∨ (q = entry ∧ s ∈14

target(taken(C, c))) ∨ (q = do ∧ s ∈ activeS′)] ∧ a /∈ activeA′∧ /∈
resetA) then

activeA′ := activeA′ ◦ a;15

/* Add set actions, which are not resetted. */

else if (q = set ∧ s ∈ activeS′ ∧ a /∈ resetA) then16

storedA′ := storedA′ ∪ {a};17

else if (q = reset ∧ s ∈ activeS′) then18

resetA := resetA ∪ {a};19

if a ∈ activeA′ then
activeA′ := activeA′\a20

if a ∈ storedA′ then21

storedA′ := storedA′\{a}22

if ∃ t : ((SD, t), a) ∈ storedDA′ then23

storedDA′ := storedDA′\{b = ((SD, t′), a) | ∀ t′ ∈ R}24

if ∃ t : ((SL, t), a) ∈ storedLA′ then25

storedLA′ := storedLA′\{b = ((SL, t′), a) | ∀ t′ ∈ R}26

end27
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We introduce the following functions, which consider also nested SFCs.

• LNested : Conft → 2Act with LNested(c) =
⋃
s∈activeS L(s),

• DNested : Conft → 2Act with DNested(c) =
⋃
s∈activeS D(s),

• SLNested : Conft → 2Act with SLNested(c) =
⋃
s∈activeS SL(s),

• SDNested : Conft → 2Act with SDNested(c) =
⋃
s∈activeS SD(s),

• DSNested : Conft → 2Act with DSNested(c) =
⋃
s∈activeS DS(s).

4.5 HSFCTimed

We have formalized the syntax and semantics of time-qualified SFCs. We get a
HSFC by assigning conditional ODEs to steps, as we have seen in Section 2.3.
The syntax and semantics of timed SFC can be easily extended to timed hybrid
sequential function charts. We can transform a given timed SFC into a timed
HSFC according to Definitions 2.3.1 and 2.3.2.

4.6 (H)SFCTimed → Hybrid automaton

We will now face the challenge to transform a timed SFC into a hybrid automaton.
This will allow us the verification of timed SFCs.
Because of the different behaviors and characteristics of the timed action qualifiers,
we give for each qualifier separate transformation instructions. The intent is
to ensure clarity and to reduce the amount of operations. So we must only
apply these transformations, where the corresponding action qualifier occurs in
the SFC. In other words, if an SFC contains a dedicated timed action qualifier,
the corresponding transformation can be applied on it independently from
not occurring timed action qualifiers. Thereby the order of transformations is
arbitrary (Figure 4.3).

HA + L HA + D

HA + SD HA + SL

HA + DS

Figure 4.3: SFCTimed transformation.

The whole process of transforming a timed SFC can be described as follows:
If we have a timed SFC, we begin by transforming it into a hybrid automaton, as
described in Chapter 2 or if it contains stored actions, as described in Chapter 3
(Figure 4.1).
On the resulting automaton we apply those timed transformations in arbitrary
order, where the corresponding timed action qualifier is part of the SFC. Finally
we get an automaton, which is reachability-equivalent to the corresponding timed
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SFC.
Before we start with the transformation instructions and their formal definitions,
we introduce a timer and some more functions.

4.6.1 Timer automaton

To execute actions limited or with a specific delay, we must measure the elapsed
time. Therefore we introduce a timer variable ttimer, which will be updated as
long as the program will be executed. This variable is globally provided to each
step and action by a timer automaton (Figure 4.4), so that we can use it to
determine active actions.
To minimize the number of timers in the resulting hybrid automaton, we do not
create an associated timer for each timed action qualifier. Instead we store the
timestamp of a timed action, which becomes active and add the current time
ttimer to the time duration d given by the timed qualifier.
The advantage is that we only need to increase one timer variable per time unit
and because we do this in the activities of locations, we only need to add one
activity to each location. In this way we save a lot of operations, especially in
practical use, but introduce variables for storing the timestamps.
We restrict our definitions to timed SFCs, which do not contain parallel branches
and nested SFCs. As a consequence we must not consider history flags and
therefore we need not to distinguish between timers and counters.

timer
t′timer = 1

start

Figure 4.4: Timer automaton.

To know whether an action must be executed we follow our concept of setter
variables and adapt it to deal with time values. The setter variables will not
only contain the values one and zero, but real numbers, which can be used to
determine whether a delay or limit is elapsed.
Following this approach we create setter variables and transitions for setter time
qualifiers as we have seen in Section 3 with adapted setter actions. We will
further add the timer variable ttimer of the timer automaton (Figure 4.4) and
for DS-qualified actions we add Setter variables ξa to enable the execution until
a reset appears.
So let us define the set of variables VarTimed, which are added to the hybrid
automaton to deal with timed SFCs.

Definition 29 (VarTimed)
VarTimed := {ttimer}

∪ {tb | b = (q, a) ∈ Blocks(s), s ∈ Steps ∧ q ∈ {L,D, SD, SL,DS}}
∪ {ξa | b = (q, a) ∈ Blocks(s), s ∈ Steps ∧ q ∈ {DS}}

We use control actions to change the valuation of the variables. Thereby
we distinguish two actions. astampt copies the current time ttimer into the timer
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variable t. We do this at step activation and know in this way its activation
time. This can be used in the following to execute e.g. a delayed action.
The reset control action aresett assigns the value −1 to a timer variable t. Since
negative delays or execution durations are senseless, we use −1 as special key
number to check whether the action was reset.
We define the actions, which store and reset the timestamps:

Definition 30 (Timer control actions) For each timed variable t ∈ VarTimed

we define actions Act := {astampt , aresett } ∪Act with:

• astampt : t := ttimer

• aresett : t := −1

Now, we will introduce some additional functions, which we use to change
the guards and action assignments of already existing transitions. As described
before we start with the hybrid automaton, which is the transformation of an
SFC or SFCSet, if we want to transform a SFCTimed. We then change the
automaton so that it will handle also timed qualifiers. Therefore we need some
functions, which allow the modification of the automaton in an understandable
way.

4.6.2 HA modification functions

Since we adapt the transition guards and assignments of transitions, we need a
helper function combine(...), which allows us to extend a transition from the set
trans with a guard g, an action a and with the negated guard ¬g. We assume
a call-by-reference characteristic, that means the automaton will be directly
manipulated in the function.
In other words: We take all transitions specified in the set trans and change
them in the automaton H, by extending the transition guard by g and adding
one action a. Furthermore we add one transition with the negated guard, but
without any additional assignments.

Definition 31 (combine(H, trans, g,act) function) We define a function
combine : Aut× 2Edge×GVar×ActSFC → Aut with combine(H, trans, g, a) = H ′

for H = (Loc,Edge,Act, Inv, L, sync, Init,@) and H ′ = (Loc,Edge′,Act, Inv, L,
sync, Init,@). We define Edge′ as follows:

– Edge′ = (Edge\trans)
∪{(s, (µ1, µ

′
1), s′) | (s, (µ1, µ

′
1), s′) ∈ (trans ∩ Edge)}

∪{(s, (µ2, µ
′
2), s′) | (s, (µ2, µ

′
2), s′) ∈ (trans ∩ Edge)},

where ∃v ∈ V,∃a1...∃an ∈ Var: {v(a1), ..., v(an)} = µ′1 with v(a1) @ ... @
v(an) and
∀ a′l ∈ (act−1(R) ∩Var),∃ ail, a

j
l ∈ Var : {v(a1), ..., v(ail), v(a′l),

v(ajl ), ..., v(an)} = µ′1 with v(a1) @ ... @ v(ail) @ v(a′l) @ v(ajl ) @ ... @
v(an) and
∀g′ ∈ GVar : µ1 |= g′ ⇒ µ1 |= g′ ∧ g and
∀g′ ∈ GVar : µ2 |= g′ ⇒ µ2 |= g′ ∧ ¬g.

We need timed control actions to manipulate timer variables. Their mapping
to transition assignments depends only on the action qualifiers of the target
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location, that means those qualifiers which occur in the corresponding step of
an SFC. In particular timed control actions are independent from any transition
guard so we need a function, which adds only an action to the transition
assignments without changing the transition guard. The following function will
add an action a to transitions of a set trans. As in the definition of the function
before we will assume a call-by-reference behavior. That means we manipulate
the hybrid automaton directly.

Definition 32 (addAction(H, trans,act) function) We define a function
addAction : Aut × 2Edge × ActSFC → Aut with addAction(H, trans, act) = H ′,
where H = (Loc,Edge,Act, Inv, L, sync, Init,@) and H ′ = (Loc,Edge′,Act, Inv, L,
sync, Init,@). We define Edge′ as follows:

– Edge′ = (Edge\trans)
∪{(s, (µ1, µ

′
1), s′) | (s, (µ1, µ

′
1), s′) ∈ (trans ∩ Edge)}

where ∃v ∈ V,∃a1...∃an ∈ Var: {v(a1), ..., v(an)} = µ′1 with v(a1) @ ... @
v(an) and
∀ a′l ∈ (act−1(R) ∩Var),∃ ail, a

j
l ∈ Var : {v(a1), ..., v(ail), v(a′l),

v(ajl ), ..., v(an)} = µ′1 with v(a1) @ ... @ v(ail) @ v(a′l) @ v(ajl ) @ ... @
v(an).

4.6.3 The transformation

Based on the preparations we did in the chapters before, we will now give
instructions to model timed action qualifiers in hybrid automata.
We begin with the transformation instructions for the L and the D qualifiers. We
will then define the transformation of DS-qualified actions, which are particular
because we need setter variables to determine if the action must be executed.
At the end we will introduce the setter time action qualifiers SL and SD.
We begin by defining the transitions EdgeL, which will be added to the hybrid
automaton to model L-qualified actions.

Transformation of L-qualified actions

For a location, where the corresponding step contains an L-qualified action, we
replace each self loop by two transitions. The first will be taken if the activation
time is in the limit and the corresponding timestamp variable is not equal −1.
That will execute the corresponding action, while the other one will be taken if
the limit is overdue or the corresponding timestamp variable is −1. In this case
the corresponding action may no longer be executed. Incoming transitions of
the step will be extended to timestamp actions, so that we can add the qualifier
given time d to the timestamp and compare it with the global time variable
ttimer, if an L-qualified action becomes active.

Definition 33 (EdgeL(H,C)) We define a function
EdgeL : Aut × SFCSet+Timed → Aut with EdgeL(H,C) = H ′, where C =
(Var, Θ,Steps,ActSFC , s0,Trans,Blocks,@SFC ,≺,Hist) is an SFC and H = (Loc,
Var,Edge,Act, Inv, Init,@) its transformation. We construct H ′ as follows:

– Let {b1 = ((L, d1), a1), ..., bn = ((L, dn), an)} = {b = ((L, d), a) | b ∈ BAct}
be the L-qualified actions of C:
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– H ′′1 = addAction(combine(H, {t = (s, µ, s) | t ∈ Edge∧b1 ∈ Blocks(s)∧
sync(t) = action sync}, tb1 + d1 ≥ ttimer ∧ tb1 6= −1, a1),
{t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6= s′}, astamp

tb1
)

– H ′′i = addAction(combine(H ′′i−1, {t = (s, µ, s) | t ∈ Edge ∧ bi ∈
Blocks(s)∧sync(t) = action sync}, tbi+di ≥ ttimer∧tbi 6= −1, ai), {t =
(s′, µ, s) | t ∈ Edge∧ bi ∈ Blocks(s)∧ s′ 6= s}, astamp

tbi
) for i ∈ {2, ..., n}

– Let {(b1 = ((R, d1), a1), ..., bm = ((R, dm), am)} = {b = ((R, d), a) | b ∈
BAct} be the R-qualified actions of C:

– H ′′′1 = addAction(H ′′n , {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6=
s′}, aresettb1

)

– H ′′′j = addAction(H ′′′j−1, {t = (s′, µ, s) | t ∈ Edge∧bj ∈ Blocks(s)∧s 6=
s′}, aresettbj

), for j ∈ {2, ...,m}

– H ′ := H ′′′m

We give an example in Figure 4.5, where we add one transition, which will
execute the timed action and one transition, which can be taken if the limit
time is elapsed. Timer control actions are added to the incoming transitions to
update the timer variables.

Start
L
t#30

StartMixer Start
30 == −1

∨tb + 30 < ttimer →

tb + 30 ≥ ttimer ∧ 30 6= −1 →

StartMixer

... ...
g1 →

astampt(L,StartMixer)

gn →

astampt(L,StartMixer)

Figure 4.5: L qualifier transformation.

We will now consider the transitions, which we add to the hybrid automaton
to deal with delayed actions.

Transformation of D-qualified actions

As in Definition 33 we replace each existing self loop of steps, which contains
D-qualified actions, with two transitions, where the first one executes the
corresponding action, if the delay is reached. A second one can be taken in the
meantime. This transition will not execute the time-qualified action. Incoming
transitions will be extended to an action, which sets the timestamp. As before
the reset is done by setting the timestamp to −1.

Definition 34 (EdgeD(H,C)) We define a function
EdgeD : Aut × SFCSet+Timed → Aut with EdgeD(H,C) = H ′, where C =
(Var, Θ,Steps,ActSFC , s0,Trans,Blocks,@SFC ,≺,Hist) is an SFC and H = (Loc,
Var,Edge,Act, Inv, Init,@) its transformation. We construct H ′ as follows:

– Let {b1 = ((D, d1), a1), ..., bn = ((D, dn), an)} = {b = ((D, d), a) | b ∈
BAct} be the D-qualified actions of C:
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– H ′′1 = addAction(combine(H, {t = (s, µ, s) | t ∈ Edge∧b1 ∈ Blocks(s)∧
sync(t) = action sync}, tb1 + d1 ≤ ttimer ∧ tb1 6= −1, a1),
{t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6= s′}, astamp

tb1
)

– H ′′i = addAction(combine(H ′′i−1, {t = (s, µ, s) | t ∈ Edge ∧ bi ∈
Blocks(s)∧sync(t) = action sync}, tbi+di ≤ ttimer∧tbi 6= −1, ai), {t =
(s′, µ, s) | t ∈ Edge∧ bi ∈ Blocks(s)∧ s′ 6= s}, astamp

tbi
) for i ∈ {2, ..., n}

– Let {(b1 = ((R, d1), a1), ..., bm = ((R, dm), am)} = {b = ((R, d), a) | b ∈
BAct} be the R-qualified actions of C:

– H ′′′1 = addAction(H ′′n , {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6=
s′}, aresettb1

)

– H ′′′j = addAction(H ′′′j−1, {t = (s′, µ, s) | t ∈ Edge∧bj ∈ Blocks(s)∧s 6=
s′}, aresettbj

), for j ∈ {2, ...,m}

– H ′ := H ′′′m

As in the example before (Example 4.5) we introduce two transition, where the
first will be taken if the time condition is satisfied and the second otherwise.
Also in this case we add time control actions to change the valuation of the timer
variables.

Start
D
t#30

StartMixer Start
30 == −1 ∨ tb + 30 ≥ ttimer

→

30 6= −1 ∧ tb + 30 ≤ ttimer →

StartMixer

... ...
g1 →

astampt(D,StartMixer)

gn →

astampt(D,StartMixer)

Figure 4.6: D qualifier transformation.

Now we will consider the transformation of DS-qualified actions.

Transformation of DS-qualified actions

To deal with setter timed action qualifier, we must adapt the hybrid automaton
more globally. For each DS qualifier we apply our setter qualifier approach
that we have introduced in Section 3. The only difference is that we use timer
depended transitions to enable a setter variable.
We will take a look on transitions, which must be added, if a step contains
DS-qualified actions. If we remember the characteristics of the DS qualifier,
we know that the corresponding action will be executed until a reset appears.
That means if the step, which contains a DS-qualified action, is active as long as
the time delay, the corresponding action will be executed and the related setter
variable will be mapped to true.
Therefore we replace each self loop of a location, where the corresponding step
in the SFCTimed contains a DS-qualified action, with two other transitions.
These are nearly equal to the transitions regarded in Definition 34, with the only
difference that we also set the corresponding setter variable. A reset will set the
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timestamp variable to −1 and the corresponding setter variable to false.
In this way we can reset the DS-qualified action, while the delay is not elapsed.

Definition 35 (EdgeDS(H,C)) We define a function
EdgeDS : Aut × SFCSet+Timed → Aut with EdgeDS(H,C) = H ′, where C =
(Var, Θ,Steps,ActSFC , s0,Trans,Blocks,@SFC ,≺,Hist) is an SFC and H = (Loc,
Var,Edge,Act, Inv, Init,@) its transformation. We construct H ′ as follows:

– Let {b1 = ((DS, d1), a1), ..., bn = ((DS, dn), an)} = {b = ((DS, d), a) | b ∈
BAct} be the DS-qualified actions of C:

– H ′′1 = combine(H, {t = (s, (v, v′), s′) | t ∈ Edge ∧ ∀g ∈ GVar : v |=
g ⇒ v 2 g ∧ ξa1}, ξa1 , a1)

– H ′′k = combine(Hk−1, {t = (s, (v, v′), s′) | t ∈ Edge ∧ ∀g ∈ GVar : v |=
g ⇒ v 2 g ∧ ξak}, ξak , ak) for k ∈ {2, ..., n}

– H ′′′1 = addAction(combine(H ′′n , {t = (s, µ, s) | t ∈ Edge ∧ b1 ∈
Blocks(s) ∧ sync(t) = action sync}, tb1 + d1 ≤ ttimer ∧ tb1 6= −1,
{a1, a

set
ξa1
}), {t = (s′, µ, s) | t ∈ Edge∧ b1 ∈ Blocks(s)∧ s 6= s′}, astamp

tb1
)

– H ′′′i = addAction(combine(H ′′′i−1, {t = (s, µ, s) | t ∈ Edge ∧ bi ∈
Blocks(s) ∧ sync(t) = action sync}, tbi + di ≤ ttimer ∧ tbi 6= −1,
{ai, asetξai}), {t = (s′, µ, s) | t ∈ Edge ∧ bi ∈ Blocks(s) ∧ s′ 6= s}, astamp

tbi
)

for i ∈ {2, ..., n}

– Let {(b1 = ((R, d1), a1), ..., bm = ((R, dm), am)} = {b = ((R, d), a) | b ∈
BAct} be the R-qualified actions of C:

– H ′′′′1 = addAction(H ′′′n , {t = (s′, µ, s) | t ∈ Edge∧ b1 ∈ Blocks(s)∧ s 6=
s′}, {aresettb1

, aresetξa1
})

– H ′′′′j = addAction(H ′′′′j−1, {t = (s′, µ, s) | t ∈ Edge∧bj ∈ Blocks(s)∧s 6=
s′}, {aresettbj

, aresetξaj
}), for j ∈ {2, ...,m}

– H ′ := H ′′′m

For a DS-qualified action (Figure 4.7) we get a hybrid automaton with
transitions to handle the timer and the set actions (Figure 4.8). In particular we
recognize that we have in addition to the time condition also always the setter
variable.

Start
DS
t#30

StartMixer

Figure 4.7: DS-qualified action.

We will face the transformation of set-time-qualified actions in the following.

Transformation of SL-qualified actions

The action qualifiers SD and SL have more global characteristics. The execution
of those actions is independent from step activity and therefore we need to
adapt all transitions in the automaton. Let us begin by defining the transitions
for SL-qualified actions. An SL-qualified action must be executed until the
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Start
(30 == −1 ∨ tb + 30 ≥ ttimer) ∧ ¬ξS

→

(30 == −1 ∨ tb + 30 ≥ ttimer) ∧ ξS

→ S

ξS ∧ 30 6= −1 ∧ tb + 30 ≤ ttimer
→ asetξS

;S
¬ξS ∧ 30 6= −1 ∧ tb + 30 ≤ ttimer

→ asetξS

... ...
g1 →

astampt(D,S)

gn →

astampt(D,S)

Figure 4.8: DS qualifier transformation with S := StartMixer.

timer reaches the limit or the action will be reset. Thereby the execution is
independent from step activation times.
We split each existing transition into two transitions, where one of them executes
the SL-qualified action and the other one can be taken, if the limit time elapses.
If a step contains an SL-qualified action, the incoming transitions of the step
will store the timestamp. If it contains a reset we add aresett to the incoming
transitions assignments. In this way the timestamp variable is set to one and
the SL execution condition t+ d ≥ ttimer will never hold.

Definition 36 (EdgeSL(H,C)) We define a function
EdgeSL : Aut × SFCSet+Timed → Aut with EdgeSL(H,C) = H ′, where C =
(Var, Θ,Steps,ActSFC , s0,Trans,Blocks,@SFC ,≺,Hist) is an SFC and H = (Loc,
Var,Edge,Act, Inv, Init,@) its transformation. We construct H ′ as follows:

– Let {b1 = ((SL, d1), a1), ..., bn = ((SL, dn), an)} = {b = ((SL, d), a) | b ∈
BAct} be the SL-qualified actions of C:

– H ′′1 = addAction(combine(H, {t | t ∈ Edge ∧ sync(t) = action sync},
tb1 + d1 ≥ ttimer ∧ tb1 6= −1, a1), {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈
Blocks(s) ∧ s 6= s′}, astamp

tb1
)

– H ′′i = addAction(combine(H ′′i−1, {t | t ∈ Edge∧sync(t) = action sync},
tbi + di ≥ ttimer ∧ tbi 6= −1, ai), {t = (s′, µ, s) | t ∈ Edge ∧ bi ∈
Blocks(s) ∧ s′ 6= s}, astamp

tbi
) for i ∈ {2, ..., n}

– Let {(b1 = ((R, d1), a1), ..., bm = ((R, dm), am)} = {b = ((R, d), a) | b ∈
BAct} be the R-qualified actions of C:

– H ′′′1 = addAction(H ′′n , {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6=
s′}, aresettb1

)

– H ′′′j = addAction(H ′′′j−1, {t = (s′, µ, s) | t ∈ Edge∧bj ∈ Blocks(s)∧s 6=
s′}, aresettbj

), for j ∈ {2, ...,m}

– H ′ := H ′′′m

We replace each already existing transition by two adapted ones, where the
first will be taken if the time condition holds and thus the corresponding action
must be executed, while the second transition will be taken if the limit time
elapses. Timer control actions will be only added to those locations, where the
corresponding step in the SFC contains SL or R-qualified actions.

Memory- and time- related action qualifiers in HSFCs 53



54 CHAPTER 4. TIMED ACTION QUALIFIER

Start

RunPump

SL
t#30

StartMixer

R StartMixer

g

Figure 4.9: SL-qualified action.

Start

RunPump

¬g ∧ tb + 30 ≥ ttimer ∧ 30 6= −1

→ S

¬g ∧ tb + 30 < ttimer ∨ 30 = −1

→

¬g ∧ tb + 30 ≥ ttimer ∧ 30 6= −1

→ S
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... ...g1 →

astampt(SL,S)

gn →

astampt(SL,S)

Figure 4.10: SL qualifier transformation with S:= StartMixer.

Transformation of SD-qualified actions

The transitions for the SD qualifier are very similar to the transformation of
SL-qualified actions. In this case an action will be delayed executed until it
will be reset. To check whether the timer reaches the delay we use a global
timestamp variable. It is set in a location where the corresponding step in the
SFCTimed contains an SD-qualified action and is reset to −1 in the incoming
transitions of those locations, where the corresponding step in the SFCTimed
contains the action R-qualified.
So let us define EdgeSD. We add one transition, which executes the delayed
action and adapt the incoming actions of a step, which contains SD-qualified
actions, so that the corresponding timestamp variable will be set. The reset is
done by setting the corresponding timestamp variable to -1. Because we check
in our execution guard also for t 6= −1, we can reset the action before the delay
ended.

Definition 37 (EdgeSD(H,C)) We define a function
EdgeSD : Aut × SFCSet+Timed → Aut with EdgeSD(H,C) = H ′, where C =
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(Var, Θ,Steps,ActSFC , s0,Trans,Blocks,@SFC ,≺,Hist) is an SFC and H = (Loc,
Var,Edge,Act, Inv, Init,@) its transformation. We construct H ′ as follows:

– Let {b1 = ((SD, d1), a1), ..., bn = ((SD, dn), an)} = {b = ((SD, d), a) | b ∈
BAct} be the SD-qualified actions of C:

– H ′′1 = addAction(combine(H, {t | t ∈ Edge ∧ sync(t) = action sync},
tb1 + d1 ≤ ttimer ∧ tb1 6= −1, a1), {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈
Blocks(s) ∧ s 6= s′}, astamp

tb1
)

– H ′′i = addAction(combine(H ′′i−1, {t | t ∈ Edge∧sync(t) = action sync},
tbi + di ≤ ttimer ∧ tbi 6= −1, ai), {t = (s′, µ, s) | t ∈ Edge ∧ bi ∈
Blocks(s) ∧ s′ 6= s}, astamp

tbi
) for i ∈ {2, ..., n}

– Let {(b1 = ((R, d1), a1), ..., bm = ((R, dm), am)} = {b = ((R, d), a) | b ∈
BAct} be the R-qualified actions of C:

– H ′′′1 = addAction(H ′′n , {t = (s′, µ, s) | t ∈ Edge ∧ b1 ∈ Blocks(s) ∧ s 6=
s′}, aresettb1

)

– H ′′′j = addAction(H ′′′j−1, {t = (s′, µ, s) | t ∈ Edge∧bj ∈ Blocks(s)∧s 6=
s′}, aresettbj

), for j ∈ {2, ...,m}

– H ′ := H ′′′m

As in the transformation of a SL-qualified action, we replace each already
existing transition by two new transitions (Figure 4.12). The timed control
actions will be added to transitions as seen in the examples before.

Start

RunPump

SD
t#30

StartMixer

R StartMixer

g

Figure 4.11: SD-qualified action.

Finally we can define the transformation of an SFCTimed, with arbitrary timed
action qualifiers. The application order of the different qualifier transformations
is arbitrary. It is also possible to omit transformations, if the corresponding
timed action qualifier does not occur in a given SFCTimed.

Definition 38 (SFC → Hybrid automaton) We extent Definition 20. Let
C = (Var, Θ, Steps,Act, s0, T rans,Blocks,@,≺,Hist) ∈ SFCTimed be a timed
SFC without parallel transitions and without nested SFCs and H ′ = (Loc,VarH ,
Edge,ActH , Inv, Init) its transformation into a hybrid automaton with

• VarH = Var ∪VarTimed,

• Loc, Inv and Init are defined as in Definition 9,

• ActH the actions extended with the control actions of Definition 30 and

• Edge := Edgeς1(Edgeς2(Edgeς3(Edgeς4(Edgeς5(H ′, C), C), C), C), C)
with ςi ∈ {L,D, SL, SD,DS}, i ∈ {1, ..., 5} and H ′ as defined in Definition
9.
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Figure 4.12: SD qualifier transformation with S:= StartMixer.

4.6.4 Complexity consideration

As for the transformation of setter SFCs, we will now consider the space com-
plexity of the transformations of timed SFCs. Thereby we start with a hybrid
automaton and analyses the changes in consequence of the transformations. We
will consider the transformation for each timed action qualifier separate and give
a comparison at the end of this chapter.

Analysis of L-qualified actions

Let H be a hybrid automaton with n locations, m action sync labeled transitions,
k variables and let q be the number of L-qualified actions.
The transformation will not change the number of locations, so that the resulting
automaton has also n locations. The number of variables increases by q, because
we add for each L-qualified action one variable, which stores the timestamp. We
get k + q variables in the resulting automaton.
The number of additional transitions depends on the assignment of L-qualified
actions to steps. An L-qualified action will duplicate the action sync labeled
self loops of the corresponding location. In the worst case all L-qualified actions
will be assigned to one location. In this case we must duplicate all self loops q
times. We get O(2q +m− 1) transitions, where m− 1 are the transitions, which
were not splitted.
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Analysis of D-qualified actions

Let H be a hybrid automaton with n locations, m action sync labeled transitions,
k variables and let q be the number of D-qualified actions.
As in the transformation of L-qualified actions the number of locations will
not change and the number of variables will be increased by k + q, since we
need for each D-qualified action one variable, which stores the timestamp. Once
again we must duplicate the action sync labeled self loops of a location for
each D-qualified action, which is contained in the corresponding step in the
SFC. With the same argument as for L-qualified actions we get O(2q +m− 1)
transitions in the resulting automaton.

Analysis of DS-qualified actions

Let H be a hybrid automaton with n locations, m action sync labeled transitions,
k variables and let q be the number of DS-qualified actions.
While the number of states will once again not change, the number of variables
will be increased by k + 2q. The reason for this is that we need in addition to
the variable, which stores the timestamp one setter variable, which is used, if
the action is set. As a consequence the number of edges increases in dependency
of both setter and timer variables.
To set the action we must duplicate the action sync labeled self loops of the
location, where the corresponding step in the SFC contains the DS-qualified
action. As before we can estimate the worst case by adding all DS-qualified
actions to one step in the SFC, what means that they will be assigned to only
one location in the hybrid automaton. By adding the transitions, which execute
the setter control action we get O(2q +m− 1) transitions. But now we must
apply the setter transformation and get O(22q +m2q − 2q).

Analysis of SL-qualified actions

Let H be a hybrid automaton with n locations, m action sync labeled transitions,
k variables and let q be the number of SL-qualified actions.
The transformation of SL-qualified actions is comparable with the transformation
of setter actions. The number of states remains unchanged, but the number of
variables will be increased by q. To transform the transitions we must duplicate
for each SL-qualified action every already existing action sync transition. So
that the first transition can be taken if the limit time is elapsed and the second
one otherwise. We get O(m2q) transitions in the resulting automaton.

Analysis of SD-qualified actions

Let H be a hybrid automaton with n locations, m action sync labeled transitions,
k variables and let q be the number of SD-qualified actions.
Analogous to the transformation of SL-qualified actions, we must add q variables,
while the number of locations remains constant. Also in this case we must
duplicate each existing action sync transition and as in the analysis of SL-
qualified actions we need the first transition to execute the timed action, if the
delay time elapses and the second transition otherwise. So we get again O(m2q)
transitions in the resulting automaton.
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Analysis results

We give an overview of the analysis results. Let q be the number of L-, D-, DS-,
SL-and SD-qualified actions.

Locs Var Trans
HA n k m
L n k + q O(2q +m− 1)
D n k + q O(2q +m− 1)

DS n k + 2q O(22q +m2q − 2q)
SL n k + q O(m2q)
SD n k + q O(m2q)

Also in the case of timed action qualifiers we get exponential growth in the
number of transitions. The qualifiers L and D extend the set of transitions
rather local, that means they change only the transitions of their corresponding
locations. For stored qualifiers SL and SD we nearly get the same results as
for the setter qualifier transformation. The reason for this is that we use the
same concept with adapted transition guards and control actions. A special
case are DS-qualified actions. In this case the setter part must be considered in
particular.
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Chapter 5

Implementation
Besides the conception of the transformation of memory- and time-related SFCs
into hybrid automata, regarded in Chapter 3 and Chapter 4 the integration of
the transformation process into the SFC Verification Tool1 and detailed tests of
the implementation are a further part of this thesis.
In this chapter we give a brief introduction to the SFC Verification Tool, de-
scribing its capabilities and the verification process. We further give a short
introduction into the code structure and the ideas and concepts of the program
architecture. In a second part we consider the implementation of the transfor-
mation of timed and memory-related SFCs. Finally we give some experimental
results of the SFC Verification Tool.

5.1 The SFC Verification Tool

The SFC Verification Tool allows the automatic verification of SFCs under
consideration of a specific plant setup. Thus engineers can check their process
specifications in a modeled hardware context to ensure that safety conditions
are satisfied. In this way crucial errors and malfunctions can be located at the
concept phase even before the SFC is used in the plant.
In the following we explain the verification process of the SFC Verification Tool
and introduce the program architecture.

5.1.1 The verification process

The verification process is based on the automatic transformation of an SFC into
a hybrid automaton. On such a hybrid automaton we can perform a reachability
analysis to test safety conditions. Therefore we can divide the verification process
into two parts (Figure 5.1). The first part (Model creation) transforms a set
of SFCs into a set of hybrid automata under consideration of specific plant
behavior and the second part (CEGAR (Counter Example Guided Abstraction
Refinement) based verification) performs a CEGAR-based analysis.
In the Model creation process we transform a given set of SFCs into a set of

hybrid automata as described in the foregoing chapters. We get an automaton
representing the SFC and optionally the dynamic plant specifications. The latter
is given as a set of conditional ODE systems describing plant properties as, e.g.,
tank sizes, pump specifications, etc. The hybrid automata are committed to the
second process - the CEGAR based verification.
In the CEGAR based verification process a reachability analysis on the hybrid
automata is performed by the external tool SpaceEx 2 that checks, whether
forbidden states (Safety property) are reachable. The Safety property is given
as a set of forbidden states. Since reachability analysis on hybrid automata is
undecidable [HK95] the analysis yields an over approximation of the reachable
states. Moreover the class of hybrid automata is restricted to the set of automata
with linear (PHAVer scenario) or piecewise affine dynamics (LGG support

1developed by Johanna Nellen at the chair of computer science 2: Theory of Hybrid Systems
- RWTH Aachen University

2http://www.spaceex.imag.fr
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Safety property

SFC

Plant specification

HA HAplant behavior

Counterexample

Return unsafe

Return safeSafe?
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yes

no

no

Model creation

CEGAR based verification

Figure 5.1: CEGAR based refinement.

Function scenario).
Due to the flowpipe computation we have to transform all transition guards and
invariants into linear convex equations which again leads to an over approximation
[Fre10].
If no forbidden state is reachable the SFC under consideration of its dynamic
plant context is safe and we stop the verification process. Otherwise the model
is refined by mapping dynamic plant information to locations of the hybrid
automata. We can apply different heuristics for the refinement that analyses
the analysis results and the current refinement state. In an iterative process, we
analyses the refined model until the model is safe or fully refined.
Finally we know either the SFC is safe or the SFC might be not safe (due to the
over approximation) under consideration of its plant context.

5.1.2 Program architecture

The architecture of the SFC Verification Tool can be divided into three coarse
parts. First the SFC Verification Tool consists of classes, which read the input
data from files and store them into data structures. We have further classes,
which transform the parsed input data into a data structure for the hybrid
automata and classes, which translate the hybrid automata into a tool-specific
output format, e.g., a SpaceEx model file. By extending the output writer of
the SFC Verification Tool it is easily possible to add support for other analysis
tools, like, e.g., Flow∗3.
Because this bachelor thesis covers the transformation of a memory- and time-
related SFC into hybrid automata, we focus on the transformation from an SFC
into hybrid automata.
The data structure for hybrid automata consists of a class representing the
hybrid automata with fields containing the variables, locations and transitions,

3 http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/
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which are part of the automaton. To enable the transformation of memory-and
time-related SFCs as described in Section 3 and Section 4, we must modify
the automata as follows: 1. Steps and 2. variables in the SFC must be trans-
formed into locations and variables of a hybrid automaton. 3. Transitions must
be adopted from the SFC and translated into those of a hybrid automaton.
Thereby self loops will be added for every location and actions of the SFC will
be encoded in the transitions of the hybrid automaton. Our changes cover only
the second and the third transformation processes. We adapt the guards of
existing transitions, add new variables and additional transitions. Since the
transformation of memory- and time-related SFC does not need any adaption of
the step transformation we omit it at this point.
The modifications cover those classes, which translate the variables and transi-
tions of an (H)SFC into a hybrid automaton. To explain the modifications we
give a more detailed overview of the transformation-classes in the following.
The class VariablesHA (Figure 5.2) contains two fields: A list of variables and
the SFC, which must be transformed into a hybrid automaton. If the method
createVariables() is called the necessary variables are extracted from the SFC
and stored in the list of variables.

VariablesHA

- variables
- sfc

createVariables()

Figure 5.2: Class VariablesHA.

In the SFC Verification Tool we distinguish between self loops and transitions
between two different locations. Therefore we have separate classes for the
transformation of transitions TransitionsHA (Figure 5.3a) and the creation of
self loops SelfLoopHA (Figure 5.3b).

TransitionHA

- transitions
- sfc

createTransitions()

(a) Class TransitionsHA.

SelfLoopHA

- selfloops
- sfc

createSelfLoops()

(b) Class SelfLoopHA.

As in the transformation of variables we extract the transitions from the
SFC using the function createTransitions() and store them in the list transitions.
Analogously, we create self loops with the method createSelfLoop() for each
existing step in the SFC. Moreover the self loops, which are part of the SFC are
stored in the list selfloops.
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This coarse overview of architecture and the class design of the SFC Verifica-
tion Tool allows us to explain the concrete adaption and extensions of the source
code in the next chapter. Although this is not a complete overview it faces all
important changes.

5.2 The implementation

The implementation comprises the adaption and extension of the classes de-
scribed in Section 5.1 and the creation of a new class SetterTimedTransHA
(Figure 5.3). This class charges all setter and timed variables and provides
methods, which are used in the classes SelfLoopAutomatonFromPOUCreator,
TransitionsAutomatonFromPOUCreator and VariablesAutomatonFromPOUCre-
ator that transform the self loops, the transitions and the variables of an SFC
into corresponding elements in the hybrid automaton.

SetterTimedTransHA

- time vars
- set vars

getAllNegatedGuards(...)
createTransition(...)

Figure 5.3: Class SetterTimedTransHA.

The method getAllNegatedGuards() returns the disjunction of all negated
setter guards (Definition 16) and all negated timed guards (Section 4.6.3). We
use this method in the following to add the result as a new conjunctive term to
the guards of the existing transitions. We need the negated variables, because we
want to take the existing transitions, if no setted or timed action must be executed.
If one ore more timed and setter actions must be executed those transitions
have a higher priority, which contain the corresponding guards (not negated).
The method createTransition() adds one transition for every combination of
non-negated (timed or setter) guard (Definition 19 and Section 4.6.3) to the
hybrid automaton. These two methods work on the variables provided by the
fields time vars and set vars. We will now consider the transformation of the
variables and transitions in detail.

5.2.1 Additional variables

In the class VariablesHA we extend the method createVariables() and add for
every timed- and set-qualified action of the SFC one further variable to the
hybrid automaton and one to the SetterTimedTransHA list. It is important that
the variables are created before the transitions are transformed, because the
SetterTimedTransHA class needs those variables to construct the correct guards
and assignments.
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5.2.2 Transitions

We extend the method createTransition() of the class TransitionHA in two
steps. The first step extends the guard of the currently created transition to
all negated setter guards and all negated timed guards. Therefore we call the
method getAllNegatedGuard() of the class SetterTimedTransHA. In the second
step we create one additional transition for every combination of true valuated
timed and setter guard by calling the method createTransition() of the class
SetterTimedTransHA.
We do this for the transitions leading from one location to another one as well
as for self loops. We further equip the assignments of the created and adapted
transitions with assignments, which are used to (re)set the timer and setter
variables.

5.2.3 Initial valuation

If there exists a timed- or set-qualified action in an initial step of an SFC,
we cannot activate it using assignments on the incoming transitions of a step.
Instead we must adapt the initial valuation of variables. We check in the class
VariablesHA for each variable if it belongs to an action, which is active in the
initial step. If this is the case we valuate the variable respectively.

5.3 Experimental results

The benchmarks considered in the following are memory- and time-related SFCs
derived from the plant model described in Section 2.1.
We provide four conditional ODEs (Figure 5.4) describing the dynamic behavior
of the plant model. The first conditional ODE system describes the situation
where the waterlevels of the tanks T1 and T2 will not change. This is the case
if tank T2 is full, tank T1 is empty or the mixer M1 or the pump P1 are not
running.
The second conditional ODE system describes the situation where the waterlevel
of tank T1 decreases by 1 per time unit and the waterlevel of tank T2 increases by
1 per time unit. Therefore the tank T1 must not be empty (waterlevel1 ≥ min1),
tank T2 must not be completely filled (waterlevel2 ≤ max2) and the mixer M1

and the pump P1 must be running.
We create SFCs, which define the processes on the plant model. These SFCs
provide S, R, L and D qualified actions and allow the analysis of memory- and
time-related qualifier with the SFC Verification Tool. In the plant model we use
these actions to activate and deactivate the mixer M1.
The aim is to allow only the activation of the pump if the mixer is running. That
means we define a forbidden state chkb mixer == 0 ∧ chkb p1 == 0 and check
with the SFC Verification Tool, whether this state can be reached.
In the following we take a closer look on the benchmark results obtained from
the SFC Verification Tool and give a detailed overview at the end of this chapter.

5.3.1 Mixer Simple

In the Mixer Simple benchmark we check the transformation of S- and R-
qualified actions. That means we check the functionality of the in this thesis
introduced S and R qualifier. The SFC that we use for this benchmark is
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<?xml version="1.0" encoding="utf-8"?>

<condODEsys>

<condODE>

<cond>waterlevel1 <= min 1 OR waterlevel2 >= max2 OR NOT chkb_p1 OR

NOT chkb_mixer</cond>

<equation>waterlevel2’ == 0</equation>

<equation>waterlevel1’ == 0</equation>

</condODE>

<condODE>

<cond>waterlevel1 >= min1 AND waterlevel2 <= max2 AND chkb_p1 AND

chkb_mixer</cond>

<equation>waterlevel2’ == 1</equation>

<equation>waterlevel1’ == -1</equation>

</condODE>

</condODEsys>

Figure 5.4: Conditional ODE system of the Mixer Simple benchmark.

described in Section 3.1.
The SFC Verification Tool needs four iterations to proof the correctness of the
model (Table 5.7). The SFC Verification Tool examines that the forbidden state
is reached in the discrete model. In the first refinement step the first conditional
ODE system of Figure 5.4 is attached to the step Empty. In the second iteration
the step RunPump is refined by the second conditional ODE system of Figure
5.4. The third iteration refines the step Start with the first conditional ODE
system of Figure 5.4. At this point the forbidden state can be still reached. In
the last iteration a complete refinement is done and as a result no forbidden
state can be reached and the model is correct.

5.3.2 Mixer Simple Timed D

The SFC of the Mixer Simple Timed Delayed benchmark (Figure 5.5) is similar
to the Mixer Simple benchmark. We test with this benchmark the functionality
of the D qualifier. The only difference concerns the mixer M1. We start it
delayed for 100 milliseconds and do not stop it in the last step Empty. The
SFC Verification Tool needs four iteration for analysis (Table 5.7). In the first
iteration the step Empty is refined by the first conditional ODE system of Figure
5.4. The same conditional ODE system is attached to step RunPump in the
second iteration and to step Start in the third iteration. As in the analysis of the
Simple Mixer benchmark a full refinement is done in the fourth step, that means
every conditional ODE systems will be attached to every step. This results in a
correct model.

5.3.3 Mixer Simple Timed L

The SFC in Figure 5.6 is also derived from the SFC described in Section 3.1.
In this benchmark we test the L qualifier, which is introduced in this thesis.
We start the mixer M1 for a limited time of 100 milliseconds. Also for this
benchmark the SFC Verification Tool needs four refinement steps to proof the
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Start
D

t#100ms
StartMixer

RunPump P1 StartPump

Empty
P1 StopPump
N RefillT1
N EmptyT2

g1 := min1 ∧ ¬max2 ∧mixer

g2 := ¬min1 ∨max2

g3 := max1 ∨ ¬min2

Figure 5.5: SFC of the Simple Mixer Timed Delayed benchmark.

Start
L

t#100ms
StartMixer

RunPump P1 StartPump

Empty
P1 StopPump
N RefillT1
N EmptyT2

g1 := min1 ∧ ¬max2 ∧mixer

g2 := ¬min1 ∨max2

g3 := max1 ∨ ¬min2

Figure 5.6: SFC of the Simple Mixer Timed Limited benchmark.

model correctness (Table 5.7). In the first, second and third refinement step the
first conditional ODE system of Figure 5.4 is attached successively to the steps
Empty, RunPump and Start. Thereafter, in the fourth refinement step, a full
refinement is applied on the model, that means every conditional ODE system
is attached to every step of the SFC. Finally the model is stated to be correct.
The idea behind the Mixer Simple Timed L benchmark was the creation of an
incorrect benchmark, which tests the limited execution of the mixer M1. The
mixer M1 should be stopped after the limit time, while the pump P1 is still
activated, which results in a forbidden state. Actually, this forbidden state is
not reached and the model is correct. The reason for that is that the StartMixer
action starts the mixer M1 and lets it run until the mixer is explicitly stopped
by a stop action. So if a limited action sets a value in a variable, e.g., a flag, the
variable is set in each time unit, where the action is active, but it is not defined
that the flag will be resetted after the time limit elapses.
To correct this benchmark we could increase the number of rotation for a limited
time and if the time elapse the number of rotation remains constant.

Table 5.7 provides an overview of the benchmark results. Besides the infor-
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Benchmark # ref. Result Exec. time Safety property

Mixer Simple 4 Correct 5:15min chkb mixer = 0 ∧ chkb p1 = 1
Mixer Simple Timed D 4 Correct 6:30min chkb mixer = 0 ∧ chkb p1 = 1
Mixer Simple Timed L 4 Correct 7:02min chkb mixer = 0 ∧ chkb p1 = 1

Figure 5.7: Overview of the experimental results.

Benchmark SFC Size HA Size in refinements (Var/Step/Trans)
Var/Loc/Trans 0 1 2 3 4

Mixer Simple 12/3/23 15/3/23 15/7/67 15/11/167 15/15/275 15/33/627
Mixer Simple Timed D 12/3/3 15/3/19 15/7/43 15/11/95 15/15/175 15/36/612
Mixer Simple Timed L 12/3/3 15/3/19 15/7/43 15/11/95 15/15/175 15/36/612

Figure 5.8: Overview of the SFC and HA sizes.

mations already discussed in the sections before we get an impression of the
runtime of the different benchmarks. Although the Mixer Simple benchmark
is the greatest one of the three benchmark regarding variables, locations and
transitions (Table 5.8) it needs the shortest time for the analysis. A reason can
be that we do not need to consider a timer in the verification process, that means
we have fewer continuous variables in the model. The Mixer Simple benchmark
model contains (considerable) more transitions than the Mixer Simple Timed
D or Mixer Simple Timed L benchmark. If we remember the transformation
process we know that we must adapt the whole automaton if we transform S
and R qualified actions, while we must only adapt the incoming-,outgoing- and
self loop-transitions of locations, where the corresponding step contains L, D
qualified actions. In both cases, for L and D qualified actions, we duplicate the
transitions of the corresponding locations. The substantial difference affects the
guard, which is added to the transitions.
But the Mixer Simple Timed D and the Mixer Simple Timed L benchmarks
are nearly of the same size and need different runtime for the analysis. An
explanation for that must be the different guard evaluations, because the two
benchmarks are very similar.
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Chapter 6

Practical example
In the following we will demonstrate the application of our definitions and con-
cepts. We introduce a complex example and apply the different transformations
on it. So that we have finally a good impression of the transformation process
and the increase of the number of transitions in the resulting hybrid automaton.

Mixer model
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Figure 6.1: Mixer Model.

The complex mixer model (Figure 6.1) consists of five tanks T1, ..., T5, six
valves V1, ..., V6, three mixer M1,M2,M3 and two pumps P1, P2. The tanks are
equipped with sensors mini,maxi, i ∈ [5]1, which announce if a tank is empty
or completely filled. The tanks T1 and T2 are connected to tank T4 by pipes.
All tanks are cylindrical with the same diameter, but different heights. A pump
P1 and valves V1, V2, V4 allows to pump liquid through pipes from one tank into
another. The tanks T3 and T4 are connected to tank T5. A further pump P2

and valves V5, V6 allows to decant liquid from tank T4 to tank T5. Tank T3

can decant liquid to tank T5 using gravity by opening valve V3. Three mixers
M1,M2,M3 are installed in the tanks T2, T4 and T5.
We introduce variables to access the configurations of the different components.
mini,maxi ∈ [5] are true, if the waterlevel of the corresponding tank covers the
sensor. The variables P1, P2 and mixeri, i ∈ [3] are true if the pump or the mixer
are running. Otherwise false. For the valves, we have variables V alvei, i ∈ [6],
which are true, if the corresponding valve is opened and false if it is closed.
We further introduce variables hi, i ∈ [5], which contains the waterlevels of
the corresponding tanks. We will use these variables, when we introduce the

1[i] := {1, ..., i} ⊆ N
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conditional ODE systems later on.
Following the simple mixer model, we give a Sequential Function Chart, which
describes the execution process (Figure 6.2).
The execution starts by activating the mixer M2 of tank T4. This action will

be stored and reset in the last step Ready, so that the mixer M2 runs in all steps
between. If the mixer M2 is running, the tank T1 is completely filled and the
tank T4 is empty we take the first transition and enter the next step Drain Tank1.
We open the valves V1, V4 and start the pump P1 to decant the liquid of tank
T1 into tank T4. Thereby we start the mixer M1 of tank T2, which is needed in
the next step. The reason for that is that the mixer needs some time to reach
its working speed. We limit the execution to one hour, because the mixer is
very sensitive and we want to avoid overheating. If the tank T1 is drained, the
tank T2 is filled and the mixers M1,M2 are running we can enter the next step.
Thereby we execute the P0-qualified actions of the step Drain Tank1, which are
closing the valve V1 and halting the pump P1.
The next step Drain Tank2 will start the decantation of tank T2. Therefore the
valve V2 will be opened and the pump P1 started. We also start the mixer M3

with a delay of 30 minutes. So the mixer has time to reach its working speed
but runs not the whole activation time of step Drain Tank2. We leave the step
if tank T2 is empty, the tanks T3 and T4 are filled, the tank T5 is not filled and
all pumps are running. Thereby we stop the pump P1 and close the valves V2

and V4.
The third step Drain Tank3 will drain the content of tank T3 and T4 into tank
T5. After deactivating the mixer M1, we open the valves V3, V4, V5 and start the
pump P2. The liquid will be mixed in tank T5. We change over to the Ready
step, if tank T5 in filled and tank T4 is empty. Thereby we close the open valves
V3, V4, V5 and stop the pump P2. At the end we reset the running mixers M2
and M3.

We introduce some conditional ODEs, which represents the dynamic behavior
of the application context.

P1 ∧mixer2 ∧ V alve1 ∧ V alve4 : h′4 = c1, h
′
1 = −c1

P1 ∧mixer1 ∧mixer2 ∧ V alve2 ∧ V alve4 : h′4 = c2, h
′
2 = −c2

P2 ∧mixer3 ∧ V alve3 ∧ V alve5 ∧ V alve6 : h′5 = c3 + c4, h
′
3 = −c3, h′4 = −c4

The first conditional ODE can be described as follows: If pump P1 and mixer
M2 are running and the valves V1, V4 are opened the waterlevel h4 of tank T4

will increase by a constant value c1 per time unit, while the waterlevel h1 of
tank T1 will decrease for the same value.
The second conditional ODE is similar to the first one. In this case we decant
tank T2 into tank T4, if the pump P1 and the mixer M1 are running and the
valves V2, V4 are open. The waterlevel h4 of tank T4 will increase by a constant
value c2 per time unit and the waterlevel h2 of tank T2 sinks for the same value
per time unit.
The last conditional ODE is more interesting. If the mixer M3 and the pump P2

are running and the valves V3, V5, V6 are open the waterlevel h5 of tank T5 will
increase by c4 +c3, which are the constant values subtracted from the waterlevels
h3, h4 of the tanks T3, T4.
We will abbreviate the conditional odes by condi : odei where i ∈ [3] represents
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Start S StartMixer2

Drain Tank1

P1 OpenV alve1
P1 StartPump1
P1 OpenV alve4
P0 StopPump1
P0 CloseV alve1
SL

t#1h
StartMixer1

Drain Tank2

P1 OpenV alve2
P1 StartPump1
P0 StopPump1
P0 CloseV alve2
P0 CloseV alve4
SD

t#30m
StartMixer3

Drain Tank3

R StartMixer1
P1 OpenV alve3
P1 OpenV alve4
P1 OpenV alve5
P1 StartPump2
P0 StopPump2
P0 CloseV alve3
P0 CloseV alve4
P0 CloseV alve5

Ready
R StartMixer2
R StartMixer3

g1 := max1 ∧ ¬min4 ∧mixer2

g2 := ¬min1 ∧max2 ∧ ¬max4 ∧mixer1 ∧mixer2

g3 := ¬min2 ∧max3 ∧max4 ∧ ¬max5 ∧mixer1 ∧mixer2 ∧mixer3

g5 := max5 ∧ ¬min4

Figure 6.2: Mixer model SFC.
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the first, second and third introduced conditional ODE system.

We will now assign the conditional ODEs to steps of the SFC (Figure 6.2) to
get a HSFC (Figure 6.3).

Start S StartMixer2

Drain Tank1

P1 ∧mixer2 ∧ V alve1 ∧ V alve4 : h′4 = c1, h
′
1 = −c1

P1 OpenV alve1
P1 StartPump1
P1 OpenV alve4
P0 StopPump1
P0 CloseV alve1
SL

t#1h
StartMixer1

Drain Tank2

P1 ∧ mixer1 ∧ mixer2 ∧ V alve2 ∧ V alve4 : h′4 =
c2, h

′
2 = −c2

P1 OpenV alve2
P1 StartPump1
P0 StopPump1
P0 CloseV alve2
P0 CloseV alve4
SD

t#30m
StartMixer3

Drain Tank3

P2∧mixer3∧V alve3∧V alve5∧V alve6 : h′5 = c3 +c4, h
′
3 =

−c3, h′4 = −c4

R StartMixer1
P1 OpenV alve3
P1 OpenV alve4
P1 OpenV alve5
P1 StartPump2
P0 StopPump2
P0 CloseV alve3
P0 CloseV alve4
P0 CloseV alve5

Ready R StartMixer2
R StartMixer3

g1 := max1 ∧ ¬min4 ∧mixer2

g2 := ¬min1 ∧max2 ∧ ¬max4 ∧mixer1 ∧mixer2

g3 := ¬min2 ∧max3 ∧max4 ∧ ¬max5 ∧mixer1 ∧mixer2 ∧mixer3

g5 := max5 ∧ ¬min4

Figure 6.3: Mixer model HSFC.

We provide the transformed HSFC in Figure 6.4. We write asgji, ...asgji+n
(asg = action sync guard) for adding n transitions to a step. The time sync
transitions are left out to improve readability just as the detailed guards in
the transition table. We write e.g. gStartMixer1 for the guard of the action
StartMixer1. Since the action is SL-qualified with a limit of one hour the guard
is ttimer ≤ 3600000 + tStartMixer1 . In the same way we abbreviate the other

70 Memory- and time- related action qualifiers in HSFCs



CHAPTER 6. PRACTICAL EXAMPLE 71

transition guards.
If there is no action behind the right arrow →, nothing will be executed.

If we take a look on the SFC (Figure 6.2) and the resulting hybrid automaton
(Figure 6.4), we get a good impression of the dimensions. A relative simple SFC,
with only four transitions and five states will be blowed up to 5, 062 transitions
and 8 locations and that without counting read sync transitions. We need also a
lot of variables to store the setter actions and timestamps of timed actions.
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Startstart

D T11

cond1

ode1;x′ = 1

D T12

¬cond1

x′ = 1

D T21

cond2

ode2, x
′ = 1

D T22

¬cond2

x′ = 1

D T31

cond3

ode3, x
′ = 1

D T32

¬cond3

x′ = 1

Ready

cg1

cg1

cg1

cg1

cg1

cg1

asg11, ..., asg18

asg31, ..., asg38 asg31, ..., asg38

asg51, ..., asg58 asg51, ..., asg58

asg71, ..., asg78 asg71, ..., asg78

asg91, ..., asg98

asg21, ..., asg264 asg21, ..., asg264

asg41, ..., asg4128
asg41, ..., asg4128asg41, ..., asg4128

asg41, ..., asg4128

asg61, ..., asg61024
asg61, ..., asg61024asg61, ..., asg61024

asg61, ..., asg61024

asg81, ..., asg8128 asg81, ..., asg8128

Figure 6.4: Hybrid automaton of the mixer model. (D T means Drain Tank).
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Abbr. Label Guard
cg1 copy trans x ≥ ε→ x := 0

asg11 action sync ¬g1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 ∧ ¬gStartMixer1 →
asg12 action sync ¬g1∧¬gStartMixer2 ∧¬gStartMixer3 ∧gStartMixer1 → StartMixer1

asg13 action sync ¬g1∧¬gStartMixer2 ∧gStartMixer3 ∧¬gStartMixer1 → StartMixer3

asg14 action sync ¬g1 ∧ ¬gStartMixer2 ∧ gStartMixer3 ∧ gStartMixer1 →
StartMixer1;StartMixer3

asg15 action sync ¬g1∧gStartMixer2 ∧¬gStartMixer3 ∧¬gStartMixer1 → StartMixer2

asg16 action sync ¬g1 ∧ gStartMixer2 ∧ ¬gStartMixer3 ∧ gStartMixer1 →
StartMixer1;StartMixer2

asg17 action sync ¬g1 ∧ gStartMixer2 ∧ gStartMixer3 ∧ ¬gStartMixer1 →
StartMixer2;StartMixer3

asg18 action sync ¬g1 ∧ gStartMixer2 ∧ gStartMixer3 ∧ gStartMixer1 →
StartMixer1;StartMixer2;StartMixer3

asg21 action sync g1∧¬gStartMixer1 ∧¬gStartMixer2 ∧¬gStartMixer3 ∧¬gOpenV alve1 ∧
¬gOpenV alve4 ∧ ¬gStartPump1 →

asg22 action sync g1∧¬gStartMixer1 ∧¬gStartMixer2 ∧¬gStartMixer3 ∧¬gOpenV alve1 ∧
¬gOpenV alve4 ∧ gStartPump1 → StartPump1

... ... ...
asg264 action sync g1 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3 ∧

gOpenV alve1 ∧ gOpenV alve4 ∧ gStartPump1 →
OpenV alve1;OpenV alve4;StartPump1;
StartMixer1;StartMixer2;StartMixer3

asg31 action sync ¬g2 ∧ ¬gStartMixer1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 →
... ... ...

asg38 action sync ¬g2 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3 →
StartMixer1;StartMixer2;StartMixer3

asg41 action sync g2∧¬gStartMixer1 ∧¬gStartMixer2 ∧¬gStartMixer3 ∧¬gOpenV alve2 ∧
¬gCloseV alve1 ∧ ¬gStartPump1 ∧ ¬gStopPump1 →

... ... ...
asg4128 action sync g2 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3 ∧

gOpenV alve2 ∧ gCloseV alve1 ∧ gStartPump1 ∧
gStopPump1 → CloseV alve1;OpenV alve2;StopPump1;
StartPump1;StartMixer1;StartMixer2;StartMixer3

asg51 action sync ¬g3∧¬gStartMixer1∧¬gStartMixer2∧¬gStartMixer3∧¬gOpenV alve2∧
¬gStartPump1 →

... ... ...
asg58 action sync ¬g3 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3∧ →

StartMixer1;StartMixer2; StartMixer3
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asg61 action sync g3∧¬gStartMixer1 ∧¬gStartMixer2 ∧¬gStartMixer3 ∧¬gStopPump1 ∧
¬gCloseV alve2 ∧ ¬gCloseV alve4 ∧ ¬gOpenV alve3 ∧ ¬gOpenV alve4 ∧
¬gOpenV alve5 ∧ ¬gStartPump2 → aresettStartMixer1

... ... ...
asg61024 action sync g3 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3 ∧ gStopPump1 ∧

gCloseV alve2∧gCloseV alve4∧gOpenV alve3∧gOpenV alve4∧gOpenV alve5∧
gStartPump2 → aresettStartMixer1

;CloseV alve2;CloseV alve4;
StopPump1;OpenV alve3;OpenV alve4;OpenV alve5;StartPump2;
StartMixer1;StartMixer2;StartMixer3

asg71 action sync ¬g4 ∧ ¬gStartMixer1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 →
... ... ...

asg78 action sync ¬g4 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3∧ →
StartMixer1;StartMixer2;StartMixer3

asg81 action sync g4 ∧ ¬gStartMixer1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 ∧
¬gCloseV alve3 ∧ ¬gCloseV alve4 ∧ ¬gCloseV alve5 ∧ ¬gStopPump2 →
aresetξStartMixer2

; aresettStartMixer3

... ... ...
asg8128 action sync g4 ∧ gStartMixer1 ∧ gStartMixer2 ∧ gStartMixer3 ∧

gCloseV alve3 ∧ gCloseV alve4 ∧ gCloseV alve5 ∧
gStopPump2 → aresetξStartMixer2

; aresettStartMixer3
;

CloseV alve3;CloseV alve4;CloseV alve5;StopPump2;
StartMixer1;StartMixer2;StartMixer3

asg91 action sync ¬gStartMixer1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 →
... ... ...

asg98 action sync ¬gStartMixer1 ∧ ¬gStartMixer2 ∧ ¬gStartMixer3 →
StartMixer1;StartMixer2;StartMixer3

Figure 6.5: Transition guide.
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Conclusion

We saw in the foregoing sections, how we can extend HSFCs to time and memory
related action qualifiers.
In Section 3 we extended the syntax and semantics of HSFCs with respect to
set and reset action qualifiers and give instructions for transforming a setter
HSFC into a hybrid automaton. Thereby we use setter variables to indicate
whether an action will be executed or not. We notice that we must consider
every possible combination of setter variables, what means that we add for each
possible combination and for each existing action sync transition one further
transition to the automaton. We determine that the resulting automaton will
have O((m+ n) ∗ 2k+u + n) transitions, where n is the number of steps, m the
count of transitions and k, u the number of variables in the unaltered SFC. The
automaton will increase exponentially with respect to its transitions.
The computation time of the algorithm, which computes all possible combinations
of setter variables is a further challenge. We have seen in Section 3.4 that the
algorithm (Algorithm 3) needs a time of O(n2n) for extracting all possible
combinations of setter variables, where n is the number of setter variables. In
the worst case we must do this for every step in the SFC. We accept the necessity
of minimizing the set of setter variables.
In Section 4 we have introduced the syntax and semantics of timed (H)SFCs.
We further gave instructions to transform a timed SFC into a hybrid automaton
to enable its verification. Thereby we must distinguish between stored timed
actions and those, which are only active if their corresponding step is active.
For the latter we only add transitions to the locations, where the corresponding
step in the SFC contains L or D-qualified actions. But for the stored timed
actions we need to add all possible combinations of setter variables to all existing
action sync labeled transitions. That means we must always add one transition
in which the limited or delayed action will be executed and one, if this is not
the case. Thereby we face the same problems as we considered for set and
reset qualifiers. The number of transitions rises exponentially in the resulting
automaton.
As a result of this thesis, we should minimize the number of set, reset and
stored time-qualified actions, because if we use them we always must consider
the case that the corresponding action will not be executed. Finally we duplicate
every transition for each stored qualifier. But there are ideas to improve the
transformation.
As a future work we could create setter variables only for those actions, which
will be reset in the SFC. This can be decided by doing a DFS or BFS on the SFC.
For the worst case in which all actions will be reset this will change nothing, but
in practical usage we can assume that there exists actions, which will not be
reset and in the case of exponential space complexity every variable decreases
the computation time distinctly.
Another idea is to do a reachability analysis for set-qualified actions. If we are
able to comprehend the possible activation scenarios, we can replace the set
by other qualifiers and remove its corresponding reset. That means if e.g. an
action is set in a step and will be reset in the next one, and there are no parallel
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executed actions (in nested SFCs or parallel branches) we can replace the S by
an N and remove the reset in the second step.
These are some ideas, which can improve the time and space complexity of the
algorithms and transformation instructions in practical usage. But in the worst
case we are neither able to find variables, which were never reset, nor we can
determine exact activation and deactivation points for S-qualified actions.
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