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Abstract

Interval Constraint Propagation (ICP) is a powerful procedure that applies contraction methods to narrow
down the solution space of quanti�er-free non-linear real arithmetic (QFNRA) problems. However, interval
arithmetic su�ers from the dependency problem and other e�ects, that cause over-approximations within
basic arithmetic operations, which lower the e�ciency and precision of ICP.

In this thesis we present an approach to improve the performance of an ICP module within the satis�-
ability modulo theories (SMT) framework SMT-RAT, a toolbox which allows to compose a SMT solver via
custom modules. We improve the contraction via interval propagation and introduce a new data structure
for multivariate Horner schemes. By reducing the total amount of mathematical operations and by rear-
ranging polynomials we aim to reduce both the wrapping e�ect and over-approximation, which is inherent
to the used interval arithmetic.
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Chapter 1

Introduction

In the last decades the demand for algorithms to check satis�ability of systems of quanti�er-free non-linear real
arithmetic (QFNRA) constraints over real numbers has increased signi�cantly. Many applications in science and
engineering require fast and e�cient methods for satis�ability checking of QFNRA formulas, like conjunctions
of polynomials or terms. While the interval constraint propagation provides a good procedure to handle these
problems, it su�ers from over approximation due to the wrapping e�ect and other in�uences that decline it's
performance.

Satis�ability modulo theories (SMT) is a viable approach to solve these problems. SMT-solvers are based
on a combination of a highly e�cient satis�ability (SAT) solvers and powerful theory solvers. QFNRA formulas
are hard to solve, existing complete solvers for nonlinear formulas with polynomial functions have at least an
exponential complexity [6]. Some procedures that are capable to test the satis�ability of QFNRA formulas are
cylindrical algebraic decomposition, virtual substitution and Gröbner bases, although both latter procedures are
incomplete, which means they cannot determine the satis�ability for every formula they get as input. Interval
constraint propagation (ICP) is another incomplete method. This thesis aims to provide an improvement for
ICP by providing a Horner scheme based data structure. It reduces the search space of QFNRA formulas. ICP
cannot determine for every input formula its satis�ability, but if possible it will return an infeasible subset.
Within the SMT solver the ICP procedure works as a preprocessor and is able to provide a consecutive solver
with a smaller search space.

The Horner scheme, named after the British mathematician William George Horner [11], is a transforma-
tion for polynomials and known to provide several useful features. One of them is the reduction of arithmetic
operations, that are needed to solve the polynomial. This provides a more e�cient environment for computers
to work with polynomials. We analyze the e�ects of Horner scheme based interval constraint propagation and
discuss whether it is viable to transform the provided polynomials, in order to improve the overall precision and
e�ciency of the ICP procedure.

For this thesis we use an SMT solver, called SMT-RAT [3], that was developed at our chair. It allows to
combine multiple custom solver modules to form a composed solver. We optimize the existing ICP module
within SMT-RAT, which has been developed by S. Schupp [16] [9]. The implementation of the multivariate
Horner scheme data structure faces some di�culties: On the one hand the data structure has to be fully inte-
grable with the preexisting code structures, on the other hand e�cient coding is required, in order to provide
notable improvements within the highly optimized framework.

Our goal is to improve the contraction procedures within the ICP module by using Horner schemes in the
evaluation process of polynomials, and by providing another contraction method (constraint propagation). We
aim to speed up the solving process while increasing the size of the contractions. We will try to realize the Horner
schemes by implementing the concepts postulated in a paper from Martine Ceberio and Vladik Kreinovich [7].
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This thesis consists of six chapters. In the next Chapter after the introduction, this thesis will commence by
presenting the preliminaries. We will introduce two interval arithmetics, the basics of the ICP procedure and
get in detail with the di�erent contraction methods used by the ICP module. In Chapter 3 we present the
characteristics of Horner schemes. We will examine their e�ects on interval arithmetic, especially on precision
and e�ciency. We will also highlight two heuristics for the creation of multivariate Horner schemes, that were
implemented within the data structure. In Chapter 4 we will present the key functions of our implementation,
highlighting their basic concepts and explaining the data structure used to realize multivariate Horner schemes.
In Chapter 5 we take a look at the results of our work, and will analyze the performance of the modi�ed
ICP procedure and compare it to the default setting of the framework. In the �nal Chapter 6 we will draw a
conclusion and point out concepts for future work.



Chapter 2

Preliminaries

In this chapter we will provide a basic introduction for the mathematical operations and procedures used in this
thesis. We will introduce two interval arithmetics, and focus on over-approximation caused by the dependency
problem. We shortly present sati�ability modular theories (SMT) solving and the framework SMT-RAT, followed
by a presentation of interval constraint propagation (ICP) and its contraction procedures.

2.1 Interval Arithmetic

ICP makes use of interval arithmetic at many points within its procedure. In order to follow its principle of
operation we need to introduce some basic arithmetic operations. In the following we will present two di�erent
interval arithmetics, which di�er in the representation of the intervals and thus provide di�erent approaches
towards basic arithmetic operations. To di�erentiate the two, we refer to the interval arithmetic used in the
paper from Ulrich W. Kulisch [13] as standard interval arithmetic and the interval arithmetic used by Siegfried
M. Rump [15] as midpoint-radius interval arithmetic. It is necessary to introduce both interval arithmetics,
because the interval arithmetic used in the paper by Martine Ceberio and Vladik Kreinovich [7] di�ers from the
one we use in our implementation.

2.1.1 Standard Interval Arithmetic

In this section we present basic mathematical operations of interval arithmetic as implemented by S. Schupp
for the ICP procedure [16]. We start by de�ning an interval for standard interval arithmetic:

De�nition 2.1.1 (Interval). An Interval I ⊆ R is a set of numbers, such that there exists
a,b ∈ R ∪ {−∞,+∞} such that I = {x ∈ R|a vl x vu b} for some vl , vu∈ {<,≤}.

In the following the set of intervals, which satisfy the de�nition above, are referred to as IR. We use the
following notation to express including endpoints of an interval, also known as weak bounds [a; b] and excluding
endpoints of an interval, also known as strict bounds (a; b):

(a; b) = {x ∈ R | a < x < b}
[a; b) = {x ∈ R | a ≤ x < b}
(a; b] = {x ∈ R | a < x ≤ b}
[a; b] = {x ∈ R | a ≤ x ≤ b}

De�nition 2.1.2 (Intersection). For two intervals Ia, Ib ∈ IR we de�ne an interval intersection as follows:

Ia ∩ Ib = {x|x ∈ Ia ∧ x ∈ Ib}

Note that the intersection of two intervals will always result in the maximal interval that satis�es both bound
types.

De�nition 2.1.3 (Union). For two intervals Ia, Ib ∈ IR we de�ne an interval union as follows:

Ia ∪ Ib = {x|x ∈ Ia ∨ x ∈ Ib}

In order to describe the search space for an n-Dimensional equation we use an interval box:
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De�nition 2.1.4 (Interval box). An n-dimensional vector of intervals B = (x1, ..., xn) with B ∈ IRn is called
an interval box.

As the ICP module only needs addition, subtraction, multiplication and division, we focus only on those
operations in interval arithmetic. When de�ning mathematical operations for intervals, we have to consider
all possible combinations of parameters, such that the resulting interval contains all results of the respective
operation applied on all combinations of values taken from the input intervals:

Ia � Ib = {a� b | a ∈ Ia, b ∈ Ib} (2.1)

In the following we de�ne the operations for addition, subtraction, multiplication and division with intervals of
the standard interval arithmetic.

Standard interval addition: When adding up two intervals, we have to consider both the lower and upper
bound of the intervals. The bounds of the resulting interval are each the sum of the start- and endpoints of the
respective input intervals.

De�nition 2.1.5 (Standard interval addition). The addition of two intervals A = [a1,a2] and B = [b1,b2],
where A,B ∈ IR, is de�ned as:

[a1; a2] + [b1; b2] = [a1 + b1; a2 + b2]

A de�nition for standard interval addition in consideration of in�nite bounds is displayed in Table 2.1.

Example 2.1.1 (Standard interval addition). Adding [−4; 2] and [1; 4] yields to:

[−4; 2] + [1; 4] = [−4 + 1; 2 + 4] = [−3; 6]

Addition (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)
(∞, a2] (∞, a1 + b2] (−∞, a2 + b2] (−∞,+∞) (−∞,+∞)
[a1,a2] (−∞, a2 + b2] [a1 + b1, a2 + b2] [a1 + b1,+∞) (−∞,+∞)

[a1,+∞) (−∞,+∞) [a1 + b1,+∞) [a1 + b1,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.1: De�nition for standard interval addition with consideration of in�nity, [13].

Standard interval subtraction: Similar to standard interval addition we use the lower and upper bounds
to calculate the resulting interval.

De�nition 2.1.6 (Interval subtraction). The subtraction of two intervals A = [a1; a2] and B = [b1; b2], where
A,B ∈ IR, is de�ned as:

[a1; a2]− [b1; b2] = [a1 − b2; a2 − b1]

A de�nition for standard interval subtraction in consideration of in�nite bounds is displayed in Table 2.2.

Example 2.1.2 (Standard interval subtraction). Subtracting [6; 9] and [2; 3] yields to:

[6; 9]− [2; 3] = [6− 3; 9− 2] = [3; 7]

Subtraction (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)
(−∞, a2] (−∞,+∞) (−∞, a2 − b1] (−∞, a2 − b1] (−∞,+∞)
[a1, a2] [a1 − b2,+∞] [a1−2, a2 − b1] (−∞, a2 − b1] (−∞,+∞)

[a1,+∞) [a1 − b2,+∞) [a1 − b2,+∞) (−∞,+∞) (−∞,+∞)
(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 2.2: De�nition for standard interval subtraction with consideration of in�nity [13].
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Standard interval multiplication: Up to now we were able to use closed formulas for arithmetic operations
to add up or subtract intervals, using the bounds of the input intervals. We might encounter a problem if we
use that same principle in interval multiplication:

Example 2.1.3 (Standard interval multiplication). If we multiply both boundaries pairwise and both intervals
start with a negative number, the resulting interval should also contain a negative number, if at least one of the
intervals contains a positive number.

[−4; 3] · [−1; 4] 6= [−4 · −1; 3 · 4] = [4; 12]

−2 is a value within the �rst interval and 1 is a value within the second interval, thus −2 · 1 = −2 should be
contained be the resulting interval. The correct result would be:

[−4; 3] · [−1; 4] = [−4 · 4; 3 · 4] = [−8; 12]

We have to guarantee that all possible results of multiplications from values within the �rst interval and
values within the second interval are contained within the resulting interval (see Equation 2.1). Therefore we
have to take a di�erent approach in order to calculate the lower and the upper bound of the resulting interval.
We de�ne interval multiplication as follows:

De�nition 2.1.7 (Standard interval multiplication). The multiplication of two intervals A = [a1; a2] and
B = [b1; b2], where A,B ∈ IR, is de�ned as:

[a1; a2] · [b1; b2] = [min{a1 · b1, a1 · b2, a2 · b1, a2 · b2};max{a1 · b1, a1 · b2, a2 · b1, a2 · b2}]

Note that it is possible to de�ne the operations for plus and minus the same way:

[a1,a2] + [b1,b2] = [min{a1 + b1, a1 + b2, a2 + b1, a2 + b2} ; max{a1 + b1, a1 + b2, a2 + b1, a2 + b2}]
[a1,a2]− [b1,b2] = [min{a1 − b1, a1 − b2, a2 − b1, a2 − b2} ; max{a1 − b1, a1 − b2, a2 − b1, a2 − b2}]

We use addition and subtraction as de�ned in De�nition 2.1.5 and De�nition 2.1.6, because they provide a
cheaper and more e�cient way to obtain the same result. A de�nition for standard interval multiplications in
consideration of in�nite bounds is displayed in Table 2.3.

Standard interval division: The division of standard intervals follows the same principle as multiplication.
However, we have to consider a divisor that might contain zero:

Example 2.1.4 (Standard interval division). Divisor not containing zero: [4; 8] divided by [1; 2] yields to:

[4; 8]÷ [1; 2] = [4÷ 2; 8÷ 1] = [2; 8]

Divisor containing zero: [4; 8] divided by [−1; 2] yields to:

[4; 8]÷ [−1; 2] = (−∞; 4÷−1] ∪ [4÷ 2; +∞) = (−∞;−4] ∪ [2; +∞)

In case the divisor contains zero, the division operator will split the interval. We refer to this as an het-
eronomous split. We are able to de�ne interval division based on Equation 2.1 and standard interval multipli-
cation (De�nition 2.1.7):

De�nition 2.1.8 (Standard interval division). The division of two intervals A = [a1; a2] and B = [b1; b2],
where A,B ∈ IR, is de�ned as:

A/B := {x | bx = a ∧ a ∈ A ∧ b ∈ B}

A de�nition for interval division with a divisor not containing zero is displayed in Table 2.6, a de�nition for
interval division with a divisor not containing zero and in consideration of in�nite bounds is displayed in Table
2.5, a de�nition for interval division with a divisor containing zero is displayed in Table 2.4.

The arithmetic operations stated above, are presented for standard intervals with weak bounds. The arith-
metic does not depend on the bound type and is therefore derivable from the standard interval arithmetic as
the same mathematical principles apply for both bound types.

In the following intervals of the standard interval arithmetic are referred to simply as 'intervals'.
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Division [b1,b2] [b1,b2] (−∞, b2] [b2,+∞)
0 6∈ B b2 < 0 b1 > 0 b2 < 0 b1 > 0

[a1,a2], a2 ≤ 0 [a2/b1, a1/b2] [a1/b1,a2/b2] [0, a1/b2] [a1/b1,0]
[a1,a2], a1 ≤ 0 ≤ a2 [a2/b2,a1/b2] [a1/b1, a2/b1] [a2/b2,a1/b2] [a1/b1, a2/b1]

[a1,a2],a1 ≥ 0 [a2/b2, a1/b1] [a1/b2,a2/b1] [a2/b2,0] [0, a2/b1]
[0,0] [0,0] [0,0] [0,0] [0,0]

(−∞, a2],a2 ≤ 0 [a2/b1,+∞) (−∞, a2/b2] [0, +∞) (−∞,0]
(−∞, a2],a2 ≥ 0 [a2/b2,+∞) (−∞, a2/b1] [a2/b2,+∞) (−∞, a2/b1]
[a1,+∞),a1 ≤ 0 (−∞, a1/b2] [a1/b1,+∞) (−∞, a1/b2] [a1/b1, +∞)
[a1,+∞),a1 ≥ 0 (−∞, a1/b1] [a1/b2,+∞) (−∞,0] [0, +∞)

(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

Table 2.5: De�nition for standard interval division with a divisor without zero and consideration of in�nity [13].

A = [a1,a2] B = [b1,b2] A/B
0 ∈ A 0 ∈ B (−∞,+∞)
0 6∈ A B = [0,0] ∅
a2 < 0 b1 < b2 = 0 [a2/b1,+∞]
a2 < 0 b1 < 0 < b2 (−∞, a2/b2] ∪ [a2/b1,+∞)
a2 < 0 0 = b1 < b2 (−∞, a2/b2]
a1 > 0 b1 < b2 = 0 (−∞, a1/b1]
a1 > 0 b1 < 0 < b2 (−∞, a1/b1] ∪ [a1/b2,+∞
a1 > 0 0 = b1 < b2 [a1/b2,+∞)

Table 2.6: Distinction of cases for interval division A/B where A,B ∈ IR [13].

2.1.2 Midpoint-Radius Interval Arithmetic

In our implementation we use standard interval arithmetic [16]. A di�erent approach is presented in [7], which
is based on S.M. Rump's thesis [15]. He de�nes the intervals not by a lower and an upper bound, but by de�ning
an interval as a tuple center point and a radius. Thus in the midpoint-radius interval arithmetic an interval is
de�ned as follows:

De�nition 2.1.9 (Midpoint-radius intervals). Every interval A = [a1; a2] can be represented by a midpoint
ã = (a1 + a2)/2 and its radius ∆a = (a2− a1)/2 ,such that A = [ã−∆a; ã+ ∆a]. We use the following notation
to represent the tuple: A = 〈ã; ∆a〉.

Midpoint-radius interval arithmetic is not de�ned for unbounded intervals. It is impossible to transform an
unbounded standard interval to in interval in midpoint-radius interval arithmetic:

A = (−∞; 0] , ã
Def.2.1.9

=
−∞+ 0

2
= −∞ , ∆a

Def.2.1.9
=

0 +∞
2

=∞ but, A 6= 〈−∞;∞〉

Midpoint-radius interval arithmetic is also not de�ned to represent strict bounded intervals as they are de�ned
in standard interval arithmetic. In the following we de�ne the addition, subtraction and multiplication for
intervals in midpoint-radius arithmetic. There is no need to present the de�nition of division in midpoint-radius
interval arithmetic, as we do not use it in this thesis and the midpoint-radius arithmetic is not used in our
implementation. Though the complete de�nition of the arithmetic can be found in Rumps thesis [15].

We de�ne the addition of two intervals in midpoint-radius interval arithmetic as follows:

De�nition 2.1.10 (Midpoint-radius interval addition). The addition of two intervals A = 〈ã; ∆a〉 and B =
〈b̃; ∆b〉 is de�ned as A + B = 〈c̃; ∆c〉, where c̃ = ã + b̃ and ∆c = ∆a + ∆b.

Example 2.1.5 (Midpoint-radius interval addition). Adding the intervals 〈4; 3〉 and 〈2; 1〉 yields to:

〈4; 3〉+ 〈2; 1〉 = 〈4 + 2; 3 + 1〉 = 〈6; 4〉
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Next we present the de�nition of interval subtraction in midpoint-radius interval arithmetic:

De�nition 2.1.11 (Midpoint-radius interval subtraction). The subtraction of two intervals A = 〈ã; ∆a〉 and
B = 〈b̃; ∆b〉 is de�ned as A−B = 〈c̃; ∆c〉, where c̃ = ã− b̃ and ∆c = ∆a + ∆b.

Example 2.1.6 (Midpoint-radius interval subtraction). Subtracting two intervals 〈2; 6〉 and 〈3; 2〉 yields to:

〈2; 6〉 − 〈3; 2〉 = 〈2− 3; 6 + 2〉 = 〈−1; 8〉

Finally a de�nition of the multiplication of two midpoint-radius intervals is provided:

De�nition 2.1.12 (Midpoint-radius interval multiplication). The
multiplication of two intervals A = 〈ã; ∆a〉 and B = 〈b̃; ∆b〉 is de�ned as A · B = 〈c̃; ∆c〉, where c̃ = ã · b̃ and
∆c = |ã|∆b + |b̃|∆a + ∆a∆b.

Example 2.1.7 (Midpoint-radius interval multiplication). Multiplying the intervals 〈4; 2〉 and 〈2; 3〉 yields to:

〈4; 2〉 · 〈2; 3〉 = 〈4 · 2; |4| · 3 + |2| · 2 + 2 · 3〉 = 〈8; 22〉

2.1.3 Wrapping E�ect

After de�ning the basic arithmetic operations of both interval arithmetics, we present an e�ect both arithmetics
share. The wrapping e�ect, also known as the dependency problem, is one of the greatest causes for over-
approximation within interval arithmetics. It can occur, in case a re�exive mathematical operation (x · x) or
(x − x) is treated like a non-re�exive operation, which can cause a wider solution space. Let us consider the
following equations:

x = [−1; 1], x2 = x · x = [−1; 1] · [−1; 1]
Def.2.1.7

= [−1; 1] (2.2)

x− x = [−1; 1]− [−1; 1]
Def.2.1.6

= [−2; 2] (2.3)

In both cases the enclosure is wider than expected, knowing that x2 is nonnegative and x − x is always zero
([0,0]). As a consequence of the interval arithmetic we use, negative lower bounds can remain negative after
squaring and a variable cannot be canceled out by subtracting it with itself.

When squaring an interval we square each element within the set, that is represented by the interval. When
multiplying two equal intervals, the resulting set contains all possible multiplications between the elements of
both intervals.

Example 2.1.8 (Squaring and multiplication of intervals). Consider the two intervals IA and IB representing
two sets A,B ⊂ N, with IA = IB = [−1; 1]

I2A = {−1 · −1,0 · 0,1 · 1} = [0; 1]

whereas,

IA · IB = {−1 · −1,−1 · 0,−1 · 1, 0 · 0, 0 · 1, 1 · 1} = [−1,1]

Example 2.1.9 (Extinction and subtraction of intervals). Consider the two intervals IA and IB representing
two sets A,B ⊂ N, with IA = IB = [−1; 1]

IA − IA = {−1− (−1),0− 0,1− 1} = [0; 0]

whereas,

IA − IB = {−1− (−1),−1− 0,−1− 1, 0− (−1),0− 0, 0− 1, 1− (−1),1− 0, 1− 1} = [−2; 2]

These over-approximations occur when calculating with variables within interval arithmetic. Note that the
following equations are not a�ected by the wrapping a�ect, because they involve two variables.

x = y = [−1; 1], x · y = [−1; 1] · [−1; 1]
Def.2.1.7

= [−1; 1]

x− y = [−1; 1]− [−1; 1]
Def.2.1.6

= [−2; 2]
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Wrapping within multiplication

In order to minimize the wrapping e�ect while multiplying intervals, a method to exponentiate intervals is
provided by [14].

x = [−1; 1], x2 = (x · x) ∩ [0; +∞] = [0; 1] (2.4)

As this arithmetic operation has the potential to reduce the solution space tremendously, we aim to use it as
often as possible. If possible we will try to rearrange the Horner scheme in order to use the exponentiation more
often.

Example 2.1.10 (Wrapping within multiplication). Let us consider the following example:

f(x) = 5x6 + 7x4 + 15x2

We transform f(x):

f(x) = x
(
x︸︷︷︸

(2.2)

(
15 + x

(
x︸︷︷︸

(2.2)

(7 + x(x︸︷︷︸
(2.2)

(5))
)))

(2.5)

With x = [−2; 5] the transformed Term 2.5 will result in f(x) = [−33150; 82875].

We reduce the problem of over-approximation caused by wrapping, by combining as many variables as
possible in order to use the exponentiation instead of multiplication.

f ′(x) = x2
(
15 + x2(7 + x2(5))

)
(2.6)

With x = [−2; 5] the transformed Term 2.6 will result in f(x) = [0; 82875].

Wrapping within subtraction

We do not need to consider subtraction related wrapping e�ects similar to Equation 2.3, as the ICP module
uses normalized constraints as input [9]. Normalized constraints have the following form:

a1 x
e1,1
1,1 · ... · x

e1,k1

1,k1︸ ︷︷ ︸
m1

+... + an x
en,1

n,1 · ... · x
en,kn

n,kn︸ ︷︷ ︸
mn

+d ∼ 0

Where n ≥ 0, ai and d is an integral number ( 6= 0), xi,ji is a real or integer valued variable and ei,ji is a natural
number greater zero (for all 1 ≤ i ≤ n and 1 ≤ ji ≤ ki). In addition xi,ji 6= xi,li if ji 6= li (for all 1 ≤ i ≤ n and
1 ≤ ji ≤ ki) and mi1 6= mi2 if i1 6= i2 (for all 1 ≤ i1, i2 ≤ n). ∼ is either = or < and in case n is zero, d is also
zero.

Example 2.1.11 (Normalized constraints). The following constraints are given:

c1 : x + 3x2 − x− 2x2 + 2 = 0

c2 : xy2 − 3x2 − y2 + 2x2 + 2y2 + x2 = 0

Transforming c1 and c2 to normalized constraints leads to:

c1 : x2 + 2 = 0

c2 : xy2 + y2 = 0

A normalized constraint cannot contain a term of the form axe
i − bxe

i , with a and b being integral numbers
and e being a natural number greater zero. Therefore we do not have to consider the subtraction related
wrapping e�ect .

2.2 Propagation

After introducing the basic characteristics of the arithmetic, we present the mathematical processes of the
propagation method, that we use to improve the contraction procedure within the ICP module.

Interval propagation is a method for contracting the solution domains of variables regarding QFNRA equa-
tions. As input we take a set of constraints and a search space, represented by an interval box (See De�nition
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(a) Initial search space (b) Contracted search space

Figure 2.1: Two graphs displaying the contraction of the search space, before and after applying interval
contraction.

2.1.4). This method is only applicable if the input equations (constraints) are at least solvable for one variable.
Due to preprocessing the equations either have the form a · x + h = 0, with a ∈ Q and h being a polynomial
not containing x or the from xi ·m− y = 0, with m being a monomial not containing x and y being a variable
di�erent from x.

The elements within the interval box B = ([x]x1
, ..., [x]xn

) are assigned to the variables xi, ..., xn of the input
equation. In order to conduct interval propagation we need to choose a tuple of an equation and the variable
which we want to contract. We call this tuple contraction candidate.

De�nition 2.2.1 (Contraction Candidate). A contration candidate c is a tuple

c = 〈e,xi〉

where e is an equation and xi is an variable occurring in e.

After choosing a contraction candidate, we solve the input equation e for xi. All variables except xi are
replaced by their respective interval domains from B. Next we calculate the solution of the equation and get
a new interval [y] as a result. Finally we intersect [y] with [x]xi

and get [z]. Then we replace [x]xi
with [z].

Because interval arithmetic is inclusion isotonic, we can guarantee, that [z] is containing the solution, if the
solution is also contained in [x]xi . Consequently if the intersection returns an empty set, the solution is not
contained in [x]xi

.

Example 2.2.1. Let x1 and x2 be variables and c1 : 2x2 − x1 = 0 and c2 : 2x2
2 − x1 = 0 be a set of constraints.

[x] = ([x]x1
,[x]x2

) ∈ IR2 ,
where [x]x1 = [1; 3], [x]x2 = [0.5; 2], c1 : 2x2 − x1 = 0, c2 : 2x2

2 − x1 = 0 The initial search space is displayed in
Figure 2.1a. We choose the contraction candidate: 〈c1, x1〉 Solving c1 for x2 yields:

[y] =
1

2
[1,3] = [0.5, 1.5]

Intersect the result with [x]x1 :

[z] = [0.5; 2] ∩ [0.5; 1.5] = [0.5; 1.5]

And replace [x]x1 by [z]. The contracted search space is shown in Figure 2.1b.

2.3 Newton's Method

Next we present the second contraction method implemented within the ICP module. Newton's method, also
known as Newton-Raphson method provides a procedure to iteratively approximate the root of a univatiate
function. We will use this procedure in order to approximate solutions for the constraints. Let f be a real-valued
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function of a real variable x, and f be a continuously di�erentiable. Recall the univariate Newton-Raphson
method: We repeat the following step,

xn+1 = xn −
f(xn)

f ′(xn)

until the desired accuracy is reached. (See Figure 2.2)

Figure 2.2: Univariate Newton iteration with f(x) =
1

10
x3 +

1

10
x2 + 3 at x1

We can apply a similar method for interval-valued multivariate polynomials. The following method is
based on a approach initially presented by Ramon E. Moore [14]. As input we get an n-dimensional function
f(x1, ..., xn). When assigning a value to each variable except for xj we get the one-dimensional function fi.
The newton operation for intervals is de�ned by [13] as follows:

De�nition 2.3.1 (Newton operator for intervals). Let D ⊆ Rn, f : D → Rn, f = (f1, ..., fn)T be a continuously
di�erentiable function, and let [x] = ([x]x1

,...,[x]xn
)T ∈ IRn be an interval vector with [x] ⊆ D and i,j ∈

{1, ..., n}. Then component-wise interval Newton operator Ncmp is de�ned by:

Ncmp

(
[x],i,j

)
= N( [x]︸︷︷︸

box

, fi(x1, ..., xn), j︸ ︷︷ ︸
ContractionCandidate

) := cj −
fi([x]x1

,...,[x]xj−1
, cj ,[x]xj+1

,...,[x]xn
)

∂fi
∂xj

([x]x1 ,...,[x]xn)

By choosing a point cj within the interval we want to contract, usually the center point, we can apply the
Newton operator on our contraction candidate and intersect its result with the original interval. As Kulisch
proves in his thesis ([13]) in case the solution x∗ is within the box [x] it has to be in Ncmp([x],i,j) as well.
Therefore in case [x] ∩ Ncmp([x],i,j) = ∅ there is no solution in [x]. The inclusion isotonicity of interval
arithmetic and the Ncmp operator guarantee, that we do not cut o� a solution, while contracting.

Example 2.3.1 (Newton method). Let xi be a variable and ci a constraint. [x] = ([x]x1
, [x]x2

) ∈ IR2) where
[x]x1

= [−2,0], [x]x2
= [−1; 1], c1 : 1/2x3 − x + 1 = 0. We chose c1 and variable x1 as the �rst contraction

candidate.

f(x) =
1

2
x3 − x + 1

f ′(x) =
3

2
x2 − 1

With center point c1 = −1

Ncmp([x],f(x1),x1) = −1−

1

2
(−1)3 − 1 + 1

3

2
[−2; 0]2 − 1

= −1 +
1/2

[−1; 8]

With De�nition 2.1.8 follows:

Ncmp([x],f(x1),x1) = −1 +
(
(−∞;−1

2
] ∪ [

1

16
; +∞)

)
= (−∞;−3

2
] ∪ [−15

16
; +∞)
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(a) Initial search space (b) Contracted search space after split occurred

Figure 2.3: Two graphs displaying the contraction of the search space, before and after applying the Newton
method for contraction.

Intersect with original search space for x1, to get the contracted search space:

[−2; 0] ∩
(
(−∞;−3

2
] ∪ [−15

16
; +∞))

)
= [−2;−3

2
] ∪ [−15

16
; 0]

The resulting search space is signi�cantly smaller and split in two parts, due to interval division (see Figure
2.3).

2.4 QFNRA formulas

The ICP method we aim to improve is an incomplete method, that proves to be a powerful tool to aid solving
quanti�er-free non-linear real arithmetic (QFNRA) problems.

De�nition 2.4.1 (QFNRA formulas). Quanti�er-free nonlinear real formula are formed by the following gram-
mar:

p := r | x | (p + p) | (p− p) | (p · p)

c := p < 0 | p = 0

ϕ := c | (ϕ ∧ ϕ) | ¬ϕ

where x ∈ V ar(ϕ) represents a variable, V ar(ϕ) = {x1, · · · , xn} is a set of all variables occurring in ϕ and
r ∈ Q is a rational constant. p is a polynomial, c is a constant and ϕ is a formula of QFNRA.

Syntactic sugar like (p ≤ 0), (p > 0), (p ≥ 0) and (ϕ ∨ ϕ) can be derived from this grammar. A polynomial p
is de�ned as a sum of terms, which is a coe�cient r (r ∈ Q) times a monomial. A monomial is a product of
powers of variables xj with nonnegative exponents e. Thus we can rewrite a polynomial p in QFNRA as follows:

p :=

n∑
i=1

ri

ni∏
j=0

x
eij
j

There are currently only a few approaches for satis�ability-checking for QFNRA formulas. Solvers for
QFNRA have an doubly exponential worst case complexity [6]. Known approaches are the cylindrical algebraic
decomposition (CAD) [8] which is a complete method, virtual substitution (VS) [1] and Gröbner bases [2], which
are both incomplete, meaning these methods are not able to determine the satis�ability for every input formula.

2.5 Satis�ability Modulo Theories Solving

Satis�ability modulo theories (SMT) solving provides an algorithmic framework that allows checking the sat-
is�ability of Boolean combinations of theory constraints of the theory of QFNRA. SMT solvers consist of a
combination of a SAT solver and one or more theory solvers.
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The SMT solver (Figure 2.4) starts by creating a Boolean abstraction of the formula ϕ, which is brought
to a conjunctive normal form (CNF). For every constraint in the original formula, a fresh Boolean variable is
introduced by the Boolean abstraction, consequently the Boolean skeleton of the original formula is kept intact.
Next, the SAT solver tries to assign the variables of the Boolean abstraction. Each new introduced Boolean
variable represents a QFNRA subformula from the original input formula. These subformulas are constraints.
After each partial assignment, a set of asserted subformulas whose respective Boolean variables have been
assigned, is checked for consistency with the Boolean assignment, by the theory solver.

Due partial assignment, the SMT solver is called less-lazy SMT solver. An alternative to less-lazy SMT is
the full-lazy SMT solver, which assigns all variables at once and then passes the corresponding constraints to
the theory solver. Next the theory solver attempts to �nd a solution for the subset of given constraints. In case
the theory solver �nds a solution for the subset, it hands back the information to the SAT solver, such that the
SAT solver can assign further variables. If the theory solver can �nd a solution for the assigned variables, it
will declare the subset as satis�able. If the theory solver can not �nd a solution it will return an explanation
for the SAT solver in the form of an infeasible subset of the given constraints. The information of the infeasible
subset is used to resolve the con�ict and assign the variables di�erently. In case the SAT solver cannot �nd an
assignment for the Boolean structure, it declares the input formula as unsatis�able. The SMT-solver repeats
this process until all variables are successfully assigned, or a con�ict occurs, that can not be resolved.

QFNRA Formula

Boolean abstraction

SAT solver:
Find satisfying 

assignment

Theory solver:
Check consitency

(in)equations infeasible subset

UNSAT

SAT

Figure 2.4: Diagram displaying the basic architecture of SMT solving

2.5.1 SMT-RAT

The implementations we realize in this thesis are presented within the context of the preexisting toolbox SMT-
RAT [3]. SMT-RAT provides a framework to exchange, combine and rearrange di�erent modules to form an
SMT solver according to a user-de�ned strategy. Among others some modules implement Gröbner bases, virtual
substitution, cylindrical algebraic decomposition and interval constraint propagation [9],[3]. We can summarize
the architecture of this toolbox into three parts: modules, a manager and a strategy.

Each module encapsulates an approach to process a set of constraints. The modules share a common
interface. Each module m initially starts with an empty set of received formulas Crec(m). We are able to add
and remove formulas to Crec(m) with dedicated functions, that are implemented in each module. The essential
function of a module is the consistency check. It decides whether the conjunction of received formulas in Crec(m)
is satis�able or not. In case the module declares the Crec(m) as unsatis�abe, it is able to return UNSAT and an
infeasible subset Cinf (m) ⊆ Crec(m) otherwise it can return SAT or UNKNOWN. Besides modules can specify
lemmas, that encapsulate information from the internal state of a module that can be propagated among other
modules. Modules themselves can ask other modules to determine the satis�ability of a set of formulas Cpas(m).
In case a module passes a set of formulas, the manager will divert the (sub-)set to a module that might be more
suited to determine the satis�ability. Note that in SMT-RAT the SAT solver is also implemented as a module.

The strategy determines the order in which each module is used. The strategy is de�ned by the user and
enables him to create powerful and e�cient composed theory solvers. A strategy consists of condition-module
pairs, which allows to de�ne a sequence of modules based on properties of the input formulas.
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Module Module Module Module

...

...

SAT solver

Manager

Strategy

Condition Condition Condition

SMT solver

Figure 2.5: Diagram displaying the relation between modules, strategy and manager, within the SMT-RAT
framework, based on [3], [9].

Example 2.5.1 (SMT-RAT strategy with conditions). Let ϕ be input of the SMT-Solver,
and c1?(c2?m1 : m2) : m3 the Strategy, where c1 and c2 are conditions of ϕ and m1,m2 and m3 are modules
theory solver modules of SMT-Rat

ϕ : c1 ?

ϕ : c2?

m1

true

m2

fa
ls
etrue

m3

fa
ls
e

If ϕ ful�lls c1 there is a check whether ϕ ful�lls c2. If it ful�lls c2 as well m1 will be used as a theory solver,
otherwise m2 will try to check ϕ. If ϕ does not ful�ll c1, m3 will be used as a theory solver.

It is also possible to de�ne a strategy without any conditions:

Example 2.5.2 (SMT-RAT strategy). One of the strategies available for SMT-RAT (RatTwo):
This strategy implements no conditions, as it only has a serial sequence of modules.

→ CNFM → PPM → SATM → ICPM → V SM → CADM

CNFM transforms the input formula Cinput to a conjunctive normal form. PPM performs preprocessing.
SATM is a SAT solver that abstracts the received formula Crec(SATM ) to propositional logic and checks for
satis�ability. It passes on the constraints which are abstracted by Boolean variables. ICPM is a ICP procedure,
that can lift splitting decisions and contraction lemmas to SATM . V SM is a module implementing virtual
substitution, and CADM is a module implementing cylindrical algebraic decomposition.

The third part is the manager, it keeps track of all the modules and manages the communication between
each module. It governs the strategy and it also holds the SMT solver's inital input Cinput.

2.6 Interval Constraint Propagation

In this section we present the ICP module as implemented by S. Schupp [16]. In the context of the SMT solver
the main task of the ICP module is to contract the solution space up to a dedicated threshold. If possible the
module will return UNSAT. Note that the ICP module will not return SAT, as ICP can only exclude solutions.

After contracting, the module passes its results to the next solver and serves this way as a preprocessor.
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Figure 2.6: Diagram displaying the contraction procedure of the ICP module.

2.6.1 Algorithm

The idea behind ICP is the reduction of the given search space for a set of constraints until a speci�ed precision
is reached. ICP achieves this by repeatedly choosing contraction candidates (see De�nition 2.2.1) and applying
contraction methods (see Section 2.7) at the search space.

The detailed process of the algorithm is as follows (see Figure 2.6): We take an interval box and a set of
constraints as input. In case an interval box has reached the target diameter, or is even smaller, we will pass it
as a solution candidate to the next solver, as a solution candidate. In case the target diameter is not reached
yet, we choose a new contraction candidate. In case there is no viable contraction candidate, we split the search
space and give that information to the SAT solver, which tries to provide a new box. We call this splitting
an autonomous split. In case there is a viable contraction candidate, we perform a contraction. During that
contraction a heteronomous split might occur (see De�nition 2.1.8). In case a split occurred we inform the
SAT solver which chooses a new box. After contracting we check whether the target diameter is reached and
continue contracting until this is the case. During the ICP process the SAT solver might be asked to conduct
a (heteronomous or autonomous) split and provide a new Box. If it cannot provide a new box it declares the
input set as unsatis�able.

2.6.2 Preprocessing

In order to be able to contract, the module requires constraints that are solvable for a single variable. Therefore
it �rst separates linear and nonlinear constraints, and then linearizes all nonlinear constraints by introducing
new variables and constraints for nonlinear monomials [16].

Example 2.6.1 (Linearization). Non-linearized Input:

x3
1 · x2 + x3 = 0

Linearized output with new variable for nonlinear monomial:

v1 + x3 = 0 ∧ v1 = x3
1 · x2

In order to enable the e�ective transformation into Horner Schemes, we add the original subformula to every
new created constraint. Because ICP is known to su�er from the slow convergence problem [16], [17] when used
to solve a set of linear constraints and because there are more e�cient solvers to handle linear constraints, we
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[no]
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Figure 2.7: Diagram displaying the heuristic within the ICP module that determines the contraction method.

will pass the set of linear constraints to a linear real arithmetic (LRA) solver. The set of nonlinear constraints is
passed on to be contracted by the ICP module. Note that all variables used in the ICP module are required to
be bounded by intervals, which if needed are set up by an initial box. In case the ICP module returns UNSAT
for the initial box, another solver is used to check the satis�ability for the set of constraints, with the remaining
search space outside the initial box.

2.7 Contraction

One of the key functions of the ICP solver is contraction. Additionally to the preexisting interval based Newton
method a propagation method was added along with a new data structure for the Newton method (see Figure
2.7). Basic interval propagation provides a cheap method to contract the search space of constraints. Its
contractions cost in average less computation time, than the contractions of the Newton method, but the e�ect
of the contractions is greater as well. In the following sections we present the central ideas and processes for
each contraction method.

Before contracting a contraction candidate is chosen, thus each contraction method knows the current interval
box and the set of constraints.

2.7.1 Propagation

Interval propagation is a cheap and powerful method to contract the search space (see Section 2.2), within ICP
this procedure is used as follows: Propagation can be divided into three parts (see Figure 2.7). In the �rst part
we solve (transform) the input constraint for one variable. Thanks to preprocessing we only have to deal with
two types of constraints: Case 1:

a · x + h = 0⇔ x = −h

a

where a ∈ Q and h is a polynomial not containing x and not having a constant part. The variable x is determined
by the contraction candidate. Case 2:

xi ·m− y = 0⇔ x = i

√
y

m

where m is a monomial not containing x and y is a variable di�erent from x. The variable x is determined by
the contraction candidate.
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In the second part we evaluate the term created in the �rst part. We solve it, by using interval arithmetic
and inserting the bounds of all variables except x. An heteronomous split might occur, in case we have to
calculate a division (see De�nition 2.1.8).

In the third part we intersect the result(s) from the evaluation with the original input. As a result there
might also be two intervals. Based on the amount of intervals we have at the end, either one or two, we have
to get a new box from the SAT solver.

The newly introduced propagation method proves to accelerate the contraction process and thereby leads to
a higher e�ciency and a greater success rate of the SMT-Solver. The results will be presented in Section 5.2.

2.7.2 Newton's Method

The second contraction method implemented in the ICP module, is the contraction based on Newton's method.
The arithmetic properties of the procedure are presented in Section 2.3.

Within the ICP module, this procedure provides the polynomial and its derivative. Depending on the setting
of the ICP module, the procedure transforms both the derivative and the polynomial into a multivariate Horner
scheme, or continues calculating with a multivariate polynomial (See Figure 2.7).

2.7.3 Precision

Within the ICP module, the precision of the result is de�ned by the user. The module contracts as long as
the target diameter is not reached. Choosing a good target diameter is crucial to the performance of the SMT
solver. It determines the amount of preprocessing the ICP module is doing for the consecutive solver. Selecting
a small target diameter will require more contraction by the ICP while choosing a greater diameter will pass on
more work to the next solver. Depending on the following solver, a good diameter that does a good trade-o�
between both solvers should be chosen.
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Chapter 3

Horner Schemes

In this section we present the characteristics and advantages of Horner schemes. First we will de�ne Horner
schemes, before taking a closer look at the bene�ts of evaluating polynomials that were transformed into Horner
schemes. We will focus on its e�ects on e�ciency and precision, and �nally we will take a look at two heuristics
for the construction of a Horner scheme.

One of the most e�cient ways to evaluate univariate polynomials, is to use a Horner scheme. Univariate
Horner schemes provide a transfomation for a polynomial that contains the minimal amount of mathematical
operations possible. There is only one procedure for the creation of a univariate Horner scheme, therefore each
univariate polynomial has only one unique Horner scheme. We de�ne univariate Horner schemes based on [18].

De�nition 3.0.1 (Univariate Horner scheme). Given the polynomial

p(x) = a0 + a1x + a2x
2 + ... + anx

n

With the coe�cients a0, ..., an ,we simply can transform p to the univariate Horner scheme

p(x) = a0 + x(a1 + x(a2 + ... + x(an−1 + xan)...))

Our ICP implementation is mostly using multivariate polynomials, therefore we need to de�ne multivariate
Horner schemes. In contrast to univariate Horner schemes, there is not a unique procedure to create a multi-
variate Horner scheme. It is possible to transform a multivariate polynomial into di�erent multivariate Horner
schemes, which will di�er in the amount of arithmetic operations. In Section 3.3 we present two strategies for
this process. The de�nition is similar to the one of univariate Horner schemes:

De�nition 3.0.2 (Multivariate Horner scheme). The multivariate Horner scheme H is de�ned as follows:

∀ a ∈ Q : a ∈ H

∀ hdep ∈ H : xe
i · (hdep) ∈ H

∀ hdep,hind ∈ H : xe
i · (hdep) + hind ∈ H

where e ∈ N \ {0} and the variable xi does not occur in hind.

The structure in which we embed the Horner schemes consists of 6 components. Every Horner scheme
instance that is not constant has a variable xi and a associated exponent e. We call the part which will be
multiplied with that variable dependent-part (hdep) and the part which we add up without multiplying it with
the variable independent-part (hind). Both dependent and independent part are Horner schemes themselves.
Both dependent and independent part have an associated coe�cient a.

3.1 E�ects on E�ciency

Horner schemes are known for their properties of minimizing the arithmetic operations of univariate polynomials
[7], which reduces the cost to evaluate the transformed polynomial.

Example 3.1.1 (Univariate Horner scheme). If we want to optimize the number of required calculations to
solve this polynomial,

f(x) = 5 + 2x︸︷︷︸
1

+ 4x2︸︷︷︸
2

+ 3x3︸︷︷︸
3︸ ︷︷ ︸

9 operations
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we can use the Horner scheme to simplify f(x).

f ′(x) = 5 + x(2 + x(4 + x(3)︸ ︷︷ ︸
2

)

︸ ︷︷ ︸
4

)

︸ ︷︷ ︸
6 operations

It is well-established that univariate Horner schemes decrease the time needed by a computer to solve
a polynomial by minimizing the amount of needed arithmetic operations. However it is unclear whether a
multivariate Horner scheme also returns the absolute minimum of mathematical operations.
Although it is possible for a multivariate Horner scheme to represent a polynomial which is not reducible, it is
problematic to �nd heuristics which lead to that form.
The problem lies within the choice of the extracted variable. The amount of mathematical operations is
dependent on the order in which we choose to extract variables.

Example 3.1.2 (Multivariate Horner scheme). Consider the polynomial, which requires 8 arithmetic operations
to solve:

f(x1, x2, x3) = x1x
2
2︸︷︷︸

2

+x1x3︸︷︷︸
1

+x1x
2
2x3︸ ︷︷ ︸
3︸ ︷︷ ︸

8 operations

extract x1:

f(x1, x2, x3) = x1(x2
2 + x3 + x2

2x3)

extract x2 (twice):

f(x1, x2, x3) = x1(x2 · x2(1 + x3) + x3) = x1 · (x2
2 · (1 + x3)︸ ︷︷ ︸

3

+x3)

︸ ︷︷ ︸
5 operations

To solve the form above we need 5 arithmetic operations. However, if we extract variables in a di�erent order,
the amount might di�er:
Given polynomial (same as above):

f(x1, x2, x3) = x1x
2
2︸︷︷︸

2

+x1x3︸︷︷︸
1

+x1x
2
2x3︸ ︷︷ ︸
3︸ ︷︷ ︸

8 operations

extract x1:

f(x1, x2, x3) = x1(x2
2 + x3 + x2

2x3)

extract x3:

f(x1, x2, x3) = x1 · (x3︸ ︷︷ ︸
1

· (1 + x2
2)︸ ︷︷ ︸

2

+ x2
2︸︷︷︸
1

)

︸ ︷︷ ︸
6 operations

The amount of arithmetic operations needed to solve this Horner scheme di�er from the amount needed to solve
the �rst Horner scheme.

By reducing the amount of arithmetic operations within the polynomial we reduce the computation time for
the evaluation of the polynomial. In order to be able to decrease the number of mathematical operations for a
polynomial p, it needs to contain at least two monomials containing the same variable.

Example 3.1.3. Given are the following polynomials:
Polynomial only containing pairwise diverse variables:

x1x2 + x3x4 + x5x6︸ ︷︷ ︸
5 operations

⇔ x1(x2) + x3(x4) + x5(x6)︸ ︷︷ ︸
5 operations

(3.1)
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We are able to transform this polynomial, but we do not get a smaller number of arithmetic operations.
A polynomial containing only two monomials with the same variable:

x1x2 + x1x3 + x4x5︸ ︷︷ ︸
5 operations

⇔ x1(x2 + x3) + x3x5︸ ︷︷ ︸
4 operations

We can extract one variable from two monomials, and thereby reduce the amount of arithmetic operations by
one.
A polynomial containing n monomials, where m monomials share the same variable.

x1x1 + x1x2 + ... + x1xm︸ ︷︷ ︸
2m−1 operations

⇔ x1(x1 + x2 + ... + xm)︸ ︷︷ ︸
(2m−1)−(n−1) operations

The amount of arithmetic operations we are able to save is related to the number of monomials that contain the
same variable.

Although Horner schemes can provide a signi�cant reduction of computation time, it requires a certain type
of polynomials to be e�ective. We expect Horner schemes to be more e�ective on sets of constraints, that
contain polynomials with a high amount of terms but a small count of variables. Problems with mainly linear
constraints might require the same amount of computation time because they still need to be converted to
Horner schemes, but will not bene�t from any reduction of arithmetic operations (see Example 3.1.3).

3.2 E�ects on Precision

One of the largest over-approximations within interval arithmetic is caused by the dependency problem (Section
2.1.3), but as Paper [7] suggests there is at least one more cause within interval multiplication, that causes a
loss of precision. In the following section we demonstrate that we are able to reduce the over-approximation
when using Horner schemes to evaluate a polynomial.

3.2.1 Minimizing Over-Approximation:

Based on Martine Ceberio's and Vladik Kreinovich's paper [7] we assume that using Horner schemes will provide
a higher precision. In the following we will retrace the proof as it is shown in [7]. The paper demonstrates
that transforming a polynomial from an extended form to a Horner-based form will lead to a higher precision
when using midpoint-radius interval arithmetic. Therefore the diameter of both resulting intervals a · (b + c)
and ab + bc is compared with each other. The following needs to be proven:

d(a · (b + c)) ≤ d(ab + bc) (3.2)

Where the function d(I) provides the diameter d = i − i of the interval I = [i; i]. First the left side of the
inequation is evaluated. Midpoint-radius interval arithmetic is used, therefore the resulting interval is the
following (see De�nition 2.1.9):

a · (b + c) = 〈l̃ ; ∆l〉

Based on De�nition 2.1.12 and De�nition 2.1.10 the midpoint of the resulting interval is deducible:

l̃ = ã · (b̃ + c̃) (3.3)

Based on De�nitions 2.1.12 and 2.1.12 the radius of the resulting interval can be calculated:

∆l = |ã|(∆b + ∆c) + |b̃ + c̃|∆a + ∆a(∆b + ∆c) (3.4)

Next the right side of Inequation 3.2 is evaluated. Both the summands are substituted. The �rst summand is
substituted as follows:

a · b = 〈ẽ ; ∆e〉

Based on De�nition 2.1.12 and De�nition 2.1.10 the midpoint ẽ and radius ∆e solve as follows:

ẽ = ãb̃, ∆e = |ã|∆b + |b̃|∆a + ∆a∆b
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Analogous, the second summand substitutes to f̃ and ∆f :

a · c = 〈f̃ ; ∆f 〉

where

f̃ = ãc̃, ∆e = |ã|∆c + |c̃|∆a + ∆a∆c

The right side of Inequation 3.2 solves to a new interval with midpoint r̃ and radius ∆r:

a · b + a · c = 〈r̃ ; ∆r〉

By applying De�nition 2.1.10 the result for the right side of the Inequation 3.2 yields:

r̃ = ẽ + f̃ , ∆r = ∆e + ∆f

r̃ = ãb̃ + ãc̃, ∆r = |ã|∆b + |b̃|∆a + |ã|∆c + |c̃|∆a + ∆a(∆b + ∆c) (3.5)

Comparing the right side (3.4, 3.3) with the left side (3.5), shows that both have the same midpoint, but di�er
in radius:

∆r −∆l = (|b̃|+ |c̃| − |b̃ + c̃|)∆a

Thus Inequation 3.2 holds. Therefore, when using midpoint-radius interval arithmetic a higher precision is
reachable, if we extract a variable from a term. We now try to apply this proof to the standard interval
arithmetic, which we use in our implementation:

I1 =A ·B + A · C (3.6)

I2 =A · (B + C) (3.7)

where

I1, I2,A,B,C ∈ IR, A = [a1; a2], B = [b1; b2], C = [c1; c2]

We solve (3.6) with De�nition 2.1.5 and De�nition 2.1.7:

I1 = [min{a1b1, a1b2, a2b1, a2b2};max{a1b1, a1b2, a2b1, a2b2}]+
[min{a1c1, a1c2, a2c1, a2c2};max{a1c1, a1c2, a2c1, a2c2}] (3.8)

We expand the lower bound i1:

i1 = min{a1b1 + a1c1, a1b1 + a1c2, a1b1 + a2c1, a1b1 + a2c2,

a1b2 + a1c1, a1b2 + a1c2, a1b2 + a2c1, a1b2 + a2c2,

a2b1 + a1c1, a2b1 + a1c2, a2b1 + a2c1, a2b1 + a2c2,

a2b2 + a1c1,a2b2 + a1c2,a2b2 + a2c1,a2b2 + a2c2}

Next we can simplify i1:

i1 = min{a1(b1 + c1), a1(b1 + c2), a1b1 + a2c1, a1b1 + a2c2, (3.9)

a1(b2 + c1),a1(b2 + c2), a1b2 + a2c1, a1b2 + a2c2,

a2b1 + a1c1, a2b1 + a1c2,a2(b1 + c1), a2(b1 + c2),

a2b2 + a1c1, a2b2 + a1c2, a2(b2 + c1),a2(b2 + c2)}

Analogous to i1, we calculate the upper bound i1:

i1 = max{a1(b1 + c1), a1(b1 + c2), a1b1 + a2c1, a1b1 + a2c2, (3.10)

a1(b2 + c1),a1(b2 + c2), a1b2 + a2c1, a1b2 + a2c2,

a2b1 + a1c1, a2b1 + a1c2,a2(b1 + c1), a2(b1 + c2),

a2b2 + a1c1, a2b2 + a1c2, a2(b2 + c1),a2(b2 + c2)}
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We solve (3.7) with De�nition 2.1.5 and De�nition 2.1.7:

I2 = [min{a1(b1 + c1), a1(b2 + c2), a2(b1 + c1), a2(b2 + c2)};
max{a1(b1 + c1), a1(b2 + c2), a2(b1 + c1), a2(b2 + c2)}]

i2 = min{a1(b1 + c1), a1(b2 + c2), a2(b1 + c1), a2(b2 + c2)}
i2 = max{a1(b1 + c1), a1(b2 + c2), a2(b1 + c1), a2(b2 + c2)}

In order to show, that the inequation d(A·B+A·C) ≥ d(A(B+C)) holds we need to solve (i1−i1)−(i2−i2) ≥
0. Both upper bounds i1, i2 are calculated by selecting the greatest element from a set. The set of i2 is a subset
of the set of i1 (see highlighted elements in Equations 3.9 and 3.10). Therefore i1 is at least as great a i2.
Analogous i1 is at least a small as i2.

In order to �nd out whether i1 is greater or equal than i2 and whether i1 is less or equal than i2 we try to
�nd cases, that ful�ll the statements above.

We test systematically for all cases of closed intervals: Every closed interval can be assigned to one of the
following six cases. Note: We exclude intervals which have no diameter (e.g. (a1,a1) ). Intervals with no
diameter behave like coe�cients and are not subject to over-approximation.

Case A = [a1; a2]
1 a1 < a2 < 0
2 a1 < a2 = 0
3 a1 < 0 < a2
4 a1 = 0 = a2
5 a1 = 0 < a2
6 0 < a1 < a2

Table 3.1: Possible assignments to set up an interval based on De�nition 2.1.1.

We use this systematic approach to calculate both AC +AB and A(B+C) using every combination of cases
as input for A, B and C. As input we use representative values that ful�ll the according case. The results in
Table 2 (appendix) show, that in about a �fth of all cases we can achieve a more narrow interval diameter and
gain in precision when transforming the polynomial to a Horner scheme. None of the 216 cases resulted in a
greater diameter which would mean a loss of precision.

Therefore we deduce that d(A ·B + A · C) ≥ d(A(B + C)) holds and thus we conclude that transforming a
polynomial into a Horner scheme can reduce its over-approximation, but cannot increase it.

3.2.2 E�ects on Precision Based on Interval Arithmetic

Next we compare the e�ects of interval arithmetics on precision: By comparing the de�nitions of multiplication
from both arithmetics we can deduce a cause for the di�erent results based solitary on the usage of di�erent
arithmetics: Let us take two intervals de�ned in midpoint-radius interval arithmetic (see De�nition 2.1.9):

A = 〈ã; ∆a〉, B = 〈b̃; ∆b〉

Multiplying A and B in midpoint-radius interval arithmetic will give us:

a · b = 〈ãb̃ ; |ã|∆b + |b̃|∆a + ∆a∆b〉

We now use the same intervals as above, but use standard interval arithmetic to multiply. A ·B = C in standard
interval arithmetic will give us the following interval: C = [c, c] We solve the lower bound c:

c = min{(ã−∆a)(b̃−∆b),(ã + ∆a)(b̃−∆b),(ã−∆a)(b̃ + ∆b),(ã + ∆a)(b̃ + ∆b)}

We resolve to:

ab + min{−∆ab̃ + ∆a∆b −∆ab̃,∆ab̃−∆a∆b −∆aã,

∆ab̃−∆a∆b + ∆bã,∆ab̃ + ∆a∆b + ∆bã}
= ab−max{∆ab̃−∆a∆b + ∆ab̃,−∆ab̃ + ∆a∆b + ∆aã,

−∆ab̃ + ∆a∆b −∆bã,−∆ab̃−∆a∆b −∆bã}
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At this point we have to make an estimation:

≤ ab−∆amax{−b̃, b̃} −∆a∆b −∆bmax{−ã, ã}
= ab−∆a|b̃| −∆a∆b −∆b|ã|

Analogous for the upper bound:

c = max{(ã−∆a)(b̃−∆b),(ã + ∆a)(b̃−∆b),(ã−∆a)(b̃ + ∆b),(ã + ∆a)(b̃ + ∆b)}

We resolve to

ab + max{∆ab̃−∆a∆b + ∆ab̃,−∆ab̃ + ∆a∆b + ∆aã,

−∆ab̃ + ∆a∆b −∆bã,−∆ab̃−∆a∆b −∆bã}
≥ab + ∆amax{−b̃, b̃}+ ∆a∆b + ∆bmax{−ã, ã}
=ab + ∆a|b̃|+ ∆a∆b + ∆b|ã|

We transform back into midpoint-radius interval arithmetic:

[ab−∆a|b̃|+ ∆a∆b + ∆b|ã| ; ab + ∆a|b̃|+ ∆a∆b + ∆b|ã|] = 〈ab ; ∆a|b̃|+ ∆a∆b + ∆b|ã|〉

We are able to deduce from standard interval arithmetic to midpoint-radius interval arithmetic, but not without
estimating and therefore over-approximating our results. Thus, the gain in precision is related to some over-
approximations which do not occur in standard interval arithmetic and therefore are not improvable by Horner
schemes as postulated in the paper [7].
Using standard interval arithmetic and midpoint-radius interval arithmetic will in some cases generate di�erent
results (See Table 1).
So far our tests show that standard interval arithmetic provides more precise mathematical operations than
midpoint-radius interval arithmetic. Thus we will not gain more precise results by switching the interval
arithmetic we use in our implementation to midpoint-radius interval arithmetic.

3.3 Variable Selection Heuristics

After presenting the bene�ts of using Horner schemes, we present two approaches how to create a Horner scheme
from a polynomial:

Selecting di�erent variables to extract from a given multivariate polynomial will result in di�erent Horner
schemes and, as shown in Example 2.1.10 and 3.1.2, this can lead to di�erent amount of arithmetic operations
and di�erent results. Therefore a heuristic to choose good candidates for variables to extract is required.
Martine Ceberio and Vladik Kreinovich propose two strategies to chose variables [7]. In the following sections
both strategies and their basic implementations will be presented.

Both strategy I and strategy II are variable selection heuristics that are based on structural features of the
resulting Horner scheme. Both heuristics allow to precompute the Horner schemes once. This allows us to save
computation time by reusing Horner schemes rather than creating new ones at every call of the constructor.
Note, that there exist strategies, which depend in the current interval assignments of the variables and thus
have to be recomputed.

3.3.1 Strategy I

Strategy I focuses on minimizing the amount of mathematical operations in the resulting Horner scheme. The
procedure of the algorithm is as follows: First for each variable xi within the polynomial p(x1, ...,xn), we count
those monomials Ni which contain the variable xi and choose the variable with the highest occurrence. Note that
we use a �xed variable ordering in case there are equal results. We now can represent the original polynomial
as p = p′dep + pind where pind is the sum of all monomials that do not contain xi and p′dep is the sum of all

monomials that do contain xi. We transform to p = pind + xi · pdep where pdep =
p′dep
xi

. Next we apply the
algorithm for both pdep and pind recursively.

Example 3.3.1 (Strategy I). Let us consider the following:
f(x1,x2,x3) = x2

1x2 + x1x3 + x1x2x3 For this polynomial N1 = 3,N2 = 2 and N3 = 2, N1 > N2,N3 therefore:

f = A0 + x1A1 where A0 = 0, A1 = x1x2 + x3 + x2x3
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Next we consider A1: N1 = 1, N2 = 2 and N3 = 2. N2 and N3 are greater than N1 we chose N2 because of
lexicographical ordering, although it is irrelevant which one of the two we chose at this point.

A1 = A′0 + x2A
′
1 where A′0 = x3, A

′
1 = x1 + x3

f = A0 + x1A1 = x1(A′0 + x2A
′
1) = x1(x3 + x2(x1 + x3))

Performance estimation: Based on preliminary testing we were able to get good results, but it is di�cult
to get a test set consisting of 'random' generated polynomials. The performance varies a lot depending on the
properties of the input polynomials.
We recommend to test this further and to provide a context for which we can predict that this strategy will
create good results. Compared to strategy II, which will be presented in the next section, this strategy takes less
computation time. However, because this is a greedy algorithm, it might still not provide the optimal solution
for the given polynomial. We present the results of both strategies in Chapter 5.

3.3.2 Strategy II

The second strategy is based on the second greedy algorithm presented in [7]. The strategy selects the variable
which provides the highest reduction on the resulting interval diameter.

The algorithm operates as follows: Fist all variables from the input polynomial p(x1, ..., xn) are gathered.
Next we iterate over all variables x1...xn within the polynomial. For each variable xi we transform the polynomial
to pi = p′dep + pind, where p′dep represents the sum of all terms in which xi occurs and pind represents the sum
of all terms not containing xi. Extract xi from p′dep yields pi = xi · pdep + pind. Next we replace all variables by
their respective interval domains and solve the formula. The algorithm proceeds with the next variable until all
variables where extracted at least once. The variable that caused the most narrow interval is selected for the
creation of the Horner scheme. In case of equal results we use a �xed variable ordering. Next, the algorithm is
applied recursively on both the polynomials pdep and pind. At the end of the recursive process, the algorithm
provides an order in which to extract the variables.

By mapping all variables to the same interval, we make the choice dependent on the impact a variable has
on the result not based on its own value, but based on its coe�cients and exponents.

Example 3.3.2. Consider the polynomial x2
1 + 3x2 +x1x2, with x1 = x2 = [−2; 2]. Strategy I yields the Horner

scheme:

x1(x1 + x2) + 3x2 = [−2; 2]([−2; 2] + [−2; 2]) + 3[−2; 2] = [−14; 14]

Strategy II yields the Horner scheme:

x2(x1 + 3) + x2
1 = [−2; 2]([−2; 2] + 3) + [−2; 2]2 = [−10,14]

Performance estimation: In our preliminary tests, strategy II created Horner schemes di�erent from strat-
egy I, but with similar amounts of arithmetic operations. The procedure of strategy II is a greedy algorithm
and therefore does not guarantee that its result a Horner scheme with the highest precision possible. We expect
strategy II to provide in average results with a higher precision than strategy I. At the same time strategy II
needs more computation time than Strategy I, because it needs to evaluate more horner Horner schemes for
each extraction candidate. The gain in precision might justify this trade-o�.

Similar to strategy I, strategy II needs to be further tested on a representative set of polynomials, in order
to be able to predict for which type of polynomials which strategy is optimal.
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Chapter 4

Implementation

In the this section we present the implementation of the most important methods. First we present a construc-
tor, that creates a Horner scheme based on a variable selection heuristic. Next we present a method called
simplify(), which is an optional postprocessor, that reduces the wrapping e�ect by rearranging a Horner
scheme. Finally we take a look at the evaluation method which is responsible for solving a Horner scheme.

We integrate the Horner schemes into the contraction procedure of the ICP module in order to speed up
the evaluation process and increase the size of the contraction at the same time. The implementation of the
propagation works mostly with linear formulas, which are not contactable by Horner schemes (see Section 3.1).
Thus we will concentrate on improving the Newton's method (see Figure 2.7).

4.1 Constructor

The constructor for Horner schemes is split into two parts: a recursive part and a non-recursive part. The non-
recursive part encapsulates the recursive part and manages the strategy. Based on the settings for a strategy
a postprocessing in form of the simplify() method is executed. The recursive part is an constructor itself.
This constructor is the part which actually is creating the data structure in its tree form, based on the strategy,
as shown in Figure 4.1.

Listing 4.1: Constructor architecture

1 MultivariateHornerScheme(const Polynomial&){
2 //preprocessing
3

4 MultivariateHorenerScheme root(const Polynomial&,const intervalBox box);
5 this = root;
6

7 //postprocessing
8 if (strategy_requires_simplify){ simplify(); }
9 }

Next, we focus on the recursive part of the constructor: The creation of a Horner scheme is based on the
variables which we extract. Therefore the Horner scheme is based on the order in which we select variables.

The recursive part of the constructor uses three parameters: the input polynomial p, the strategy s and
the interval box B. We start by gathering all variables from p and analyzing the input polynomial based on
the variable selection heuristic. Next the strategy suggests a variable xi to extract. We continue by creating
two new temporary polynomials: pdep and pind. Every monomial containing xi will be divided by xi and
added to pdep, the monomials not containing the variable will be added to pind. Next we set the variable of
our current Horner scheme instance to xi. In case pdep is not constant, we use it as input for the recursive
constructor to create another Horner scheme. Then we save the result as the dependent-part of the current
Horner scheme instance. In case pdep is constant we will set the dependent-part as a nullpointer and save
pdep as the dependent-coe�cient of the current Horner scheme instance. We save the independent-part and the
independent-coe�cient analogous.

In case the input polynomial is already a constant, the variable selection part is skipped and the polynomial
will be directly set as dependent-coe�cient.
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Example 4.1.1 (Horner constructor). Let us consider the following term:

4x2y + 3x + 20z3

We will create a Horner scheme by using strategy I. The result is:

x(x(y(4) + 3) + z(z(z(20)))

Figure 4.1 displays the resulting data structure of the recursive process.

Variable  = X
DepConst  = 0
InDepConst = 0

Dependent Independent

Variable  = X
DepConst  = 0
InDepConst = 3

Dependent Independent

Variable  = Z
DepConst  = 0
InDepConst = 0

Dependent Independent

Variable  = X
DepConst  = 0
InDepConst = 0

Dependent Independent

Variable  = Y
DepConst  = 4
InDepConst = 0

Dependent Independent

Variable  = Z
DepConst  = 0
InDepConst = 0

Dependent Independent

Variable  = Z
DepConst  = 20
InDepConst = 0

Dependent Independent

NULL

NULL

NULL

NULL

NULL

NULL NULLNULL

Figure 4.1: Diagram displaying the data structure of a Horner scheme of 4x2y+3x2+20z3 created with strategy
I (3.3).

4.2 Simpli�cation

The constructor currently (using strategy I or strategy II) only extracts single variables at a time. This can lead
to chains of multiplications of variables and cause signi�cant over-approximation (see Example 2.1.10). When
creating a Horner scheme,

x6 + y4 (4.1)

will be transformed to:

x(x(x(x(x(x)))))) + y(y(y(y))) (4.2)

Although it is impossible to increase the amount of calculations1, that are needed to solve the input polynomial,
we can loose information about it when transforming it into a Horner scheme. The input polynomial in our
example (see Equation 4.1) contains the information that some multipliers are the same variable whereas in the

1Depending on the implementation of the power function it can make a di�erence, if values are calculated by multiplication or

by power function. At this point we assume that
∏

i x has the same computation cost as xi.
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Variable  = X
DepConst  = 0
InDepConst = 3

Dependent Independent

Variable  = Z
Exponent = 1
DepConst  = 0
InDepConst = 0

Dependent Independent

Dependent Independent

NULL

NULL

NULL

Variable  = X
Exponent = 1+1
DepConst  = 0
InDepConst = 3

IndependentDependent

Variable  = X
Exponent = 1
DepConst  = 0
InDepConst = 0

[…]

[…]

Figure 4.2: Diagram demonstrating the basic principle on which simplify() compresses the Horner scheme
data structure.

Horner scheme (see Equation 4.2), we multiply variables where it is ambiguous whether they are the same or
not.
Knowing that one multiplication of the same variables can be written as one variable being squared gives us
the advantage to minimize the wrapping e�ect (see Section 2.4).
The simplify()method tries to make use of that advantage. Next to reducing over-approximation, simplify()
also reduces the computation cost for the evaluation of the term. By reducing the overall amount of occurrences
of variables in a polynomial, we reduce the amount of calls for the evaluate() method. The data structure of
Horner schemes is based on the variables within the polynomial, simplify() compresses this data structure
which makes it faster to traverse it.

Similar to the constructor this method works recursively. Each Horner scheme has a dependent part, and an
independent part. Starting at the root hroot of the Horner scheme data structure it compares its own variable

vroot to the variable vdep of the dependent part hroot
dep→ hdep. In case both are the same, it checks if the hdep

itself has no independent part hdep
ind→ NULL. If that is the case, the pointer to hdep will be replaced with the

pointer to the dependent part from hdep (hdep
dep→ h′dep), so that hroot

dep→ h′dep and the exponent of the root is
increased by one (see Figure 4.2).
The method continues with calling simplify() recursively with dependent and independent part one at a
time as argument. The method only uses simplify() for a Horner scheme if the current pointer is not a
NULL. Therefore this algorithm terminates as soon as the entire data structure is traversed.
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4.3 Evaluation

We use the method evaluate() to solve the polynomials once we transformed them to Horner schemes. This
method is implemented in a way that allows operator overloading in order to easily �t in with the preexisting
code. The algorithm does a case distinction in order to traverse the data structure recursively In doing so the
evaluate method gets called for every instance of every variable.

For evaluation we rely on the standard interval arithmetic provided by the framework. We do not provide
new methods to evaluate the basic operations, because the gain in precision is reached by structural changes
and not by changes in the arithmetic.

Example 4.3.1 (Evaluate). Given polynomial p = x1(5 · x2 + 3x3)

evaluate(p) = evaluate(x1(5 · x2 + 3x3))

= evaluate(x1 · evaluate(5 · x2 + 3x3))

= evaluate(x1 · evaluate(evaluate(5 · x2) + evaluate(3 · x3)))

The evaluate() method only traverses the data structure and uses the same basic arithmetic functions
as the evaluate() method for multivariate polynomials. Due to the transformation, the amount of function
calls that are needed for these basic arithmetic operations within the evaluate() method of the multivariate
Horner scheme is lower on average, than in the evaluate() method of a multivariate polynomial.

Note that evaluate gets called for every node in our data structure (see Figure 4.1). Compressing the data
structure, or choosing a more e�cient variable selection heuristic will lead to fewer calls of the evaluate()
method.



Chapter 5

Results

In this chapter we present and analyze the results of our implementation. First we introduce the parameter
sets and conditions we used for the tests. Then we focus on the performance of the propagation method.
Next we compare the performance of the Newton method without Horner schemes with the performance of the
Newton method with the Horner schemes. We present a comparison for each strategy and observe the e�ect
the simplify() method provides.

5.1 Benchmark Sets

In order to test and determine the performance of our implementation we use the same benchmark sets that
are used to benchmark state-of-the-art SMT solvers, which are openly available [12], in SMTLIB 2 format.

� hong is a crafted dimension dependent benchmark set [10] and consists of 20 test cases.

� zankl is generated by termination analysis of term rewriting. Zankl contains 166 test cases.

� keymaera is generated by counterexample-guided synthesis [4] and consists of 421 test cases.

� meti-tarski is generated by theorem proving [5]. Meti-tarski is the greates test set we use. It contains
7713 test cases.

In order to get comparable test results we compile the same code for each setting with the same compiler. We
used the same strategy to compose the same SMT solver with SMT-RAT (RatTwo). The benchmark tests are
all tested on the same machine.

5.2 Propagation

The propagation method shows promising results (see Table 5.1). We use four test sets to test the method,
keymaera, zankl, hong and meti-tarski. We test our implementation for each test set once with propagation
activated and deactivated. Each test case has a limited time (200 seconds) to provide a result, once that time
is exceeded we save the result as TIMEOUT and proceed to the next case. We log all test cases that solve in
time as an SAT or UNSAT, and add up the required time. All TIMEOUT instances do not contribute to the
overall solving time.

Table 5.1 displays a summary of the benchmark test for the propagation method. If we focus on the �rst
three test sets (keymaera, zankl, hong) we observe a greater or at least equal rate of solved instances in both SAT
and UNSAT. The overall solving time has decreased signi�cantly. In the hong test set, using the propagation
method nearly doubled the amount of test cases we can solve within the same time frame.

The fourth test set appears to be a contradiction to the assumption that the propagation method decreases
the time needed to solve the test cases. Within the meti-tarski test set we could solve fewer problems and had
more timeouts with propagation, than without. Analysing the test in detail shows, that in many instances the
ICP module with propagation activated is faster than the module without, but at the same time there are a
lot of test cases that require much more time than the implementation without propagation. In these cases
the SMT solver spends most of the time in the solver module that succeeds the ICP module. Hence the ICP
module could be more e�cient, but this will not be visible in the test results, because the succeeding solver
is using up most of the time. The strategy we use appoints VS (Virtual substitution) and CAD (Cylindrical
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Test Set SAT UNSAT TIMEOUT
solved instances solving time solved instances solving time instances

keymaera (p) 0 0 402 10.700 19
keymaera 0 0 396 19.038 24
zankl (p) 30 153.944 16 639 115
zankl 28 250.045 16 690 117

hong (p) 0 0 20 191 0

hong 0 0 11 473.866 9

meti-tarski (p) 4759 3.991.758 2422 957.908 525
meti-tarski 4771 2.199.365 2430 934.495 519

Table 5.1: Comparison of performance of the ICP Module. The benchmark sets marked with (p) also used the
propagation method to solve the test cases.

algebraic decomposition) as the succeeding solvers. It seems that in many cases the heuristic of CAD to �nd a
good sampling point, simply failed and therefore took a lot of time to determine the solving process.

We can conclude that the propagation method improved the performance of the ICP module in many
constraint-sets. Due to propagation more problems could be solved, and therefore the overall time to �nish a
test set was smaller.

5.3 Multivariate Horner with Strategy I

The goal behind strategy I is to provide a fast, yet e�cient method to create a Horner scheme, that reduces
the amount of overall mathematical operations within a polynomial. In Table 5.2a four benchmark tests for
strategy I are listed. For each test set we compare the performance of the default setting of the SMT solver with
the performance of the solver using Horner schemes and the solver using Horner schemes with the simplify()
method. We log the outputs for each set of constraints within the benchmark test. In case the solver could
determine the satis�ability we count the instance for either SAT or UNSAT, in both cases we log the time
needed for solving as well. In case the solver took too much time to solve the constraint set (200 seconds),
we will count that instance as a TIMEOUT and proceed to the next constraint set. Note, that in its default
setting, the ICP module uses propagation.

5.3.1 Using Horner Schemes with Strategy I

Compared to the default setting of the SMT solver there was not one case where we solved more instances or
where we saved some time by using the Horner scheme data structure. In the �rst test set keymaera there is
one TIMEOUT instance less logged, this is due to a runtime error happening while solving one constraint set
within the benchmark test. In the second test set zankl and in the third test set hong the usage of Horner
schemes has no e�ect on the amount of solved instances. In average it takes more time to �nd the solutions
when using Horner schemes, although the di�erence is below 10% in each case. In the last test set the usage
of Horner schemes solved one constraint set less (SAT) than the default setting, the opposite of what we are
trying to achieve. But by using Horner schemes we could solve two more constraint sets to UNSAT. Compared
to the size of the meti-tarski benchmark these di�erences are negligible.

5.3.2 Using Simplify within Strategy I

Compared to the default setting, constructing Horner schemes with strategy I and a simplifyer does not seem
to yield much improvements, but when comparing Horner schemes that were constructed without and with
a simplifyer we notice some di�erences. Although we invest more computation cost to rearrange the Horner
schemes, there seems to be a trend that simpli�ed Horner schemes are faster to solve. In keymaera and zankl it
took less time to solve the same amount of constraint sets when using the strategy combined with the simplify
method. In hong it took more time solve the constraint sets after simplifying the Horner scheme. We can
explain this by taking a look on the constraints within that test set. Hong contains rather simple polynomials1.
It might not be possible to contract the data structure, but we still have to invest the computation cost to
traverse it and will not save computation time by a compressed data structure. The meti-tarski test set displays

1Polynomials that have a small amount of terms in relation to a high amount of variables.
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a shorter time needed to solve the constraint sets. Note that the solving time for the UNSAT cases in meti-tarski
is not comparable, due to the fact, that di�erent amount of constraints were solved.

5.4 Multivariate Horner with Strategy II

The goal of strategy II was to provide a Horner scheme that produces the smallest over-approximation possible.
We expect this method to take more time because it needs to evaluate more potential Horner schemes. Similar
to the benchmark results of strategy I, Table 5.2b displays the results of four benchmark test sets. We compare
the performance of the SMT solver, with the modi�ed version using the Horner scheme and with the Horner
scheme combined with the simplify method.

Using Horner Schemes with Strategy II

Similar to strategy I we require more time to create the Horner schemes, than we save, once we use them (see
Table 5.2b). In the �rst three test sets the same amount of problems are solved, but in every case the SMT
solver using Horner schemes takes more time for solving, than the one not using Horner schemes. In the last
test set (meti-tarski) we even solved fewer constraint sets than the SMT solver in its default set up.

Although we expect strategy II to require more time to form a Horner scheme, the strategy was faster than
strategy I when solving constraint sets for the test set zankl. On the other hand it took longer when solving
constraint sets in hong and keymaera. The results con�rm our expectation, that the performance of a strategy
is dependent on the type of the input set, and that there is not a strategy performing better on average.

5.4.1 Using Simplify within Strategy II

The purpose of the simplify method is to compress the Horner scheme and thereby save computation time.
Table 5.2b shows that most constraint sets (except for the test set hong) took more time to be solved when
using simplify() than solving it without the method. Preliminary tests have shown, that strategy II can tend
to form Horner schemes which are not as easy compressible by the simplify() method as Horner schemes
formed by strategy I. Strategy I tends to form multiple multiplications of the same variable in a row, that can be
compressed to one variable with an exponent easily, thus explaining the di�erence. It seems that simplify()
does not perform well in combination with strategy II, the benchmark set hong does not contain polynomials
that get transformed a lot and therefore hong yields better results in combination with simplify().
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Table 5.2: Summary of the benchmark results. D = Defauls set up, Hs = Horner scheme that were not further
simpli�ed, Hs&S = Horner scheme with the usage of simplify()
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5.5 Reduction of Contractions within the ICP Module

As presented in Section 5.3 and Section 5.4 the usage of the Horner scheme does not improve the performance
of the ICP module as expected. In order to quantify the gain in precision by Horner schemes (strategy I
with simpli�cation), we logged the amount of contractions performed within the ICP module. For this test we
deactivated the propagation.

Keymaera contains 412 test cases. At least 106 of these test cases are contracted by the ICP module, the
rest can be sorted out previously by the SAT solver. Note that 25 cases needed to be stopped by a timeout.
When using Horner schemes 6 of the previously contracted test cases need less contractions than before. The
amounts of contractions are displayed in Table 5.3.

Testing the benchmark set zankl for contraction yielded 40 of 166 cases that contracted the remaining cases
needed to be stopped because they took to much time (timeout). 7 of the 40 cases required less contractions
than before. The counts of contractions are displayed in Table 5.4.

keymaera
Result Contractions without Horner schemes Contractions with Horner schemes
unsat 7 5
unsat 1607 1038
unsat 30 29
unsat 1607 1038
unsat 27 22
unsat 90 81

Table 5.3: Reduction of contractions, due to the usage Horner schemes

zankl
Result Contractions without Horner schemes Contractions with Horner schemes
sat 5489 5132
sat 3427 3422
sat 4560 3131

sat 1120 1108
sat 1705 1596

unsat 122 118
sat 5098 5069

Table 5.4: Reduction of contractions, due to the usage Horner schemes

The amount of the reduction of contractions depends a lot on the in the input constraints. In our test sets
it varies from less that 1% to 46%.



44 Chapter 5. Results



Chapter 6

Conclusion

In this �nal chapter we present our �ndings, and point out areas for further improvement.

6.1 Future Work

The presented Horner scheme data structure still provides room for improvement. Horner schemes as presented
in this thesis provide a lot of useful properties, which could be extended to other operations within the ICP
module.

6.1.1 Improving the Variable Selection Heuristics

The variable selection heuristic has a lot of in�uence on the resulting Horner scheme and the time needed to
create it. In this thesis we only present two strategies, further strategies might yield better results. Currently
the strategy is de�ned by the user. A decision process could be implemented, that chooses a strategy based on
the input polynomial (e.g. the ratio of terms to variables).

A concept for another variable selection heuristic would be strategy III. The idea behind strategy III is
similar to the principle strategy II is based on. The variable which has the highest impact on the precision is
selected. This will be achieved by replacing the variables with their respective domains from the interval box
and solving the polynomial with each variable extracted one at a time. Instead of replacing the interval box
with a default value for each variable as in strategy II, all variables will be updated after each iteration of the
contractor. This might cause the constructor to create a new Horner scheme at every iteration, but at the
same time might lead to a more precise result. In order to manage a trade o�, a counter could be implemented
allowing a recomputation of a Horner scheme with strategy III every n contractions.

It would need to be tested if the gain in precision, and therefore the fewer contractions, would trade o� the
increased amount of computing time for horner scheme constructions.

6.1.2 Multivariate Polynomial to Univarate Polynomial Transformation

All over-approximations related to the wrapping e�ect are caused by the fact that the evaluating method
is not checking whether two variables are identical or not. Instead of adding this feature to multiplication
and subtraction, multivariate polynomials could be transformed to univariate polynomials before evaluation.
The univariate polynomial would represent the multivariate polynomial from the 'perspective' of one variable.
Consequently all other variables would be replaced by their values and function as coe�cients.

The evaluation of univariate polynomials is not a�ected by the wrapping e�ect, because in case of a multipli-
cation or a subtraction of two variables there is ambiguity whether both variables are the same, and according
actions can be taken to reach the correct result.

6.1.3 Horner Schemes in Preprocessing

This thesis mainly tries to exploit the bene�ts of precision and e�ciency that come with Horner schemes, but
they are also very useful when searching for zero points of polynomials. The following polynomial can be split
into factors, which permits an alternative way to transform sets of constraints.

2x1 + 3x1x2 + 5x1 = 0⇔ x1 · (2 + 3x2 + 5) = 0

x1 = 0 ∨ 7 + 3x2 = 0
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A new set of constraints, based on the factorization of the polynomial could be added to the original set of
constraints. In the best case the satis�ability can be determined immediately after extracting one key variable
from all monomials. In the worst case the polynomial can not be e�ciently factorized and therefore we will not
have simpler constraints. The result will not add any new constraints while still needing a lot of computation
time.

The challenge when realizing this preprocessor among others is the development of an e�cient variable
selection heuristic for the multivariate Horner schemes. Both strategies as they are presented in this thesis
might not be useful, because both are focused on the resulting interval diameter or rather the e�ciency and not
on the satis�ability of the constraint.

6.2 Conclusion

In this thesis we were able to prove, that in theory using Horner schemes can provide not only a more e�cient
way to evaluate polynomials, but also decreases the over-approximation while doing so. The benchmark tests
we used to evaluate our implementation show, that both strategy I and strategy II do not increase the overall
e�ciency of the ICP module but rather lower it, spending more time for the average solving process. We
tested on a wide variety of di�erent constraint sets and could not �nd a test set that provides the expected
positive results. There are many obstacles that prevent the e�cient application of Horner schemes, such as
the preprocessing, input polynomials that cannot be contracted much further and the deployment of a variable
selection heuristic that performs well, for any kind of polynomial.

Analyzing the contraction process in more detail, showed us, that the amount of contractions can be reduced
by Horner schemes, but this e�ect is negligible when we use Horner schemes combined with propagation. Once
we use propagation the implemented data structure does not have any positive e�ect on the e�ciency. In order
for the Horner scheme data structure to work, we need to make up the time, we invest in creating the Horner
schemes. In all tested cases, this trade-o� does not seem to work out. It is desirable to test Horner schemes
with a test set, that consists of polynomials that can be contracted a lot. We expect Horner schemes to work
better with polynomials, whose number of terms is far greater than the number of contained variables.

The interval propagation method which was implemented as part of this thesis, shows promising results and
proves to increase the overall e�ciency of the ICP solver. It provides the ICP solver with another contraction
method, that is cheap in computation time, but still reduces the average search space signi�cantly.

We were able to increase the e�ciency by implementing a new contraction method, and we were able to
increase the precision, but sadly consequently lowered the e�ciency.
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Appendix

A B A ·B in midpont-radius A ·B in interval arithmetic Diameter
interval arithmetic as used in our implementation comparison

[−200,−100] [−200,−100] [10000, 40000] [5000, 40000] GREATER
[−200,−100] [−100, 0] [−0, 20000] [−5000, 20000] GREATER
[−200,−100] [−100, 100] [−20000, 20000] [−20000, 20000] SAME
[−200,−100] [0, 0] [0, 0] [−0, 0] SAME
[−200,−100] [0, 100] [−20000,−0] [−20000, 5000] GREATER
[−200,−100] [100, 200] [−40000,−10000] [−40000,−5000] GREATER

[−100, 0] [−200,−100] [−0, 20000] [−5000, 20000] GREATER
[−100, 0] [−100, 0] [0, 10000] [−5000, 10000] GREATER
[−100, 0] [−100, 100] [−10000, 10000] [−10000, 10000] SAME
[−100, 0] [0, 0] [0, 0] [−0, 0] SAME
[−100, 0] [0, 100] [−10000, 0] [−10000, 5000] GREATER
[−100, 0] [100, 200] [−20000, 0] [−20000, 5000] GREATER

[−100, 100] [−200,−100] [−20000, 20000] [−20000, 20000] SAME
[−100, 100] [−100, 0] [−10000, 10000] [−10000, 10000] SAME
[−100, 100] [−100, 100] [−10000, 10000] [−10000, 10000] SAME
[−100, 100] [0, 0] [0, 0] [0, 0] SAME
[−100, 100] [0, 100] [−10000, 10000] [−10000, 10000] SAME
[−100, 100] [100, 200] [−20000, 20000] [−20000, 20000] SAME

[0, 0] [−200,−100] [0, 0] [−0, 0] SAME
[0, 0] [−100, 0] [0, 0] [−0, 0] SAME
[0, 0] [−100, 100] [0, 0] [0, 0] SAME
[0, 0] [0, 0] [0, 0] [0, 0] SAME
[0, 0] [0, 100] [0, 0] [0, 0] SAME
[0, 0] [100, 200] [0, 0] [0, 0] SAME

[0, 100] [−200,−100] [−20000,−0] [−20000, 5000] GREATER
[0, 100] [−100, 0] [−10000, 0] [−10000, 5000] GREATER
[0, 100] [−100, 100] [−10000, 10000] [−10000, 10000] SAME
[0, 100] [0, 0] [0, 0] [0, 0] SAME
[0, 100] [0, 100] [0, 10000] [−5000, 10000] GREATER
[0, 100] [100, 200] [0, 20000] [−5000, 20000] GREATER

[100, 200] [−200,−100] [−40000,− 10000] [−40000,−5000] GREATER
[100, 200] [−100, 0] [−20000, 0] [−20000, 5000] GREATER
[100, 200] [−100, 100] [−20000, 20000] [−20000, 20000] SAME
[100, 200] [0, 0] [0, 0] [0, 0] SAME
[100, 200] [0, 100] [0, 20000] [−5000, 20000] GREATER
[100, 200] [100, 200] [10000, 40000] [5000, 40000] GREATER

Table 1: Systematic comparison of interval multiplications



50 Bibliography

Case A = [a1,a2] B = [b1,b,2] C = [c1,c2]
1 a1 < a2 < 0 b1 < b2 < 0 c1 < 0 < c2
2 a1 < a2 < 0 b1 < b2 < 0 c1 = 0 < c2
3 a1 < a2 < 0 b1 < b2 < 0 0 < c1 < c2
4 a1 < a2 < 0 b1 < b2 = 0 0 < c1 < c2
5 a1 < a2 < 0 b1 < 0 < b2 c1 < c2 < 0
6 a1 < a2 < 0 b1 < 0 < b2 0 < c1 < c2
7 a1 < a2 < 0 b1 = 0 < b2 c1 < c2 < 0
8 a1 < a2 < 0 0 < b1 < b2 c1 < c2 < 0
9 a1 < a2 < 0 0 < b1 < b2 c1 < c2 = 0
10 a1 < a2 < 0 0 < b1 < b2 c1 < 0 < c2
11 a1 < a2 = 0 b1 < b2 < 0 c1 < 0 < c2
12 a1 < a2 = 0 b1 < b2 < 0 c1 = 0 < c2
13 a1 < a2 = 0 b1 < b2 < 0 0 < c1 < c2
14 a1 < a2 = 0 b1 < b2 = 0 0 < c1 < c2
15 a1 < a2 = 0 b1 < 0 < b2 c1 < c2 < 0
16 a1 < a2 = 0 b1 < 0 < b2 0 < c1 < c2
17 a1 < a2 = 0 b1 = 0 < b2 c1 < c2 < 0
18 a1 < a2 = 0 0 < b1 < b2 c1 < c2 < 0
19 a1 < a2 = 0 0 < b1 < b2 c1 < c2 = 0
20 a1 < a2 = 0 0 < b1 < b2 c1 < 0 < c2
21 a1 < 0 < a2 b1 < b2 < 0 c1 = 0 < c2
22 a1 < 0 < a2 b1 < b2 < 0 0 < c1 < c2
23 a1 < 0 < a2 b1 < b2 = 0 c1 = 0 < c2
24 a1 < 0 < a2 b1 < b2 = 0 0 < c1 < c2
25 a1 < 0 < a2 b1 = 0 < b2 c1 < c2 < 0
26 a1 < 0 < a2 b1 = 0 < b2 c1 < c2 = 0
27 a1 < 0 < a2 0 < b1 < b2 c1 < c2 < 0
28 a1 < 0 < a2 0 < b1 < b2 c1 < c2 = 0
29 a1 = 0 < a2 b1 < b2 < 0 c1 < 0 < c2
30 a1 = 0 < a2 b1 < b2 < 0 c1 = 0 < c2
31 a1 = 0 < a2 b1 < b2 < 0 0 < c1 < c2
32 a1 = 0 < a2 b1 < b2 = 0 0 < c1 < c2
33 a1 = 0 < a2 b1 < 0 < b2 c1 < c2 < 0
34 a1 = 0 < a2 b1 < 0 < b2 0 < c1 < c2
35 a1 = 0 < a2 b1 = 0 < b2 c1 < c2 < 0
36 a1 = 0 < a2 0 < b1 < b2 c1 < c2 < 0
37 a1 = 0 < a2 0 < b1 < b2 c1 < c2 = 0
38 a1 = 0 < a2 0 < b1 < b2 c1 < 0 < c2
39 0 < a1 < a2 b1 < b2 < 0 c1 < 0 < c2
40 0 < a1 < a2 b1 < b2 < 0 c1 = 0 < c2
41 0 < a1 < a2 b1 < b2 < 0 0 < c1 < c2
42 0 < a1 < a2 b1 < b2 = 0 0 < c1 < c2
43 0 < a1 < a2 b1 < 0 < b2 c1 < c2 < 0
44 0 < a1 < a2 b1 < 0 < b2 0 < c1 < c2
45 0 < a1 < a2 b1 = 0 < b2 c1 < c2 < 0
46 0 < a1 < a2 0 < b1 < b2 c1 < c2 < 0
47 0 < a1 < a2 0 < b1 < b2 c1 < c2 = 0
48 0 < a1 < a2 0 < b1 < b2 c1 < 0 < c2

Table 2: 48 Cases of 216 in which A · (B +C) resulted in a more narrow interval than AB +AC. All remaining
168 Cases resulted in the equal intervals. There was no case in which A · (B + C) solved to a greater interval
than AB + AC.
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