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Abstract

Probabilistic counterexamples form a crucial part of model checking
probabilistic systems represented as Markov chains. They provide invalu-
able debugging information. Minimal critical subsystems are known to be
succinct representations of these counterexamples. The SAT-modulo the-
ories formulation and the mixed integer linear programming formulation
compute optimal counterexamples in form of minimal critical subsystems.
We already have formulations for reachability properties and ω-regular
properties. We extend these formulations to handle properties specified in
probabilistic computation tree logic for discrete-time Markov chains. We
evaluate these formulations and the optimizations applied with a number
of experiments.
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Chapter 1

Introduction

There has been an increasing adoption of software in several industries such
as the automotive industry, the aerospace industry, healthcare, the chemical
plants and the nuclear plants to enumerate a few. Due to the direct interaction
with humans and the environment, errors in software can interfere with the
desirable behaviour having catastrophic effects. For instance, a software flaw
in a radiation therapy machine claimed the lives of six cancer patients [BK08,
p.2]. The safety and reliability issues caused by software errors necessitate ro-
bust verification techniques. The importance of formal methods in computer
science is likened to the importance of applied mathematics in other fields of
engineering. It has been an effective method to reduce large amounts of time
invested in verification of complex systems and enabling early detection of de-
fects [BK08]. Model-based verification is one such verification technique based
on models describing the system in a mathematically precise manner. Model
checking is a model-based verification technique that evolved in the context of
concurrent program verification [Cla08]. Concurrency errors are notorious for
their uncertainty. It is hard to catch the errors by program testing and difficult
to reproduce them. These errors were detected using hand constructed proofs
coupled with temporal logic until 1981 when Edmund Clarke and Allen Emerson
made a case for viewing this as a state-exploration problem. They argued that
the finite concurrent systems can be viewed as a Kripke structure and can be
checked if they satisfy a desirable property specified in propositional temporal
logic.

The model checking problem can be succinctly described in the following way.

Let M be a Kripke structure (i.e., state-transition graph). Let f be
a formula specified in temporal logic (i.e., the specification). Find
all states s of M such that M,s |= f [Cla08].

This translates to checking if the structureM is amodel of the formula f . Model
checking can be viewed as a three-phase process as described in [BK08]. The first
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phase is called the modelling phase that involves modelling the system under
consideration and specifying the property to be checked. The second phase is
the running phase that involves running the model checker. The third phase
is the analysis phase that involves checking if the property in consideration is
satisfied. If the property is violated, a violating behaviour or a counterexample
is generated.

Generation of counterexamples is considered a crucial aspect of model checking.
It not only serves as essential information for debugging complex systems, but
also assists in generating models. Model checking can be seen as exploring all
possible states of a given system. This leads to state explosion for problems
of industrial complexity necessitating abstraction-based methods. Abstraction-
based methods involve removing details of the system that are irrelevant to
the property under consideration. One such abstraction is over-approximation
that involves enriching a model by removing constraints. It allows for false
counter-examples due to an incorrect approximation. Every instance of false
counterexample leads to further refining of the model. This method of achieving
a correct model through false counterexamples is called counterexample-guided
abstraction technique [CGJ+03]. There has been lot of research on counterexam-
ple generation. Here are a few algorithms, [HWZ08, CV10, GMZ04, CGMZ95,
CJLV02, BP12, SB05]. Let us consider an example to illustrate a counterexam-
ple for a property.

Example 1.0.1. A Kripke structure K is a tuple K = (S, I,R,AP, L) where
S = {s1,s2,s3,s4} is the set of finite states, s1 ⊆ I is the set of initial states,
R ⊆ S × S is a transition relation, AP = {a,b} is a set of atomic propositions
and L : S → 2AP is a labelling function. Let us consider Kripke structure in
Figure 1.1. s1 is the initial state and following are the labels, L(s1) = a, L(s2) =
a, L(s3) = b, L(s4) = a. We need to check if the property ∀(aUb) is violated.
This property is specified in computation tree logic explained later (2.3.1). The
property states that every path from a state s needs to reach a state where {b}
holds traversing through the states where {a} holds. The only state where {b}
holds is s3. We can see that s4 has no path leading to s3. A path leading to s4

is a counterexample. Since there is a loop with s1 and s2 in the path leading to
s4, counterexamples can be of form s1s2s4, s1s2s1s2s4 and so forth. A single
path in sufficient to show that K 6|= ∀(aUb).

s1 s2 s3

s4 {a}

{a} {a} {b}

Figure 1.1: Kripke structure K checked for the property ∀(aUb)

Probabilistic model checking is a variant of model checking that is used to verify
probabilistic systems for constraints that are not hard or rigid. For instance,
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a non-rigid constraint is a constraint that need not always hold. It can hold
utmost 99% of the time. These properties are required in systems that exhibit
phenomena of stochastic nature. This includes randomized algorithms such as
distributed algorithms that have randomness in their logic to break symmetry.
For instance, if we have n indistinguishable processors in a ring that are tasked
with electing a leader with a symmetric deterministic algorithm, it is shown that
the election of a leader would be possible only with an infinite computation or an
erroneous result. For termination with a correct result, we require a probabilis-
tic algorithm. The leader election algorithms require each identical processor to
have an independent random number generator to break the symmetry of every
identical processor choosing the same number [IR90]. Systems which exhibit
unreliable and unpredictable behaviour such as message delivery or processor
failure also require non-determinism to be modelled. Markov chains are used to
model these systems. The transitions in such a system are based on probability
distributions over the states. Markov chains can be bifurcated into Markov deci-
sion processes (MDPs) and its deterministic simplification discrete-time Markov
chains (DTMCs). In an MDP, each state has multiple probability distributions
of transitioning to its successors and a probability distribution is chosen non-
deterministically. While a DTMC has only a single probability distribution at
every state. We only deal with DTMCs in this work.

Probabilistic model checking deals with two kinds of properties, namely, qualita-
tive properties and quantitative properties. Qualitative properties are the kinds
of properties where a desirable event is expected to happen with certainty, i.e.,
with a probability 1 or an undesirable event is expected to never occur, i.e.,
occur with a probability 0. Quantitative properties, on the other hand, are ex-
pected to happen with an upper bound or lower bound on the probability. For
a leader election algorithm, an example of a quantitative property would be,
given 4 nodes, the probability that a leader would be elected within 50 steps
is at least 0.5. The stress in this work is on quantitative properties. However,
devising methods to model check and generate counterexamples for quantita-
tive properties can be easily extended to factor in qualitative properties by
setting appropriate probability bounds to be satisfied. Calculating probabilities
of reaching certain states in DTMCs is reduced to solving linear equation sys-
tems [BK08]. A set of cases studies in PRISM demonstrate the applications of
DTMC model checking [KNP+12].

The challenge with probabilistic model checking is providing counterexamples
or diagnostic feedback of the violation of the property in the case it is refuted.
Unlike traditional model checking, a single path need not be sufficient as a
counterexample. In case of probabilistic model checking, the properties in con-
sideration have a probability bound that needs to be violated. Hence, it can
be a set of paths with a total probability mass that violates a bound. [HKB09]
provides an approach for calculating path-based counterexamples. It calculates
the smallest counterexample, i.e., a counterexample that deviates the most from
the required probability bound given that it has the smallest number of paths.
Given an until formula, the problem of finding the smallest counterexample can
be seen as a k shortest paths problem where the k shortest or most probable
paths form the smallest counterexample. If the probability bound is a lower
bound, negation of the property is considered converting it to an upper bound.



12 Chapter 1. Introduction

The same method is applied exploiting the duality of upper and lower proba-
bility bounds.

Example 1.0.2. A Markov chain M is a tuple M = (S, I, P,AP, L) where
S = {s1,s2,s3,s4} is the set of finite states, s1 ⊆ I is the set of initial states,
P : S × S → [0,1] ⊆ R is the transition probability function, AP = {a,b} is
the set of atomic propositions and L : S → 2AP is the labelling function. Let
us consider the Markov chain in Figure 1.2. The property in consideration is
P<0.5[aUb]. This means we need to find out if the probability at the initial state
s1 of reaching a state where {b} holds, which is s3, through a set of states where
{a} holds, the remaining states, is less than 0.5. π1 = s1s2s3 is one such path.
Probability (Pr) of reaching s3 in π1 can be calculated through the transition
probabilities, i.e., Pr(π1) = 0.5 × 0.25 = 0.125. It is not enough to violate the
property. Since we have a loop, we can consider π2 = s1s2s1s2s3. If we go on
adding the probabilities, we get

∞∑
i=1

Pr(πi) = 0.25× 0.5 + 0.25× 0.52 . . . = 0.5

Hence, a counterexample for the property P<0.5[aUb] is a countably infinite set
of paths.

s1 s2 s3

s4 {a}

{a} {a} {b}1

0.5

0.25

0.25

1

1

Figure 1.2: Markov chainM checked for the property P<0.5[aUb]

It has been observed that path-based examples can be doubly exponential in
the problem size making it unusable for debugging. Hence, [HKB09] suggests
succinct counterexamples in form of regular expressions. In the example 1.0.2,
the counterexample can be represented as (s1s2)∗s3.

Critical subsystems serve as an alternative to path-based counterexamples. A
critical subsystem is a subset of states of a DTMC along with the corresponding
transitions between these states allowing for sub-stochastic probability distribu-
tions. It is a compact representation of the path-based counterexamples easing
the process of debugging. While the size of path-based counterexamples in the
worst case can be doubly exponential, critical subsystems are bounded by the
number of states in a DTMC. There have been several approaches for computing
critical subsystems. [AL10] proposes a best first search while [JÁK+11] proposes
a technique based on a hierarchical SCC-based abstraction. However, experi-
mental results show that the critical subsystems generated from those proposed
methods are significantly larger than the minimum. [WJÁ+12a, WJÁ+12b]
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have addressed this issue proposing methods to generate minimal critical sub-
systems (MCS) where the minimality is either based on states or transitions.
Let us illustrate an MCS with an example.

Example 1.0.3. Consider the Example 1.0.2. While the path-based counterex-
ample here is an infinite set of paths, an MCS as represented in Figure 1.3 is
the minimum possible sub-DTMC that contributes to violating the probability
threshold. This is because probability of s1 and s2 reaching s3 is 0.5. Removing
any more states would make s3 unreachable from the initial state s1.

s1 s2 s3

{a} {a} {b}1

0.5

0.25
1

Figure 1.3: MCS as a counterexample for the property P<0.5[aUb]

The computation of minimal critical subsystems is seen as a minimization prob-
lem in quantifier-free linear arithmetic [WJÁ+12b]. There are two formulations
to the problem. The first formulation is SAT-modulo theories (SMT) formula-
tion that allows disjunctive constraints within the linear program. The second
formulation is a mixed integer linear program (MILP) that uses only conjunc-
tions. The MILP formulation is known to outperform SMT. All the work on
MCS until now has been focused on reachability properties and a general class
of ω-regular properties. This is the first work that extends this formulation to
compute MCS for properties specified in the complete probabilistic computation
tree logic (PCTL) (see 2.3.2). This includes constrained reachability, bounded
constrained reachability, reachability to a nested PCTL formula constrained
by another nested PCTL formula. E.g., P<0.5[P>=0.5[aUb]Ub]. Such a nested
formula would require that we construct a parse tree of sub-formulae and do a
bottom up traversal calculating the satisfiability sets for each sub-formula. After
building satisfiability sets, based on whether the outer most formula is satisfied
by the initial states of the DTMC, we can check if the property is refuted by
the DTMC. In case of a refutation, we can come up with the minimum critical
subsystem that refutes the probability bound. Let us consider an example.

Example 1.0.4. Let us consider the DTMC in Figure 1.2 and check if it re-
futes P<0.5[P>=0.5[aUb]Ub]. Based on the computation of MCS from Figure
1.3 in Example 1.0.3, we can assume that the probabilities of states s1,s2,s3 of
reaching s3 are at least 0.5. Hence, all three states satisfy the inner formula
Φ′ ≡ P>=0.5[aUb]. The property in consideration is P<0.5[Φ′ Ub]. This means
we need to check the probability of reaching s3 from the states satisfying Φ′, i.e.,
s1,s2,s3 to s3. This would be the same as calculating the probabilities within the
sub-DTMC shown in Figure 1.3.

The work computes an MCS by recursive computation of satisfiability sets of all
the sub-formulae of the PCTL property in consideration. This is done by build-
ing a linear constraint system. If the property is violated, the linear program
builds an objective function with the goal of building a state-minimal subsystem
violating the probability threshold subject to the constraints. Besides the SMT
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and MILP formulation for full PCTL, we provide optimizations to speed up this
process of finding the solution. We explain how the constraints are built and
explain efficacy of the optimizations by applying them to randomized protocols
as a part of the experimental evaluation.



Chapter 2

Foundations

In this chapter, we introduce concepts of probability theory and probabilistic
systems. We discuss Markov chains which are used to model the probabilistic
systems. We define the branching tree logic with which we specify the properties
of interest for probabilistic systems. We discuss model checking and methods
of generating counterexamples. We later delve into minimal critical subsystems
and the various methods of computing them.

2.1 Probability Theory

Probability theory provides a mathematical model to describe experiments with
random outcomes. To ensure that the permissible collection of subsets of these
random outcomes are closed under basic operations, we use a σ-algebra to de-
scribe the set of events.

Definition 2.1.1 (σ-Algebra of Sets). σ-algebra is a pair (E,E) where E is a
non-empty set and E is a subset of the power set of E that contains the empty
set and is closed under the complementation and countable unions, i.e.,

• ∅ ∈ E

• if e ∈ E, then e = E \ e ∈ E

• if e1,e2, . . . ∈ E, then
⋃
n≥1

ei ∈ E

If all subsets ei ⊆ E are countable, then the union
⋃
i≥0 ei is also countable.

The biggest σ-algebra over E is if E = 2E . The smallest σ-algebra over E is if
E = {∅, E} [BK08, 754].
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Definition 2.1.2 (Probability Measure). A probability measure is a function
Pr : E → [0,1] ⊆ R. It is a measure on E normalized to 1 such that if (en)n≥1

is a family of pairwise disjoint events en ∈ E, then:

Pr(
⋃
n≥1

en) =
∑
n≥1

Pr(en).

Let e ∈ E be an event. A probability measure of e is given by Pr(e) = |e|
|E| .

Here |e| and |E| are the cardinalities of the sets. This implies Pr(∅) = 0 and
P (E) = 1.

Example 2.1.1. Let E be the numbers on a dice, i.e., E = {1,2,3,4,5,6}. Let
e1 be the event of rolling a prime number, i.e., e1 = {2,3,5}. Pr(e1) = |e1|

|E| = 1
2 .

Definition 2.1.3 (Probability Space). A triple (E,E, P r) where E is a non-
empty set, E is a σ-algebra on E and Pr is a measure on E with Pr(E) = 1
forms a probability space.

Since a probability space contains a probability measure and a σ-algebra, it is
non-negative, the empty set is contained in it and it exhibits countable additiv-
ity.

2.2 Markov Chains

Markov Chains are transition systems with probabilistic choices. Discrete-Time
Markov Chains have only probabilistic choices. However, certain behaviour
such as interleaving of concurrent processes requires non-determinism. Markov
Decision Processes have a combination of non-determinism and probabilistic
behaviour where a certain probability distribution at every state is chosen non-
deterministically. We only deal into Discrete-Time Markov Chains here.

Definition 2.2.1 (Discrete-time Markov Chains). A discrete-time Markov chain
(DTMC) is a tupleM = (S,P,ιinit,AP,L) where

• S is a countable or finite non-empty set of states

• P : S × S → [0,1] ⊆ R is a transition probability function such that
∀s ∈ S,

∑
s′∈S

P (s,s′) ≤ 1

• ιinit : S → [0,1] is the initial distribution, such that
∑
s∈S

ιinit(s) = 1

• AP is the set of atomic propositions

• L : S → 2AP is a labelling function.
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P (s,s′) gives the probability of a transition from s to s′ in a single step. The
condition on the transition probability allows for sub-stochastic distributions.
This is required for defining critical subsystems (see 2.5.1). Usually, the sum
of probabilities is required to be 1. A DTMC M with sub-stochastic distri-
butions P can be transformed into a DTMC M′ with stochastic distributions
P ′ by introducing a sink state denoted by s⊥ where P ′(s,s′) = P (s,s′) for all
s,s′ ∈ S, P ′(s⊥,s⊥) = 1 and P ′(s,s⊥) = 1 − P (s,S) and P ′(s⊥,s) = 0 for all
s ∈ S.[WJÁ+12a]. For algorithmic purposes, we assume probability values are
rational [BK08].

Remark. A thing to note is a Markov chain loses its memory of its starting
state after a sufficiently large number of transitions. This means the probability
of being at a given step n with a large n is not dependent on its initial state
[Nel95, p.334]. Markov chain is said to be memoryless and at any given state,
the set of states preceding it do not matter. This is called the Markov property.

Definition 2.2.2 (Initial States). Let M = (S,P,ιinit,AP,L) be a DTMC. A
state s ∈ S is an initial state if ιinit(s) > 0 denoted by set I = {s ∈ S|ιinit(s) >
0}.

Definition 2.2.3 (Absorbing State). A state s ∈ S is an absorbing state if
P (s,s) = 1 and P (s,t) = 0 for any other state t ∈ S \ {s}

Example 2.2.1. Figure 2.1 illustrates a DTMC M1 with ιinit(s1) = 1 and
AP = {a}. s4 is the only state with a label, L(s4) = a. States s4 and s6 are the
absorbing states.

s1 s2

s3

s4

s5

s6

{a}1

0.5 1

0.25

0.5

0.5

0.25

1

1

Figure 2.1: DTMCM1

Definition 2.2.4 (Path Fragment). A finite path fragment π̂ of a DTMC
M = (S,P,ιinit,AP,L) is a finite sequence of states s0s1 . . . sn such that si ∈
succ(si−1) where succ(si−1) = {si ∈ S | P (si−1,si) > 0} and 0 ≤ i ≤ n, n ≥ 0.
An infinite path fragment π is an infinite state sequence s0s1 . . . such that
si ∈ succ(si−1) for all i ≥ 0 [BK08].
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Definition 2.2.5 (Path). A path π of DTMCM = (S,P,ιinit,AP,L) is an infi-
nite path fragment and inf(π) denotes the set of states that are visited infinitely
often. inf(π) is non-empty for a finite DTMC [BK08].

Remark. Strictly speaking a path needs to be infinite. However, we are only
interested in finite path fragments which is referred to as paths for simplicity.
We will refer to finite path fragments as paths from here. If π = s0s1 . . ., then
π[i] refers to the i+ 1st state.

Definition 2.2.6 (Trace). A trace of a finite fragment π̂ = s0s1 . . . sn is defined
as trace(π̂) = L(s0)L(s1) . . . L(sn). A trace of an infinite path fragment π =
s0s1 . . . is defined as trace(π) = L(s0)L(s1) . . . [BK08].

Definition 2.2.7. Paths(M) of a DTMCM = (S,P,ιinit,AP,L) is a set of in-
finite sequences s0s1s2 . . . ∈ Sω with P (si,si+1) > 0 for i ≥ 0. Pathsfin(M) is a
set of finite path fragments π̂ = s0s1s2 · · · sn ∈ Pathsfin(M) with P (si,si+1) > 0
for 0 ≤ i ≤ n [BK08].

Probability Measure of a Markov Chain In order to define probabilities
for events within a a DTMCM = (S,P,ιinit,AP,L), we associate a probability
space (E,E,P r) withM where E = Paths(M). The σ-algebra associated with
the probability space comprising the pair (E, P r) can be generated using cylinder
sets.

Definition 2.2.8 (Cylinder Sets). A cylinder set Cyl(π̂) where π̂ = s0s1s2 · · · sn ∈
Pathsfin(M) is a set of infinite paths π which have π̂ as a finite prefix.

Definition 2.2.9 (σ-algebra for a Markov chain). The σ-algebra of a DTMCM
is the smallest σ-algebra that contains all cylinder sets Cyl(π̂) where π̂ ranges
over all finite path fragments inM.

Remark. Probability measure PrM on σ-algebra EM is given by

PrM(Cyl(s0 · · · sn)) = ιinit(s0) · P (s0 · · · sn)

where
P (s0 · · · sn) =

∏
0≤i≤n

P (si,si+1).

If the length of the path fragment is zero, then P (s0) = 1. For paths starting in
a non-initial state s, we apply the same formula onMs. Here,Ms is a DTMC
obtained from modifyingM by making s the unique initial state. The probability
measure on the modified DTMC is denoted by PrMs or PrMs [BK08].

2.3 Probabilistic Computation Tree Logic

The probabilistic computation tree logic (PCTL) is a branching tree logic used to
specify properties for probabilistic systems. In order to explain PCTL, we need
an understanding of computation tree logic (CTL) since PCTL is an extension
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to CTL. CTL is based on the notion of a branching temporal logic yielding
an infinite tree of states as opposed to a linear notion of time. CTL has the
flexibility to specify if all branches originating from a state exhibit a desired
behaviour or if it is only a subset of branches that satisfy this desired behaviour.

Computation Tree Logic Computation tree logic or CTL has a two stage
syntax with the formulae bifurcated into state and path formulae. State for-
mulae are assertions of atomic propositions in the states and their branching
structure. While path formulae are assertions of temporal behaviour of paths.
Temporal operators such as the © operator, called the next-step operator, and
the U operator, called the until operator, cannot be combined with boolean
connectives. A temporal operator needs to be preceded by the ∀ operator or
the ∃ operator.

Definition 2.3.1 (Syntax of CTL). Grammar for PCTL state formula

Φ := tt | a | ¬Φ | Φa ∧ Φb | ∃[ϕ] | ∀[ϕ]

where tt is the true literal, a ∈ AP . J ∈ [0,1] ⊆ R. J is a permissible interval
for the probability measure at a state. ϕ is a path formula with the grammar

ϕ := ©Φ | Φa U Φb

where Φ,Φa,Φb are state formulae and n ∈ N.

Let us discuss the path formulae. The next path formula denoted by ©Φ is
a formula that requires the next state, after a transition of one step from the
current state, to satisfy the state formula Φ. The until path formula denoted by
Φa∪Φb specifies constrained reachability. It requires a path to traverse through
Φa-states until the target state Φb is reached. The ∀ operator or the ∃ operator
require to be followed by a path formula. For a state s to satisfy the ∀ operator,
it requires that all paths from the state s satisfy the path formula ϕ. For a state
s to satisfy the ∃ operator, it requires that at least one path from the state s
satisfies the path formula ϕ. Let us now compare the syntax of CTL with the
syntax of PCTL.

Definition 2.3.2 (Syntax of PCTL). Grammar for PCTL state formula

Φ := tt | a | ¬Φ | Φa ∧ Φb | PJ [ϕ]

where tt is the true literal, a ∈ AP . J ∈ [0,1] ⊆ R. J is a permissible interval
for the probability measure at a state. ϕ is a path formula with the grammar

ϕ := ©Φ | Φa U Φb | Φa U≤n Φb

where Φ,Φa,Φb are state formulae and n ∈ N

Comparing the syntax of CTL with PCTL, the ∀ operator and the ∃ operator
are replaced by PJ . This provides PCTL with a flexibility to define quantita-
tive along with qualitative properties. Qualitative properties are the kinds of
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properties where a desirable event is expected to happen with certainty, i.e.,
with a probability 1 or an undesirable event is expected to never occur, i.e.,
with a probability 0. Quantitative properties, on the other hand, are expected
to happen with an upper bound or lower bound on the probability. A legal
PCTL formula requires that a path formula ϕ is immediately preceded by the
P operator. For convenience, an interval J can also be expressed as an upper
or lower bound. E.g., P[0,0.5][ϕ] = P≤0.5[ϕ]. The bound can also be a strict
inequality. E.g., P[0,0.5)[ϕ] = P<0.5[ϕ].

The additional path formula in PCTL is ΦaU≤nΦb, also called the bounded until
formula, requires Φb to be satisfied within n > 0 steps traversing through Φa-
states. This is explained in detail under the satisfaction relation for PCTL (see
2.3.4). Other operators can be derived from the operators specified in PCTL
grammar. Φa ∨ Φb is equivalent to ¬(¬Φa ∧ ¬Φb). The eventually formula
♦Φ is equivalent to the until formula ttUΦ. The � operator called the always
operator can be derived from a combination of the duality of eventually operator
and probability bounds.

P≤λ[�Φ] ≡ P>λ[♦¬Φ]

The eventually formula ♦Φ is used to specify safety critical properties. Φ can be
seen as an undesirable event. The safety critical property would specify that the
probability of reaching such a Φ-state should be less than a certain probability
bound. Φ-states are referred to as the target states. We need to calculate the
reachability probabilities for such states to check if a specification is satisfied.
In order to devise methods for calculating reachability probabilities, we need to
introduce relevant paths and relevant states.

Definition 2.3.3. Let M = (S,P,ιinit,AP,L) be a DTMC with target states
T ⊆ S. A path π = s0s1s2 . . . sn is called a relevant path if s0 ∈ I, si 6∈ T for
0 ≤ i < n, sn ∈ T . A set of states SrelM is called a set of relevant states if every
state in the set is on the relevant path [WJÁ+12a].

Reachability Probabilities In order to calculate the probability of reaching
a certain state where a ∈ AP holds, i.e., ♦a, we perform a reachability analysis.
This helps us to compute the relevant states with respect to the set of target
states T = {si ⊆ S | L(si) = a}. The probability of reaching an a-state can be
calculated by the following linear equation system [BK08].

ps =


1 if a ∈ L(s)

0 if s 6∈ SrelM∑
s′∈succ(s) P (s,s′) · ps′ if s ∈ SrelM

(2.1)

Remark. The states that are not relevant can be removed from the DTMC
without altering reachability probabilities.

Example 2.3.1. Given the DTMCM1 = (S,P,ιinit,AP,L) in Figure 2.1, let us
calculate the probability measure PrsiM(♦a) where si ∈ S. We have a ∈ L(s4).
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si psi
s1 0.75
s2 0.75
s3 0.75
s4 1
s5 0.5
s6 0

Table 2.1: Reachability probabilities for ♦a in Figure 2.1

We need to check for the states that can be reached from the initial state s1 and
have a path to s4. We can see that SrelM = {s1,s2,s3,s4,s5} are the reachable
states from both s1 and s4. Therefore, they are on the relevant path. Let ps be
a variable that holds the reachability probability where s ∈ S. We can assign
ps6 = 0 since s6 6∈ SrelM . ps4 = 1 since a ∈ L(s4). The remaining states are
assigned probabilities based on the formula ps =

∑
s′∈succ(s) P (s,s′) · ps′ . Table

2.1 has all the probabilities calculated.

Definition 2.3.4 (Satisfaction Relation for PCTL). We look into the conditions
necessary for various PCTL formulae to be satisfied for a state or a path within
a DTMC M = (S,P,ιinit,AP,L). Let s ∈ S, a ∈ AP , Φ,Φa and Φb be PCTL
formulae. The satisfaction relation is defined accordingly,

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φa ∧ Φb iff s |= Φa and s |= Φb

s |= PJ [ϕ] iff Pr(s |= ϕ) ∈ J

Here, for a DTMC M, PrM(s |= ϕ) = PrMs {π ∈ Paths(s) | π |= ϕ}. Given a
path π, where π = s1s2s3 . . . and π[i] is i+ 1st state. The satisfaction relation
for path formulae,

π |=©Φ iff π[1] |= Φ

π |= ΦaUΦb iff ∃j ≥ 0 : π[j] |= Φb ∧ (∀0 ≤ i < j : π[i] |= Φa)

π |= ΦaU≤nΦb iff ∃0 ≤ j ≤ n : π[j] |= Φb ∧ (∀0 ≤ i < j : π[i] |= Φa)

Definition 2.3.5 (PCTL Model Checking). Given a PCTL property P≤λ[ϕ],
PCTL Model Checking checks if the probability mass of satisfying ϕ at all initial
states of a DTMCM put together exceeds the bound λ.

Remark. All DTMCs we consider have a unique initial state sI . Hence, we
need to check if the probability mass exceeds the bound only at sI . From here
on, we only consider DTMCs with unique initial states.

Given a DTMCM = (S,P,sI ,AP,L), PCTL Model Checking involves building
the satisfiability set Sat(Φ) for the property Φ in consideration and check if
sI ⊆ Sat(Φ). In order to compute the satisfaction set for Φ, we need to compute
the satisfaction sets for its sub-formulae. This leads to a recursive computation
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of the satisfaction sets. It translates to a bottom-up traversal of the parse tree
of Φ. The parse tree of a PCTL formula has either a tt literal or an atomic
proposition a ∈ AP as a leaf node. Every inner node is an operator defined in
PCTL grammar such as ¬,∧ ,© ,U ,PJ . At any level, the satisfaction set is built
based on the satisfaction sets of the sub-formulae or the child nodes. Assuming
Ψ is a sub-formula, after Sat(Ψ) is calculated, a new atomic proposition aΨ is
introduced. If a state s ⊆ Sat(Ψ), then aΨ is added to L(s). This information
is used by the parent node to the calculate satisfaction sets. At the end of the
traversal, the main formula Φ would be reduced to aΦ.

Example 2.3.2. Let us consider a nested PCTL formula P≤0.2[P>0.5[ttUa]Ua].
Let us denote this nested PCTL formula by Φ. Here, a is an atomic formula.
Φ can be broken down into sub-formulae as shown in the tree representation
in Figure 2.2(a). Each node is a sub-formula. The sub-formulae have been
spelled out in (2.2). Given M1 in Figure 2.1, we can do model checking with
respect to Φ in order to check if M1 |= Φ. Here, ϕ′ and ϕ

′′
are path formulae.

Let us consider ϕ′ = ttUa. From Figure 2.1, we can observe that Sat(ϕ′) =
{s1,s2,s3,s5,s4} since these are the 5 states on the relevant path.

Moving up the parse three, we need to calculate the probabilities for the satis-
faction sets of Ψ′ since we need to know which states satisfy the bound P>0.5.
From the Table 2.1, we can say that among the states in Sat(ϕ′), which is the
child node of Ψ′, s5 does not satisfy this bound. Hence, Sat(Ψ′) = {s1,s2,s3,s4}.

We now move a level higher in the parse tree. Let us consider the path formula
ϕ′′ = Ψ′ Ua. This requires a constrained reachability from Ψ′ to an a-state.
From the Figure 2.1, we can say that all the states in Sat(Ψ′) are reachable to
the a-state, i.e., s4. Hence, all the states that are part of Sat(Ψ′) satisfy the
path formula ϕ

′′
. Therefore, Sat(ϕ

′′
) = {s1,s2,s3,s4}.

Moving up a level, we have now reached the root node of the parse tree. Since Φ
is a P formula, we need to calculate the probabilities of all the states satisfying
ϕ′′ to check if the bound is satisfied. The probabilities Pr(s |= ϕ

′′
) are listed in

the Table 2.2(b) which shows that all states violate Φ = P≤0.2(ϕ
′′
) including s1

which is the initial state. Therefore,M1 6|= Φ.

Φ

P≤0.2[

ϕ
′′

P>0.5[ttUa
ϕ′

]

Ψ′

Ua] (2.2)
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P≤0.2

U

P>0.5

U

tt a

a

(a) Tree representation

si PrM1(s |= ϕ
′′
)

s1 0.5
s2 0.5
s3 0.5
s4 1
s5 0
s6 0

(b) Probabilities

Figure 2.2: PCTL formula Φ = P≤0.2[P>0.5[ttUa]Ua]

2.4 Properties of DTMCs

Properties are desirable behaviour for a DTMC. We list a set of properties we
are interested in model checking. This section helps us identify the subset of
properties such as linear-time properties and simple reachability properties that
have already been addressed in [WJÁ+12b, WJÁ+12a] and distinguish them
from the full PCTL properties addressed for the first time in this thesis.

Definition 2.4.1 (Linear-Time Property). A linear-time (LT) Property over a
set of atomic propositions (AP ) defines a set of permissible traces γ0γ1γ2..., with
γi ⊆ 2AP , essentially specifying the admissible behaviour of a system [BK08,
WJÁ+12b].

An LT Property is a subset of (2AP )ω where (2AP )ω is a set of infinite words
over AP . Since we do not have accepting states but only absorbing states within
a DTMC, it would be sufficient to define LT property in terms of infinite words.

Definition 2.4.2 (Reachability Property). A reachability property ♦Φ, where
Φ is a PCTL state formula, is a property with a set of infinite traces that at
some point satisfies the formula Φ.

♦Φ = {γ0γ1γ2 . . . ⊆ (2AP )ω| ∃i ≥ 0 : γi |= Φ} (2.3)

Definition 2.4.3 (Simple Reachability Property). Simple reachability property
is a subclass of reachability property of the form ♦a where a ∈ AP .

♦a = {γ0γ1γ2 . . . ⊆ (AP )ω| ∃i ≥ 0 : a ∈ γi} (2.4)

A simple reachability property is a reachability property over an atomic formula.
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Definition 2.4.4 (Constrained Reachability Property). A constrained reacha-
bility property ΦaUΦb, where Φa and Φb are PCTL formulae, is a property with
a set of infinite traces such that Φa holds up until some point where Φb holds.

ΦaUΦb = {γ0γ1 . . . ⊆ (2AP )ω| ∃n ≥ 0 : γn |= Φb ∧ (∀ 0 ≤ i < n : γi |= Φa)}
(2.5)

If n = 0, then Φb |= γ0. In such a case, the property ΦaUΦb is satisfied at the
very first instance.

Definition 2.4.5 (Invariant). An invariant Pinv is an LT property with a set
of infinite traces where a certain formula Φ always holds.

Pinv = {γ0γ1 . . . ⊆ (2AP )ω| ∀i : γi |= Φ} (2.6)

Remark (Invariants as reachable properties). An invariant needs to hold in
every state of the reachable fragment within a DTMC. There should be no state,
violating the invariant, reachable from any of the initial states. Hence, an in-
variant property can be transformed into a reachability property.

Consider Pinv = �Φ which means Φ must always hold. Given the duality of �
operator, it can be written as ¬♦¬Φ [BK08, p.248].

if an invariant is wrapped with P operator, P=1[�Φ], it is a PCTL formula.
This means s |= P=1[�Φ] if and only if every path from state s would always be
a path where Φ holds. In other words, the probability of reaching a state where
¬Φ holds is 0 [BK08, p.789]. This means any invariant can be checked by doing
a reachability analysis.

s |= P=1[�Φ] ≡ P=0[¬♦¬Φ] ≡ ¬P>0[¬♦¬Φ] (2.7)

2.5 Probabilistic Counterexamples

One of the most important features of model checking involves generating coun-
terexamples. Counterexamples form an invaluable piece of information for de-
bugging. Generating counterexamples for probabilistic systems requires calcu-
lating the set of paths that collectively have a probability mass that violates the
property. There are several approaches for doing this. [HKB09] explores the
option of path-based counterexamples. It calculates the smallest counterexam-
ple, i.e., a counterexample that deviates the most from the required probability
bound given that it has the smallest number of paths seen as a k shortest path
problem. Due to the large number of paths that may be needed with the worst
case being doubly exponential in problem size, they introduce regular expres-
sion as a succinct form of representing counterexamples. The other method
is to have a critical subsystem which is a sub-DTMC that violates the prop-
erty. This is always bound by the number of states of the DTMC in considera-
tion. [WJÁ+12b, WJÁ+12a] build a linear constraint system that violates the
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property. It translates the counterexample generation into a state-minimization
problem. It uses SMT and MILP solvers to compute theminimal critical system.
We introduce some of these concepts regarding counterexamples here.

Critical Subsystem Critical Subsystems are one of the methods of providing
evidence of violation of a property. It comprises a set of states reachable from
the initial state that contribute to the violation of the property. It also contains
the transitions between the states, making the evidence succinct as opposed to
path-based counter examples.

Definition 2.5.1 (Critical Subsystem). A critical subsystem of DTMC M
for a PCTL property P≤λ(ϕ) is a DTMC M′ = (S′,P ′,s

′

I ,L
′) such that S′ ⊆

S, s′I = sI , L
′(s) = L(s),P ′(s,s′) = P (s,s′) for all s,s′ ∈ S′ and Prs

′
I

M′(ϕ) > λ
[WJÁ+12b].

Remark. The probability measure of the path formula ϕ at the initial state s
′

I

should violate the bound specified in the property. For the property P>λ[ϕ], the
critical subsystem requires Prs

′
I

M′(ϕ) ≤ λ to be satisfied

Within a critical subsystem, every state is reachable from one of the initial
states. The probability measure of the initial state with respect to the property
in question needs to violate the bound. We are looking for the minimal possible
number of states that act as evidence of violation. This leads us to define
state-minimal critical subsystems.

Definition 2.5.2 (Minimal Critical Subsystem). A Minimal Critical Subsys-
tem (MCS) is critical subsystem with the least number of states that violates a
property.

The focus in the thesis is state-minimality. Though the work can be extended to
include transition-minimality by modifying constraints to minimize transitions
instead of states while keeping the remaining conditions same.

Example 2.5.1. In Example 2.3.2, through PCTL model checking, we have
found thatM1 (see Figure 2.1) violates Φ = P≤0.2[P>0.5[ttUa]Ua], i.e.,M1 6|= Φ.
Let us compute the counter example in form of an MCS. Based on Table 2.3(b),
where xsi is an inclusion variable to indicate if a state is a part of an MCS, we
have an MCS with 5 states that is shown in Figure 2.3(a). It is the minimum
critical subsystem because reduction of any more states would make the inner
formula P>0.5[ttUa] devoid of all states except s4 in the satisfaction set since all
these 5 states contribute to the probability measure.

2.6 Probabilistic Model Checking

Model checking is a decision problem. The recursive computation of satisfi-
ability sets for a formula can be translated to a set of constraints based on
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s1 s2

s3

s4

s5

{a}1

0.5 1

0.25 0.5

0.25

1

(a) MCS

si PrM1
(s |= ϕ

′′
) xsi

s1 0.5 1
s2 0.5 1
s3 0.5 1
s4 1 1
s5 0 1
s6 0 0

(b) Probabilities

Figure 2.3: Minimal Critical Subsystem for Φ = P≤0.2[P>0.5[ttUa]Ua]

satisfaction relations for PCTL logic specified in 2.3.4. These set of constraints
can be expressed in terms of quantifier-free linear arithmetic. We need to check
satisfiability of these constraints and search for a feasible solution.

Definition 2.6.1 (Linear Arithmetic). The syntax of a formula in linear arith-
metic is defined by the following rules:

formula : formula ∧ formula|(formula)|atom
atom : sum op sum

op : = | ≤ | <
sum : term | sum + term

term : identifier | constant | constant identifier

The operators ≥ and > can be replaced by ≤ and < if the coefficients are
negated. We consider rational numbers and integers as domains. [KSB08,
p.111].

Looking for MCS requires minimizing the set of states needed to violate a prop-
erty subject to the a set of constraints. These constraints need to hold in order
to satisfy the sub-formulae of the property in question. This can be seen as a
minimization problem in optimization and can be framed as a linear program-
ming problem.

Definition 2.6.2 (Linear Programming). A linear program in standard form,
also called general form, has an objective function which needs to be minimized.
The objective function is a linear function over a set of variables called decision
variables which need to be assigned optimal values. A set of values for the
variables is called a solution. A solution is feasible if it satisfies all constraints.

ς = c1x1 + c2x2 + · · ·+ cnxn

where xj for 1 ≤ i ≤ n are decision variables. ς is the objective function that
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needs to be minimized and is subject to linear constraints of the form

a11x1 + a12x2 + · · ·+ a1nx ./ b

a21x1 + a22x2 + · · ·+ a2nx ./ b

...
...

am1x1 + am2x2 + · · ·+ amnxn ./ b

x1, x2, · · · , xn ≥ 0

where ./∈ {≤ , < , = , > , ≥}. ./ is converted into an equality by adding a
slack variable s where s ./ b [KSB08, Van08]. It is called linear programming
problem if the variables used are rational numbers. One of the common algo-
rithms used for arithmetic over real variables is the Simplex algorithm. Other
alternatives are the ellipsoid and interior point algorithms [DDM06]. Both these
algorithms have been proved to have a polynomial time. Despite good practical
performance of these methods, Simplex is the most popular method. Simplex
algorithm has a worse-case exponential complexity but this is rarely encountered
in practice. Analysis of the most likely problems using shadow-vertex simplex
algorithm has shown a polynomial complexity [ST04].

2.6.1 Mixed Integer Linear Programming

If a linear program specified in 2.6.2 is defined over integer variables, it is called
integer programming. If the variables are a mix of real-valued and integer vari-
ables, it is called mixed integer linear program. The common procedure used to
solve such problems is called branch and bound.

Branch and bound procedure This involves initially relaxing the problem
by dropping the integral constraints. The simplex algorithm is applied to this
relaxed problem. If we get an integral solution, we terminate the procedure.
Otherwise, we need to take the non-integral solution of the integer variable
and round it off to nearest integers. If the the solution is for instance x1 =
1.6, we continue the search by rounding it off to x1 < 1 and using this as
an additional bound. We also separately search with another bound x1 > 2.
Based on which branch gives the best-so-far optimal solution, we choose to
enumerate the branch. If x1 > 2 gives a lower value for objective function,
we enumerate this branch. We continue building this enumeration tree and
search for the optimal integral solution using a depth-first search. We prefer
depth-first search to breadth-first search because we get integral solutions much
deeper in the tree. If the problem is aborted before it terminates, we are more
likely to have an integral solution. Additionally, enumerating a node results in
adding additional bounds to the existing problem. A running simplex algorithm
can modify the current dictionary to include the additional constraints. The
assumption here is that the objective function is linear. Once we reach a node
that yields an integral solution, we make the subsequent nodes leaf nodes since
searching deeper generally yields sub-optimal solutions compared to the parent
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node. This process is called pruning that largely boosts the performance [Van08,
pp.392-404].

If the variables have no upper or lower bounds, the branch and bound procedure
may not terminate and may loop forever. Hence, we apply the small-bound
property which essentially means having a small domain so that there are a set
of finite values with which the variables can be instantiated [KSB08, DDM06].

2.6.2 SAT-Modulo Theories Solver

We can utilize SAT Modulo Theories solver, or in short an SMT solver to find a
feasible solution for the linear constraint system. SMT solver comprises a SAT
solver and a Theory solver (T-Solver). The SAT solver considers each constraint
as a boolean variable and tries to satisfy the boolean skeleton of the Conjunc-
tive Normal Form (CNF) formula given as the input. The T-Solver, based on
the constraints by the SAT solver, checks for the consistency of constraints by
assignment of variables. The SMT solver can yield a feasible solution if the
problem is satisfiable (SAT). It will otherwise return unsatisfiable (UNSAT) if
the decision procedure terminates.

The T-Solver can be instantiated with various theories. We instantiate it with
quantifier free linear arithmetic (see 2.6.1). We use disjunctions here to define
our constraints. One of the common algorithms used for arithmetic over real
variables is Simplex algorithm.

A variant of Simplex algorithm is used in the SMT solver called general Simplex.
It involves only the phase 1 of simplex algorithm that deals with searching for
the basic feasible solution, a solution that satisfies all the constraints. It does not
involve phase 2 dealing with an optimal solution, i.e., minimizing the objective
function.

MILP problems are solved by SMT solvers by using a variant of branch and
bound procedure that works in conjunction with the simplex algorithm. The
SMT Solver looks only for a satisfiable solution. Hence, in order to find the
MCS, we need to search for the optimal solution and this is done using Binary
search that is explained later in 3.1.3.

2.6.3 MILP Solver

An MILP Solver generally uses branch and bound procedure in conjunction with
simplex algorithm to search for an optimal solution similar to the description
in 2.6.1. We feed an objective function that returns an optimal solution if a
solution is available. We need not explicitly search for an optimal solution. The
grammar used to define constraints is quantifier free linear arithmetic without
disjunctions. The absence of disjunctions enormously speeds up the search.
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2.7 MCS for Reachable Properties

The work until now in the area of computation of MCS through SMT and MILP
solvers considers simple reachability properties of the form P≤λ[♦a] where a
is an atomic formula [WJÁ+12a]. Let the DTMC in consideration be M =
(S,P,ιinit,AP,L). Let Ta = {s ∈ S | a ∈ L(s)} be the target states. For the
SMT formulation, we have a characteristic variable xs ∈ [0,1] ⊆ R. xs = 0 or
xs = 1 are the values allowed by the formulation. Let ps ∈ [0,1] ⊆ R be the
variable that is assigned with the reachability probabilities. Following is the
SMT formulation.

minimize
∑
s∈S

xs (2.8a)

such that
∀s ∈ Ta : (xs = 0 ∧ ps = 0)⊕ (xs = 1 ∧ ps = 1) (2.8b)

∀s ∈ S \ Ta : (xs = 0 ∧ ps = 0)⊕ (xs = 1 ∧ ps =
∑

s′∈succ(s)

P (s,s′) · ps′) (2.8c)

psI > λ. (2.8d)

The formulation assigns probability values based on the linear equation system
mentioned in (2.1) and the number of states are minimized to compute an
MCS. The MILP formulation allows for integer variables. Hence xs ∈ [0,1] ⊆ Z.
Following is the MILP formulation.

minimize − 1

2
psI +

∑
s∈S

xs (2.9a)

such that
∀s ∈ Ta : ps = xs (2.9b)

∀s ∈ S \ Ta : ps ≤ xs (2.9c)

∀s ∈ S \ Ta : ps ≤
∑

s′∈succ(s)

P (s,s′) · ps′ (2.9d)

psI > λ. (2.9e)

(2.9a) ensures that if a target state is a part of the critical subsystem, it is
assigned a probability 1 else assigned 0. For the remaining states, (2.9c) assigns
a probablity 0 to the states not included in the critical subsystem. (2.9d) assigns
an upper bound on the probability. To get maximal probabilities, we need to
maximize the probability of the initial state which is the reason it is a part of
the objective function in (2.9a).

The computation MCS for PCTL properties is based on the same idea. However,
we need to build constraints for the satisfiability of all the sub-formulae along
with a similar set of constraints for the computation of MCS. This is further
explained in the following chapter.
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Chapter 3

MCS for PCTL Properties

In order to compute a minimal critical subsystem (MCS) for a property specified
in PCTL, it is required to check whether the PCTL property is violated within
a DTMCM. To check whether the PCTL property holds withinM, we need
to do PCTL model checking. This involves traversing through the parse tree
of the PCTL formula and computing the set of states where each of the sub-
formula holds. It also involves calculating probabilities for a state formula with
P operator. These probabilities and satisfiability of states are used to compute
the relevant path for the outer formula within the PCTL property. In case
the probability assigned to the initial state violates the bound specified, the
property is violated withinM.

Difference between MCS for reachability over atomic formula and
PCTL formula A reachability property is a probability bound reachability
to any state that satisfies a PCTL formula such as P≤λ[♦Φ] where Φ is a PCTL
formula. The previous work on computing MCS only considers the case of
simple reachability properties (see 2.4) and only handle atomic propositions.
The current work extends this approach to handle all PCTL formulae both
in form of reachability properties and constrained reachability. This means
we first need to have a set of constraints that define satisfiability for all the
subformulae. We build the satisfaction sets traversing through the parse tree
of PCTL formula. We can then check if the DTMC violates a property at the
initial state. If violated, compute an MCS based on the satisfaction sets of all
the subformulae. This means unlike in [WJÁ+12b], where the MCS has only
the states on the relevant path based on reachability analysis, an MCS based on
a nested PCTL formula may have states that are not necessarily on the relevant
path of the outer until formula. However, these states may need to be a part of
the subsystem since it contributes to the satisfiability of the sub-formulae.

Example 3.0.1. In the Example 2.5.1, we see that though the state s5 is not a
part of the relevant path with respect to the outer until formula in 2.2, i.e., ϕ, it
is needed since it contributes to the probabilities of all the states on the relevant
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path. Hence, a straightforward reachability analysis is null and void.

Computation of MCS as a minimization problem The computation of
MCS can be seen as a minimization problem. The major steps involved are global
model checking that involves building satisfiability sets for the formulae and
computation of a minimum set of states that violate the probability bound. We
will need a few variables to do this. Since we are computing satisfiability of states
with respect to each sub-formula φ, we can have a variable for a combination
of a state and a formula, i.e., σ(φ,s). We need a variable to store probabilities
at every state with respect to a path formula ϕ, i.e., p(ϕ,s). We also need an
inclusion variable that denotes whether a state is included within an MCS, i.e.
xs. This is the decision variable that is part of the objective function. We need
to assign domains, impose upper and lower bounds to these variables. All the
variables are real for a linear program while we can have combination of real
and integer variables for MILP.

We impose linear constraints on σ(φ,s) with respect to every formula based on
the satisfaction relation as defined in 2.3.4. We impose linear constraints on
p(φ,s) for every path formula and a state formula that wraps this path formula.
Traversing through the parse tree and repeating this process would result in a
set of linear constraints.

PCTL properties would need to be satisfied with an upper or lower probability
bound. In order to build an MCS, we add a constraint that ensures the initial
state violates this probability bound. At this point, we have a set of constraints
that can build a critical subsystem that violates the property. Thus we have
converted the computation of MCS to a minimization problem.

3.1 SMT formulation

The SMT formulation has constraints over quantifier-free linear arithmetic. The
formulation allows disjunctions over constraints. The variables are real valued
though integral constraints are imposed on a few of them. Let us define the
domain and intervals for the variables used.

Satisfiability Variable The characteristic variable σ(Φ,s) ∈ [0,1] ⊆ R is used
to keep track of the satisfiability of a formula Φ in a state s ∈ S. The char-
acteristic variable σ(Φ,s) is assigned 1 if Φ is satisfied in state s. Otherwise is
assigned 0. The satisfaction relation is based on 2.3.4.

σ(Φ,s) =

{
1 if Φ |= s

0 if Φ 6|= s
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Since σ(Φ,s) is a real-valued variable, we need to impose an integral constraint
on it. We use XOR in order to achieve this in the following constraint.

σ(φ,s) = 0⊕ σ(φ,s) = 1 (3.1)

State Inclusion Variable The state inclusion variable xs ∈ [0,1] ⊆ R is the
decision variable. It is assigned 1 if the state s ∈ S is a part of the MCS C.
Otherwise is assigned 0.

xs =

{
1 if s ∈ C
0 if s 6∈ C

Following is the integral constraint.

xs = 0⊕ xs = 1 (3.2)

Probability Measure In order to assign probability values used to build
satisfiability sets for formula P≤λ[ϕ], we have p(ϕ,s) ∈ [0,1] ⊆ R. This variable
holds the probability measure PrM(s |= ϕ) of a path formula ϕ at state s ∈ S
in a DTMCM = (S,P,sI ,AP,L).

3.1.1 State Formulae

The state formulae is valid for a single state. A state formula can be an atomic
formula or a conjunction of two PCTL formulae, a negation of a PCTL formula
or a formula with P operator with a probability bound wrapping a path formula.
Let us consider the individual cases and define the satisfiability constraints.

True literal Let tt be the true literal. The characteristic variable σ(tt,s) is
assigned 1, regardless of the label at the state s, as long as it is part of the
critical subsystem.

tt

σ(tt,s) ↔ xs (3.3)

Atomic formula Let Φ ≡ a be an atomic formula where a ∈ AP . σ(Φ,s) is a
characteristic variable for a state s ∈ S. The satisfaction relation as mentioned
in 2.3.4 says s |= a iff a ∈ L(s). If the atomic proposition a is contained in the
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label of the state s, then the atomic formula Φ ≡ a is satisfied. However, our
goal is to compute an MCS and any state outside the MCS is of no interest to
us. Such a state should not contribute to the satisfiability of other states within
an MCS. Hence, we impose a constraint that ensures Φ will not hold in a state
s if it is not a part of the MCS, regardless of its label.

Φ ≡ a

σ(Φ,s) =

{
0 if L(s) 6= a

xs if L(s) = a
(3.4)

If the L(s) 6= a, σ(Φ,s) is always 0. If L(s) = a, σ(Φ,s) is assigned 1 if and only
if the state is included in the critical system.

Negation of a formula If we have a formula of the form Φ ≡ ¬Φ′, where Φ′

is another PCTL formula, we have to assign values to σ(Φ,s) based on the sub-
formula σ(Φ′,s). Hence, we need to recursively compute σ(Φ,s). The satisfaction
relation is s |= ¬Φ iff s 6|= Φ. This means σ(Φ,s) needs to be assigned with the
complement of σ(Φ′,s). However, it will be assigned 1 if and only if s is part of
the critical subsystem.

Φ ≡ ¬Φ′

σ(Φ,s) = 1↔ σ(Φ′,s) = 0 ∧ xs = 1 (3.5)

Conjunctions A formula of the form Φ ≡ Φ1∧Φ2 is a conjunction of two sub-
formulae. The satisfaction relation says s |= Φ1 ∧ Φb iff s |= Φ1 and s |= Φb.
This means that both Φ1 and Φb need to hold simultaneously at state s for
Φ1 ∧Φb to hold. It is sufficient to decide the value of σ(Φ1∧Φ2,s) with respect to
the sub-formulae without taking into account the inclusion variable xs because
we assume that the inclusion variable has been factored in within the sub-
formulae. Hence, the sub-formulae would not hold if s is not a part of the
critical subsystem.

Φ ≡ Φ1 ∧ Φ2

σ(Φ1∧Φ2,s) = 1↔ σ(Φ1,s) = 1 ∧ σ(Φ2,s) = 1 (3.6)

P formula A P formula is of the form P./λ[ϕ] where λ ∈ [0,1] ⊆ R and ./
could refer to strict or non-strict bounds. ϕ here is a PCTL path formula. Since
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we need to discuss path formulae, it is premature to introduce it here. P formula
will be juxtaposed with path formulae.

3.1.2 Path Formulae

A path formula is defined for a path. We say a characteristic variable σ(ϕ,s) for
a path formula ϕ that holds in a state s if the state is on a path that satisfies
ϕ and all the states in the path must be a part of the critical subsystem.

Next Path Formula A next formula is of the form ϕ ≡ ©Φ. It is also
denoted by Xφ where the sub-formula Φ needs to be a state formula as specified
in 2.3.2. Let π = s0s1s2... be a path. The satisfaction relation says that π |=©Φ
iff π[1] |= Φ. That is σ(©Φ,s) is assigned 1 if there exists at least one successor
state s′ ∈ succ(s) such that s′ |= Φ. Here, succ(s) is a successor function. We
also need to make sure that state s is included within the critical subsystem,
along with its successor s′ where Φ holds. We enforce that s is part of the
critical subsystem. However, since the satisfiability variable σ(Φ,s′) factors in
the inclusion variable for s′, we do not explicitly enforce it here.

ϕ ≡ ©Φ

σ(©Φ,s) = 1↔ xs = 1 ∧
∨

s′∈succ(s)

σ(Φ,s′) = 1 (3.7)

Until Path Formula An until path formula is denoted by ϕ ≡ Φa U Φb. The
satisfaction relation says π |= Φa U Φb iff ∃j ≥ 0 : π[j] |= Φb ∧ (∀0 ≤ i <
j : π[i] |= Φ1). Satisfying an until path formula is a constrained reachability
problem. The formula Φa U Φb holds for a certain path π, if every state si
encountered in the path satisfies Φa until we reach a state sj that satisfies Φb
where i < j. If a state s lies on such a path π and all the states in this path are
a part of the critical subsystem, then σ(ϕ,s) is assigned 1. This can be expressed
through the following constraints.

ϕ ≡ Φa U Φb

σ(ΦaUΦb,s) = 1↔ σ(Φb,s) = 1 ∨ (σ(Φa,s) = 1 ∧
∨

s′∈succ(s)

σ(ΦaUΦb,s′) = 1)

(3.8)

Remark. If all ¬Φa state including all Φb-states in the DTMC are made into
absorbing states, the constrained reachability problem is reduced to a reachability
problem [BK08]. However, this is only possible if Φa and Φb are atomic formulae
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because of the dependence of the outer formulae on the inner formulae explained
in 3.1.1 and 3.1.3.

Example 3.1.1. Consider the property P≤0.8[aU P>0[X b]] and the DTMC in
Figure 3.1. s1 |= a and s2 |= P>0[X b] because s3 |= b. Now if s1 and s2

are made absorbing states, within such a system s2 6|= P>0[X b] since s3 is not
reachable. Due to the dependence of a formula on its sub-formulae, this method
of transforming constrained reachability to reachability may not work unless Φa
and Φb are atomic formulae in the until formula Φa U Φb

s1 s2 s3

{a} X b {b}
1 1

1

Figure 3.1: DTMCM checked for the property P≤0.8[aU P>0[X b]]

Example 3.1.2. One of the inadequacies of (3.8) is handling of a self-loop
or a bigger loop. Let us consider the DTMC in Figure 3.2 that has a loop.
π̂ = s1s2s3s1 is the path fragment with the loop. Every state in π̂ is a Φa-state.
Let be ν an assignment function. Let us assume that the solver does the following
assignment. ν(σ(ϕ,s1)) = 1 and ν(σ(ϕ,s2)) = 1. Now s3 has a successor s1 that
has already been assigned 1 for the path formula. Having assigned 1 to σ(ϕ,s3),
(3.8) is locally satisfied without including Φb-state. This is because (3.8) is a
disjunction of two constraints and only the second constraint is satisfied. Hence
an additional constraint needs to be added to in order to ensure every such path
ends with a Φb-state.

s1 s2 s4

s3

{a} {a}

{a}

1 0.5

0.5

1

1

Figure 3.2: DTMCM with a loop

Backward reachability for inner until formula Let ϕ ≡ Φa U Φb. Back-
ward reachability ensures that in the case σ(ϕ,s) is assigned 1, it is done so if
and only if it is on a path that ends with Φb-state. We do this by introducing
a new variable r→s ∈ [0,1] ⊆ R. This variable is introduced to handle loops in a
path. r→s < r→s′ ensures that an assignment does not terminate at a loop since
the successor state r→s′ needs to be assigned with a greater value than its prede-
cessor r→s . In Example 3.1.2, the situation where the solver looks for a successor
of s3 now excludes s1 as a candidate since there is a partial order introduced.
The constraint ensures that if σ(ϕ,s) has been assigned with 1, then a successor
of state s which either is a Φa-state or a Φb-state is also assigned maintaining
a partial order. However, if s is a Φb-state, the constraint is satisfied and the
solver does not assign the successors of such a Φb-state.
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ϕ ≡ Φa U Φb

σ(ϕ,s) = 0 ∨ σ(Φb,s) = 1∨
∨

s′∈succ(s)

(σ(ϕ,s′) = 1 ∧ r→s < r→s′ ) (3.9)

Bounded Until Path Formula A bounded until path formula is denoted as
ϕ ≡ ΦaU≤nΦb. The satisfaction relation is

π |= ΦaU≤nΦb iff ∃0 ≤ j ≤ n : π[j] |= Φb ∧ (∀0 ≤ i < j : π[i] |= Φa)

The bounded until is similar to the until formula with an additional condition.
It needs to be satisfied within n ∈ N transitions. That means a path π satis-
fies bounded until formula ΦaU≤nΦb if the Φb-state is reached within n ∈ N
transitions going only through Φa-states. The constraint is a recursion with
each successive recursion having one less transition within which Φb has to be
satisfied.

ϕ ≡ ΦaU≤nΦb

σ(ΦaU≤nΦb,s) = 1↔ σ(Φb,s) = 1 ∨ (σ(Φa,s) = 1 ∧
∨

s′∈succ(s)

σ(ΦaU≤n−1Φb,s) = 1)

(3.10)

Here, n ≥ 0 and

σ(ΦaU=0Φb,s) = 1↔ σ(Φb,s) = 1 (3.11)

If the number of transitions left is 0, then evidently the current state needs to
satisfy Φb for the bounded until formula to be satisfied.

P Formula We return to a P formula having visited various path formulae
it encapsulates. A P formula is of the form Φ ≡ P./λ(ϕ). Let p(ϕ,s) be a
variable to assign probabilities. p(ϕ,s) needs to be assigned with the sum of the
probabilities of all paths π starting from a state s that satisfy the path formula
ϕ within the critical subsystem.

p(ϕ,s) = PrMs (s |= ϕ)
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σ(P./λ(ϕ),s) = 1↔ p(ϕ,s) ./ λ (3.12)

Here, ./ = {< , ≤ , = , ≥ , >}. If the probability value is within the specified
bound, the satisfiability variable σ(P./λ(ϕ),s) is assigned 1.

Probability Measure for Next Path Formula The probability variable
p(ϕ,s) for the next path formula ϕ ≡ ©Φ is subjected to the following con-
straints.

ϕ ≡ ©Φ

σ(ϕ,s) = 0↔ p(ϕ,s) = 0 (3.13a)

σ(ϕ,s) = 1→ p(ϕ,s) =
∑

s′∈succ(s)

P (s,s′) · σ(Φ,s′) (3.13b)

(3.13a) ensures that if a state s is not on a path that satisfies ©Φ, then p(ϕ,s)

is assigned 0. (3.13b) says that if a state s is on the path satisfying ©Φ, then
its probability value is P (s,s′) · σ(Φ,s′). This means that, if the successor is a
Φ-state, then the probability assigned is the transition probability to the Φ-
state. If the state s has more than one such successor, then the probability is
the summation of the transition probabilities from state s to the Φ-states.

Probability Measure for Until Formula The probability variable p(ϕ,s)

for until path formula ϕ ≡ ΦaUΦb is subjected to following constraints.

ϕ ≡ ΦaUΦb

σ(Φb,s) = 1→ p(ϕ,s) = 1 (3.14a)
σ(ϕ,s) = 0↔ p(ϕ,s) = 0 (3.14b)

σ(Φa,s) = 1 ∧ σ(Φb,s) = 0→ p(ϕ,s) =
∑

s′∈succ(s)

P (s,s′) · p(ϕ,s′) (3.14c)

(3.14a) ensures that if we have a Φb-state, this implies that the probability that
ϕ holds in such a state is 1. (3.14b) ensures that if a state is not on a path
that satisfies ϕ, then the probability assigned is 0. (3.14c) assigns probabilities
for Φa-states. A state can have multiple labels. If a state has both Φa and Φb,
we make sure that (3.14c) ignores this and (3.14a) instead assigns the proba-
bility to it treating it as a Φb-state. This is to avoid a conflict between (3.14a)
and (3.14c). (3.14c) assigns probabilities to Φa-states based on linear equation
system mentioned in (2.1).
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3.1.3 Minimal Critical Subsystem

Given a property of form P≤[ϕ], we need to compute a minimal critical sub-
system that violates it. Which means the initial state sI needs to violate the
bound.

p(ϕ,sI) > λ (3.15)

In order for this bound to be violated, we need a set of states that contribute
to the probability of the path formula ϕ. This is achieved by adding constraints
for the satisfiability of ϕ. If it is a nested formula, the constraints are added
recursively. The objective is to get a solution with minimum possible states that
violate the bound. Hence, inclusion variables xs are the decision variables part
of the objective function. Computation of an MCS can be summarized with the
following constraints.

minimize
∑
s∈S

xs

such that
p(ϕ,sI) > λ

Since SMT solvers cannot be used to minimize an objective function, we use the
method of a binary search to look for an MCS.

Binary Search We start with the number of states in the DTMC as the upper
bound (u) for the subsystem and 1 as the lower bound (l). This is the interval
to be searched. The midpoint (m) is calculated. This midpoint is used build a
constraint with an upper bound for the set of states in the critical subsystem.

∑
s∈S

xs ≤ m (3.17)

A backtracking point is created before adding this to the set of existing con-
straints. The set of constraints can be seen as a stack and (3.17) is pushed
to the top of this stack. We check the feasibility of this system. If the solver
calculates a solution returning SAT, this midpoint m is set as the upper bound
u of the new interval to be searched. We search a new midpoint and impose a
tighter bound for the critical subsystem.

If the solver returns UNSAT, this means we cannot build a critical subsystem
with utmost m states. We pop this constraint and return to the backtracking
point that was created. The midpoint m becomes the lower bound l and the
upper bound remains the same. A new midpoint is calculated and we search for
a critical subsystem with a relaxed bound.



40 Chapter 3. MCS for PCTL Properties

We repeat these steps up until a point where the lower bound is greater than
the upper bound. When we exit this loop, we return the last satisfiable solution
as the minimal critical subsystem.

3.1.4 Optimizations

We add redundant constraints that decrease the search space for the solver.
Though these constraints do no exclude any solutions, they only make the pos-
sibility of assignments to get a satisfiable solution smaller.

Bound Cuts from Binary Search This work introduces bound cuts com-
posed of upper and lower bounds on the number of states in the critical sub-
system. During the binary search, we look for a solution with the midpoint
of the first interval. After the solver returns the result, based on whether it
is SAT or UNSAT, we set the midpoint as the upper or lower bound of the
new interval respectively. The work preceding this calculates the new midpoint,
pops the old upper bound and adds the new midpoint as the upper bound. The
problem with this method is the solver loses any information of the feasible or
infeasible bounds. For instance, if there are 100 states in the DTMC, the first
upper bound is the midpoint of this interval of [1,100] ⊆ Z, i.e.,

∑
s∈S xs ≤ 50.

If there is no solution, we pop the upper bound of 50 and search with 75 as the
upper bound. We have lost the information that we cannot build a subsystem
with utmost 50 states.

After popping the constraint,
∑
s∈S xs ≤ 50, bound cuts optimization adds this

as a lower bound, i.e.,
∑
s∈S xs > 50. In case the solver returns SAT for an

interval of (50,75] ⊆ Z, we retain the bound
∑
s∈S xs ≤ 75. This acts as a

redundant constraint to a tighter bound that follows, i.e.,
∑
s∈S xs ≤ 63. Every

time UNSAT is returned, the search space is drastically reduced and every time
SAT is returned, a redundant constraint constraint is added.

Forward Cut Forward Cut ensures if a state s is included in a critical sub-
system, i.e.,xs is assigned 1, there exists a state s′, a predecessor of s, that is
also included in the critical subsystem. This constraint applies to all the states
excluding the initial state sI . This can be ensured with the following constraint.

∀s ∈ S \ {sI} : xs = 1→
∨

s′∈pred(s)\{s}

xs′ = 1 (3.18)

Satisfiability Cut Satisfiability cut ensures that a state s is part of the critical
subsystem, i.e., xs is assigned 1, if and only if there is at least one sub-formula
within the property in consideration that holds in the state.
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∀s ∈ S \ {sI} : xs = 1↔
n∨
i=0

σ(ψi,s) = 1 (3.19)

where n is the number of sub-formulae in the property and ψ is either a path
or a state sub-formula.

Forward Reachability Forward Reachability ensures if a state s is included
in a critical system, denoted by ν(xs) = 1, there exists a path from a state s to
the initial state sI ⊆ S. This can be ensured with the following constraint.

∀s ∈ S \ {sI} : (xs = 0 ∨
∨

s′∈pred(s)

xs′ = 1 ∧ r←s < r←s′ ) (3.20)

The constraint ensures that if a state ν(xs) = 1, it needs to have a predecessor
that is also included in the critical system and this predecessor needs to have
another predecessor. There is a continuing path that this constraint establishes.
The path terminates at an initial state sI . A variable r←s ∈ [0,1] ⊆ R is used
to assign a value to every state si defining a partial order such that r←si < r←si+1

where si+1 = pred(si) that ensures the assignments do not stop at a loop.

Backward Reachability Backward Reachability ensures if a state s is in-
cluded in a critical system, denoted by ν(xs) = 1, there exists a path from a
state s to one of the final states sF ⊆ S where sF = {s ∈ S | s |= Φb}. This can
be ensured with the following constraint.

xs = 0 ∨ σ(Φb,s) = 1∨
∨

s′∈succ(s)

(σ(ϕ,s′) = 1 ∧ xs′ = 1 ∧ r→s < r→s′ )

This is similar to forward reachability. The constraint, however, ensures that
if a state ν(xs) = 1, it needs to have a successor that is also included in the
critical system. There is a continuing path that this constraint establishes. The
path terminates at one of the final states sF . This constraint also ensures that
every successor state s′ satisfies the formula ϕ or Φb. A variable r→s ∈ [0,1] ⊆ R
is used to assign a value to every state si defining a partial order such that
r→si < r→si+1

where si+1 = succ(si). This partial ordering of states ensures the
assignments do not terminate with a loop. Backward Reachability can only be
used for until formulae of the form ΦaUΦb where Φa and Φb are atomic formulae.
It cannot be used for nested PCTL formulae.

Example 3.1.3. This example demonstrates how to compute an MCS and why
backward reachability cannot be used for nested PCTL formulae. Consider the
DTMC M2 in Figure 3.3(a). We are checking if Φ = P<0.1[P≥0.3[ttUs]Ut] is
violated byM2. (3.21) identifies the sub-formulae within Φ.
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Φ

P<0.1[

ϕ

P≥0.3[ttUs
ϕ′

]

Φ′

Ut] (3.21)

Let us first consider the innermost until formula, i.e., ϕ′ = ttUs. We can
observe in the Figure 3.3(a) the states that are on the relevant path of ϕ′, i.e.,
SrelM2

= {s1,s4,s5,s6,s3}. Here s3 is the target state because L(s3) = s. Now,
p(ϕ′,s3) can be assigned 1 based on (3.14a). If the state is not on the relevant path
of ϕ′, then probabilities of such states is 0 (3.14b). We use the linear equation
system specified in (3.14c) to calculate the probabilities for the remaining states
on the relevant path. For instance, p(ϕ′,s1) = P (s1,s4) · p(ϕ′,s4). Solving these
equations for the remaining states would yield the probabilities listed in Table
3.3(b). Given all the probabilities are greater than 0.3, all the states on the
relevant path are satisfiable with respect to Φ′.

We have to find the relevant states for ϕ given Sat(Φ′) = {s1,s4,s5,s6,s3} and
Sat(t) = s7. Finding the relevant states for ϕ is a problem of constrained
reachability. Hence, we need to find the paths leading to s7 through the set of
states in Sat(Φ′). We can see in Figure 3.3(a) that all states in Sat(Φ′) lead
to s7 except for s3. Hence p(ϕ,s3) along with other states, i.e., S \ Sat(Φ′) are
assigned probability 0. p(ϕ,s7) is assigned 1. Solving the linear system based on
(3.14c), we get the probabilities mentioned in Table 3.3(d).

The initial state violates the bound < 0.1. Therefore, the property is violated,
i.e.,M2 6|= Φ. We need to build an MCS that violates this property. This means
we need enough states from the relevant path of ϕ to violate the probability bound
< 0.1. Figure 3.3(c) is the MCS for Φ. The MCS has s3 which is not a part of
the relevant path of ϕ. However, it is required to satisfy ϕ. This is because s3 is
required to satisfy Φ′ required for ϕ. We can conclude from this example that we
may require states that are not on the relevant path of the outer until formula
to be a part of the MCS because of the dependence of the outer formula over the
inner sub-formulae. Therefore, one cannot enforce every state to be reachable
from the target or final state of the outer until formula.

3.2 MILP Formulation

While the SMT formulation has disjunctive linear arithmetic constraints, mixed
integer linear programming (MILP) formulation consists only of a conjunction
of linear arithmetic constraints. These constraints have a mix of integer and
real variables. The absence of disjunctions considerably speeds up the search
for an optimal solution. Table 3.1 summarizes the variables used for the MILP
formulation. It introduces new variables to handle transitions used for forward
and backward reachability. It also defines an integer domain for a subset of
variables without a need to explicitly specify integral constraints.
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s1 s2 s3 {r}

s4 s5

s6

s7 {s}

0.7

0.3

1

1

1

0.5

0.5

0.25
0.25 0.5

1

(a) DTMC M2

si p(ϕ′,s) σ(Φ′,s)

s1 0.2 1
s4 0.6667 1
s5 0.667 1
s6 0.333 1
s3 1 1

(b) Φ′ = P≥0.2(ϕ′)

s1 s3 {r}

s4 s5

s6

s7 {s}

0.3

1

1

0.5

0.5

0.25
0.25 0.5

1

(c) MCS M′2

si p(ϕ,s) σ(Φ,s)

s1 0.1 1
s4 0.3333 1
s5 0.3333 1
s6 0.6667 1
s7 1 1

(d) Φ = P<0.1(ϕ)

Figure 3.3: Backward reachability for Φ = P<0.1[P≥0.2[ttUs]Ut]

3.2.1 State Formulae

True literal Let tt be the true literal. The characteristic variable σ(tt,s) is
assigned 1, regardless of the label at the state s, as long as it is part of the
critical subsystem.

tt

σ(tt,s) = xs (3.22)
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Variable Domain Description
σ(Φ,s) [0,1] ⊆ Z The satisfiability variable denotes if

the PCTL formula Φ is satisfiable at
a state s.

xs [0,1] ⊆ Z The inclusion variable specifies if a
state s is part of the minimal critical
subsystem.

p(ϕ,s) [0,1] ⊆ R The probability variable assigns
the probability measure Pr(s |= ϕ)
where ϕ is the path formula.

r→s [0,1] ⊆ R The order variable defines a par-
tial order of the states for backward
reachability.

r←s [0,1] ⊆ R The order variable defines a partial
order of the states for forward reach-
ability.

t→s,s′ [0,1] ⊆ Z The edge variable denotes a transi-
tion from state s to its successor s′
for backward reachability.

t←s,s′ [0,1] ⊆ Z The edge variable denotes a transi-
tion from state s to its predecessor
s′ for forward reachability

Table 3.1: Variables

Atomic Formula Let Φ ≡ a be an atomic formula where a ∈ AP . The
characteristic variable σ(Φ,s) is defined with the same set of constraints as in the
SMT formulation.

Φ ≡ a

σ(Φ,s) =

{
0 if L(s) 6= a

xs if L(s) = a
(3.23)

Negation Let the formula Φ ≡ ¬Φ′ be the negation of a PCTL formula. This
means σ(Φ,s) needs to take complement values with respect to σ(Φ′,s) given the
state s is included within the critical subsystem. It is not straightforward to
translate these conditions into MILP constraints. We use a range of constraints
to fix upper and lower bounds to the variables in different cases.



3.2. MILP Formulation 45

Φ ≡ ¬Φ′

σ(Φ,s) ≤ xs (3.24a)
σ(Φ,s) ≤ 1− σ(Φ′,s) (3.24b)

xs − σ(Φ′,s) ≤ σ(Φ,s) (3.24c)

(3.24a) ensures that if the variable xs is assigned 0, i.e., if state s is not a part
of the critical subsystem, then σ(Φ,s) is assigned 0. We need the remaining
equations to assign σ(Φ,s) appropriately when state s is a part of the critical
subsystem. (3.24b) ensures if σ(Φ′,s) is assigned 1, then σ(Φ,s) needs to be
assigned 0. (3.24c) ensures that if σ(Φ′,s) is assigned 1 which is only possible if
xs is assigned 1, then σ(Φ,s) is assigned 0.

Conjunction If the formula is of the form Φ ≡ Φ1 ∧ Φ2, then both Φ1 and
Φ2 need to hold. Following constraints are imposed.

Φ ≡ Φ1 ∧ Φ2

σ(Φ1,s) + σ(Φ2,s) ≥ 2σ(Φ1∧Φ2,s) (3.25a)
σ(Φ1,s) + σ(Φ2,s) ≤ σ(Φ1∧Φ2,s) + 1 (3.25b)

(3.25a) ensures that if one of the sub-formulae is not satisfied, i.e., either σ(Φ1,s)

or σ(Φ2,s) is assigned 0, then σ(Φ1∧Φ2,s) is assigned 0. If both the sub-formulae
are assigned 1, then (3.25b) ensures that σ(Φ1∧Φ2,s) is assigned 1.

3.2.2 Path Formulae

A path formula ϕ, as discussed earlier, has to be valid for a path. If a path
satisfies a path formula, then the path satisfies the constraints defining the
satisfaction relation for the path formula. Let us define the MILP constraints
for path formulae.

Next Path Formula Next path formula is denoted as ϕ ≡ ©Φ and the
satisfaction relation is defined in 2.3.4. Following are the MILP constraints
defining this satisfaction relation.
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ϕ ≡ ©Φ∑
s′∈succ(s)

σ(Φ,s′) ≥ σ(©Φ,s) (3.26a)

xs ≥ σ(©Φ,s) (3.26b)
1

|succ(s)|
·

∑
s′∈succ(s)

σ(Φ,s′) + xs ≤ σ(©Φ,s) + 1 (3.26c)

(3.26a) ensures if the summation of σ(Φ,s′) over all the successors of s is 0, i.e.
there is not a single successor s′ of s that satisfies Φ, then the next path formula
is not satisfied and σ(©Φ,s) is assigned 0. (3.26b) ensures that if a state s is not a
part of the critical subsystem, then the path formula is not satisfied at s. (3.26c)
ensures that if there exists at least one successor s′ of s that satisfies Φ, then
σ(©Φ,s) is assigned 1 given s is part of the critical subsystem. In case a state s
has multiple successors where Φ holds, then 1

|succ(s)| ·
∑
s′∈succ(s) σ(Φ,s′) > 0. If

s is part of the critical subsystem, then xs is assigned 1. This means the LHS
of (3.26c) greater than 1. This forces the RHS to be greater than 1 since it is
the upper bound assigning 1 to σ(©Φ,s).

P Formula for Next Path Formula Let the P formula be denoted as
P./λ(©Φ). The following constraints apply.

Ψ ≡ P./λ(©Φ)

p(©Φ,s) ≤ σ(©Φ,s) (3.27a)
p(©Φ,s) ≤ xs (3.27b)

p(©Φ,s) ≤
∑

s′∈succ(s)

P (s,s′) · σ(Φ,s′) (3.27c)

(3.27a) ensures that p(©Φ,s) is assigned 0 if ©Φ is not satisfied at the state
s. (3.27b) ensures that p(©Φ,s) is assigned 0 if s is not part of the critical
subsystem. (3.27c) assigns probability value to the state s by summing up the
transition probabilities from the state s to all its successor states that satisfy Φ.

Case: ./ is ≤ λ here is a constant. It is the bound specified in the property. If
λ = 1, then the probability value cannot violate the bound. Hence, σ(P≤λ(©Φ),s)

is always assigned 1 in (3.28a). Otherwise, (3.28b) ensures that σ(P≤λ(©Φ),s) is
assigned 1 if λ−p(©Φ,s) ∈ [0,1) ⊆ R. Hence, (3.28a) and (3.28b) combined assign
to σ(P≤λ(©Φ),s) value 1 if the bound is fulfilled. (3.28c) assigns to σ(P≤λ(©Φ),s)

value 0 if the bound is violated.
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Ψ ≡ P≤λ(©Φ)

σ(Φ,s) = 1 iff λ = 1 (3.28a)
λ− p(©φ,s) < σ(Φ,s) iff λ ∈ [0,1) ⊆ R (3.28b)

σ(Φ,s) ≤ λ− p(©Φ,s) + 1 (3.28c)

Case: ./ is ≥ If λ = 0 and the condition that needs to hold is p ≥ λ, then no
probability can violate the bound. Hence (3.29a) assigns σ(P≤λ(©Φ),s) value 1.
Otherwise, (3.29b) assigns σ(P≤λ(©Φ),s) value 1 if the bound is satisfied. (3.29c)
ensures σ(P≤λ(©Φ),s) is assigned value 0 if the bound is not satisfied.

Ψ ≡ P≥λ(©Φ)

σ(Φ,s) = 1 iff λ = 0 (3.29a)
−λ+ p(©φ,s) < σ(Φ,s) iff λ ∈ (0,1] ⊆ R (3.29b)

σ(Φ,s) ≤ −λ+ p(©Φ,s) + 1 (3.29c)

Remark. It has to be noted that the inner P formulae always have upper bounds
while the outer P formulae only have lower on probability values.

Remark. Since MILP solvers make use of floating-point arithmetic, there may
be rounding errors. Though there are hardly any state-of-art model checkers that
use exact arithmetic [WKHB07]. The impact of rounding errors is assumed to
be negligible.

Until Path Formula Until path formula can be denoted as ϕ ≡ ΦaUΦb.
Here are the MILP constraints.

ϕ ≡ ΦaUΦb

σ(Φa,s) + σ(Φb,s) ≥ σ(ϕ,s) (3.30a)

σ(Φb,s) ≥ σ(ϕ,s) −
∑

s′∈succ(s)\{s}

σ(ϕ,s′) (3.30b)

σ(Φb,s) ≤ σ(ϕ,s) (3.30c)

(3.30a) says σ(ϕ,s) will be assigned 0 if neither Φa nor Φb hold at a state s.
(3.30b) says that if σ(ϕ,s) is assigned 1 at the state s, then there exists at
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least one successor s′ of s, excluding self-loops, that satisfies σ(ϕ,s′). The only
exception to this rule is if the state s satisfies Φb. (3.30b) leads to a chain of
implications that ensure reachability to Φb. Though (3.30b) handles self-loops,
it cannot handle larger loops and requires backward reachability constraints.
(3.30c) is a redundant constraint that cuts the search space.

Backward reachability for inner until formula Backward reachability is
needed to ensure that every path that is considered to satisfy an until path
formula ϕ ≡ ΦaUΦb will end at a Φb-state.

ϕ ≡ ΦaUΦb

∀s ∈ S,∀s′ ∈ succ(s) : 2t→s,s′ ≤ σ(ϕ,s) + σ(ϕ,s′) (3.31a)

r→s < r→s′ + (1− t→s,s′) (3.31b)

−σ(ϕ,s) +
∑

s′∈succ(s)\{s}

t→s,s′ ≥ −σ(Φb,s) (3.31c)

Let us consider a relevant path here to be a path that satisfies ΦaUΦb. (3.31a)
enforces that if either a state s or its successor s′ are not a relevant path, then
the variable t→s,s′ denoting a transition from s to s′ is set to 0. (3.31b) ensures
that if there is a transition between two states s and s′, then the condition
r→s < r→s′ needs to hold. This ensures the assignment does not terminate at a
loop. (3.31c) ensures that every state s on the relevant path needs to have an
outgoing transition to a state s′ unless the state s is a Φb-state in which case it
is the last state of the relevant path.

Bounded Until Path Formula Bounded until path formula is denoted as
ΦaU≤nΦb. Here are the additional constraints for bounded until that need to
be satisfied within n transitions.

Φ ≡ ΦaU≤nΦb∑
s∈S,s′∈pred(s)

t←s,s′ ≤ n (3.32a)

∑
s∈S,s′∈succ(s)

t→s,s′ ≤ n (3.32b)

t←s,s′ are edge variables to keep track of forward reachability and ts,s′ keeps track
of backward reachability. (3.32a) is applied for an inner bounded until formula
since there is no formulation of forward reachability for inner formula. This is
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because a path that satisfies an inner until formula need not have the initial
state as a part of it. It has other paths that start from the initial state to merge
at some point.

P Formula for Until Path Formula Until path formula is denoted as Φ ≡
P./λ(ΦaUΦb). Following are the MILP constraints.

Φ ≡ P./λ(ΦaUΦb)

p(ϕ,s) ≤ σ(ϕ,s) (3.33a)
σ(Φb,s) ≤ p(ϕ,s) (3.33b)
p(ϕ,s) ≤ xs (3.33c)

p(ϕ,s) ≤
∑

s′∈succ(s)

P (s,s′) · p(ϕ,s′) + 1 + σ(Φb,s) − σ(Φa,s) (3.33d)

Here ϕ ≡ ΦaUΦb. (3.33a) ensures that if a state s satisfies neither Φa nor Φb,
then p(ϕ,s) is assigned 0. This means it is not on a relevant path. Let us now
consider (3.33b). If a state s satisfies Φb, then σ(Φb,s) is assigned 1. (3.33b)
ensures that p(ϕ,s) is assigned 1. If a state s does not satisfy Φb, then σΦb,s

is assigned 0 and p(ϕ,s) ∈ [0,1] ⊆ R. (3.33c) ensures that if a state s is not
included in the critical system (i.e., xs is assigned 0), then the probability of
the state satisfying the formula ϕ is 0. (3.33d) assigns an upper-bound for the
probability of Φa-states. If a state satisfies both Φa and Φb, the upper bound
is disabled in (3.33d).

Case: ./ is ≤

Φ ≡ P≤λ(ΦaUΦb)

σ(Φ,s) = 1 iff λ = 1 (3.34a)
λ− p(ϕ,s) < σ(Φ,s) iff λ ∈ [0,1) ⊆ R (3.34b)

σ(Φ,s) ≤ λ− p(ϕ,s) + 1 (3.34c)

Case: ./ is ≥
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Φ ≡ P≥λ(ΦaUΦb)

σ(Φ,s) = 1 iff λ = 0 (3.35a)
−λ+ p(ϕ,s) < σ(Φ,s) iff λ ∈ (0,1] ⊆ R (3.35b)

σ(Φ,s) ≤ −λ+ p(ϕ,s) + 1 (3.35c)

3.2.3 Minimal Critical Subsystem

Given a property of form P≤[ϕ], we need to compute a minimal critical sub-
system that violates it. Which means the initial state sI needs to violate the
bound. This is more straightforward with MILP formulation. We need an ob-
jective function to get minimum possible states that violate the bound. Hence,
inclusion variables xs can be a part of the objective function. Computation of
MCS can be summarized with following constraints.

minimize αp(ϕ,sI) +
∑
s∈S

xs (3.36a)

such that
p(ϕ,sI) > λ (3.36b)

MILP solvers can handle objective function and hence the above constraints
can be handled by the solver. We need to maximize p(ϕ,sI) because probability
constraints only have an upper bound and do no assign actual probabilities to
the states. Since every state within the MCS is reachable from the initial state,
maximizing initial probability p(ϕ,sI) would enforce the solver to assign actual
probabilities to the states. Following is the domain of the co-efficient of p(ϕ,sI),
i.e. α ∈ (−1,0) ⊆ R. We ensure the co-efficient is negative but greater than −1,
so that p(ϕ,sI) is maximized but is not confused for an additional state.

3.2.4 Optimizations

We provide a few optimizations that are redundant constraints which decrease
the search space for the solver resulting in speeding up of the search for the
optimal solution.

Forward Reachability Forward reachability constraints ensure that every
state that has been assigned needs to be reachable from the initial state. Mini-
mizing the number of states will ensure that any state that does not contribute
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to the satisfiability of any formula within the critical subsystem will be unallo-
cated. However, these set of constraints further assist the solver in making the
assignments and can be seen as an optimization to reduce the search space.

ϕ ≡ ΦaUΦb

∀s ∈ S,∀s′ ∈ pred(s) : 2t←s,s′ ≤ xs + xs′ (3.37a)

r←s < r←s′ + (1− t←s,s′) (3.37b)

∀s ∈ S \ {sI} : −xs +
∑

s′∈pred(s)\{s}

t←s,s′ ≥ 0 (3.37c)

Here, pred(s) is a predecessor function that returns the set of predecessors of s,
ts,s′ is the edge variable denoting a transition between s and s′ and r←s is an
order variable that ensures that the assignment does not end at a loop. sI is
the initial state.

Forward Cuts Forward cut is a predecessor constraint that ensures that if a
state s is a part of the critical subsystem, then it has at least one predecessor
s′ ∈ pred(s), where pred(s) returns the set of predecessors of s, is part of the
critical subsystem. This constraint applies to all states excluding the initial state
sI . It ensures that a state or path fragment unreachable from the initial state
is not assigned. These set of constraints are less expensive than the forward
reachability constraints since unlike forward reachability, it does not have a
chain of implications.

∀s ∈ S \ {sI} : −xs +
∑

s′∈pred(s)\{s}

x′s ≥ 0 (3.38)

Satisfiability cuts A property in PCTL can be composed of many sub-
formulae. A state s cannot be a part of the critical subsystem if it is not
part of a satisfiability set of at least one sub-formula.

xs ≤
∑

0≤i≤n

σ(ψi,s) (3.39)

ψ here can be either a state formula or a path formula. n is the number of
sub-formulae.
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Chapter 4

Example and Experiments

In this chapter, we demonstrate how the FullPctlSubSys tool generates a
linear constraint system with the MILP formulation. We later analyse certain
case studies available at the homepage of PRISM [KNP+12].

4.1 Example

Let us consider the Example 2.5.1 in Section 2.5. Figure 2.1 is the DTMC we are
model checking. The PCTL property in consideration is Φ = P≤0.2[P>0.5[ttUa]Ua].
We generate a parse tree for the property, similar to Figure 2.2(a). Let us de-
note the sub-formulae with the notations given in (2.2) in Section 2.3. We do a
bottom up traversal of the tree. We start with the leaf node labelled tt which is
the true-literal. Based on (3.22), we can generate constraints for all the states
in 2.1.

tt

σ(tt,s1) = xs1
...

σ(tt,s6) = xs6

We now move to the node labelled a which is an atomic formula with the atomic
proposition {a}. Based on (3.23), we check the label at every state based on
which we add the constraint. Hence, we add the following constraints to the
stack.
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a

σ(a,s1) = 0

σ(a,s2) = 0

σ(a,s3) = 0

σ(a,s4) = xs4

σ(a,s5) = 0

σ(a,s6) = 0

We now traverse to the parent node of tt and a which is labelled U . This
is the until path formula that is built based on the satisfiability sets of its
child nodes. In accordance with equations (3.30a)-(3.30c), we add the following
constraints. In (3.30b), we do a summation of σ variables of the successors of a
state excluding any self-loops. Hence, s6 has no successors.

ϕ′ = ttUa

σ(tt,s1) + σ(a,s1) ≥ σ(ϕ′,s1)

σ(a,s1) ≥ σ(ϕ′,s1) − σ(ϕ′,s2)

σ(a,s1) ≤ σ(ϕ′,s1)

...
σ(tt,s6) + σ(a,s6) ≥ σ(ϕ′,s6)

σ(a,s6) ≥ σ(ϕ′,s6)

σ(a,s6) ≤ σ(ϕ′,s6)

We can assign backward reachability constraints for the until path formula. This
ensures backward reachability to an a-state for the until formula ttUa. We add
the following constraints based on equations (3.31a)-(3.31c). We need to note
that (3.31b) has a strict inequality. The MILP solver we are using cannot solve a
strict inequality. A strict inequality a < b is converted to a non-strict inequality
a+ ε ≤ b where ε is a small configurable tolerance of the order 10−6.

ϕ′ = ttUa

2t→s1,s2 ≤ σ(ϕ′,s1)σ(ϕ′,s2)

r→s1 + ε ≤ r→s2 + (1− t→s1,s2)

−σ(ϕ′,s1) + t→s1,s2 ≥ −σ(a,s1)

...
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Continuing this process, we go up the tree and add constraints for the nodes
labelled P>0.5. We encounter another node labelled a, a part of the path formula
ϕ′′ = ψ′ Ua. We can reuse the variables from the first node labelled a, which
is part of the path formula ϕ′ = ttUa. After doing a complete traversal of
the parse tree, we add a set of constraints for MCS. To violate the property Φ,
we need to build a subsystem with a set of states that satisfy the outer path
formula ϕ′′ and contribute to probability that is enough to exceed the bound
(λ = 0.25). Based on (3.36a) and (3.36b), we add the following constraints.

MCS
p(ϕ′′,s1) ≥ 0.25 + ε

minimize − 0.5 · p(ϕ′′,s1) + xs1 + xs2 + xs3 + xs4 + xs5 + xs6

The strict inequality in (3.36b) has been changed to a non-strict inequality and
α in (3.36a) is set to −0.5. The assumption while adding the constraints for
MCS is that the property in consideration is violated by the DTMC. In case
the DTMC satisfies the property, the MILP solver returns that the model is
infeasible. If we run this model with one of the MILP solvers, Gurobi [Opt12]
for instance, we get a solution summarized in the Table 4.1.

We can see that the satisfiability variable for the property in question, i.e.,
σ(Φ,si), on the penultimate column is assigned 0 for every state and more im-
portantly for the initial state s1. Hence, the property is violated by the DTMC.
The counterexample is an MCS with 5 states i.e., all the states which have xs as-
signed 1. The probability of satisfying the outermost until formula ϕ′′ at state
s1 is 0.5 which violates the upper bound 0.25. The constraints for assigning
probability values only impose an upper bound. Hence, we include the proba-
bility variable p(ϕ′′,s1) within the objective function in order to get maximum
probabilities. An interesting column to observe is the 5th column which contains
probability values assigned for the variable p(ϕ′,si). Here, ϕ

′ = ttUa is an inner
until formula. It is wrapped by the P formula P>0.5[ϕ′] which means the prob-
ability values at every state needs to exceed 0.5 to satisfy the P formula. Table
4.2 shows the probability values assigned and the actual probabilities for the
states within the MCS. We can see that the solver ensures that in the case the
states satisfies the bound, it assigns probability value higher than 0.5. However,
for the state s5 which does not satisfy the bound, it assigns an arbitrary value
of lower than 0.5. Though the maximal probability values are not assigned, the
solver ensures that it assigns the value that lies on the correct side of the bound.
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i σ(tt,si) σ(a,si) σ(ϕ′,si) p(ϕ′,si) σ(Ψ′,si) σ(ϕ′′,si) p(ϕ′′,si) σ(Φ,si) xsi
1 1 0 1 0.51 1 1 0.5 0 1
2 1 0 1 0.51 1 1 0.5 0 1
3 1 0 1 0.51 1 1 0.5 0 1
4 1 1 1 1 1 1 1 0 1
5 1 0 1 0.02 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0

Table 4.1: Optimal Solution for the model

i p(ϕ′,si) Pr(si |= ϕ′) xsi
1 0.51 0.75 1
2 0.51 0.75 1
3 0.51 0.75 1
4 1 1 1
5 0.02 0.5 1
6 0 0 0

Table 4.2: Assigned and maximal probabilities of satisfying ϕ′

4.2 Experiments

We do the experimental evaluation of the SMT and MILP formulation for PCTL
properties. We generate MCS for randomized protocols in case the property is
refuted. The computer used to run the experiments has a dual core Intel Core
i5 M430 processor with a clock speed of 2.27 GHz, a memory of 2.6 GB running
Ubuntu 12.04 64-bit operating system. A tool named FullPctlSubSys has
been developed in C++. It can parse a nested PCTL property, create a parse
tree, add constraints and instantiate a solver to solve the linear constraint sys-
tem. The Microsoft Z3 solver is used as the SMT solver [DMB08]. The Gurobi
solver is used as the MILP solver [Opt12]. We use the respective solver APIs
to call the solver. We export the DTMC models using PRISM. The files gener-
ated by PRISM are provided as an input to the tool [KNP+12]. The following
randomized protocols are used for benchmarking the formulations.

The Crowds Protocol The crowds protocol provides anonymity to a user
surfing internet providing a greater privacy for web transactions [RR98]. The
idea is to route the request to a server through a random set of nodes within
the pool of users or the crowd. Each time a sender sends a message, it selects
another member in the crowd at random which includes the sender itself. The
message is encrypted with a pairwise key. The selected router flips a biased coin.
It sends the message directly to the server with a probability 1−pf where where
pf is the forwarding probability. It sends the message to another crowd member
with pf probability where pf is the forwarding probability. The route is fixed
after the first message. There are corrupt members that are trying to track the
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sender of the message. The corrupt member has some visibility to the routing
of the message if only if it is a part of the route. The corrupt member can only
know who is the previous sender from whom it receives the message but should
not be able tell if the previous sender is the original sender of the message. The
protocol gives varying degrees of anonymity based on system parameters such
as the size of the crowd, the percentage of corrupt members. One of the degrees
of anonymity is called probable innocence. With probable innocence, a corrupt
member cannot say with a probability more than 0.5 if a crowd member is an
original sender.

New members join and old members fail. This calls for new paths. New
paths lead to considerable degradation of anonymity as opposed to static paths
[Shm02]. This leads to increasing probability of detecting the path initiator
called the Positive event. This is tackled by increasing the crowd size. Though
this results in decreasing probability of reaching the Positive event, it leads
to an increased confidence for the observations of the adversary. We are in-
terested in states where the adversary has observed the real sender and only
the real sender. This event is called Confidence. We want to reach this state
with a probability of no more than λ. This property can be specified in PCTL
accordingly, P≤λ[ttU Positive ∧ Confidence].

The model simulating the crowds protocol can vary based on crowd size (N )
and the number of path reformulations (R). It is denoted by crowds-N-R. Let
us consider the Table 4.3. The first column lists the model in consideration,
followed by the number of states (|S|) in the model, the number of transitions
(|E|), the upper probability bound (λ) to be violated, the number of states in
the MCS (|SMCS |) as calculated by the solvers.

Let us consider the Table 4.4 which lists the running times for the models. The
first column lists the model in consideration, followed by the running times by
the Z3 solver. The first column within the SMT section is running the bench-
mark without any optimizations, followed by enabling bound cuts, followed by
enabling all the remaining optimizations, i.e., forward reachability, forward cuts
and satisfiability cuts. We can observe that the bound cuts drastically reduce
the running times. The reduction is 30% for crowds2-3 and 57% for crowds2-4
and crowds2-5. Applying all the optimizations shows a reduction of 64% running
time for crowds2-3 and 57% for crowds3-3 saving upto 6390 seconds. However,
applying all the optimizations may not always benefit as seen for the crowds2-4.

We can see that the MILP formulation is much more efficient. The MILP solvers
have a running time that is a fraction of that of the SMT solvers. This can be
attributed to the absence of disjunctive constraints within the MILP formula-
tion. The first column within the MILP section is running the benchmark with
no optimizations, the second column applies all optimizations and the third col-
umn considers the best configuration of the optimizations. It was observed that
applying all optimizations turned out to be more expensive and often resulted
in greater running times. Therefore, a subset of optimizations that yields the
best result has been considered. Though the redundant constraints do not re-
duce the running time for models with N=2, a combination of forward cuts and
satisfiability cuts causes a 40% reduction in the running time in crowds3-5 and
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Model |S| |E| λ |SMCS |
crowds2-3 183 243 0.05 29
crowds2-4 356 476 0.05 29
crowds2-5 612 822 0.05 29
crowds3-3 396 576 0.05 52
crowds3-4 901 1321 0.05 52
crowds3-5 1772 2612 0.05 52
crowds5-4 3515 6035 0.05 99
crowds5-6 18817 32677 0.05 99

Table 4.3: Sizes of the crowds benchmark models

Model SMT Solver Z3 MILP Solver Gurobi
No Opt. Bound cut All Opt. No Opt. All Opt. Best conf.

crowds2-3 31.16 21.53 7.64 0.19 0.29 0.19
crowds2-4 178.25 75.40 117.34 0.50 0.80 0.50
crowds2-5 491.37 207.94 206.01 1.03 1.50 1.03
crowds3-3 TL 11022.5 4632.46 0.71 1.00 0.59
crowds3-4 TL TL TL 15 6.76 5.45
crowds3-5 TL TL TL 30.47 83.95 18.68
crowds5-4 TL TL TL 36.66 161.08 36.66
crowds5-6 TL TL TL 710.70 1328.65 321.07

Table 4.4: Running times for the crowds benchmark models in seconds

a 50% reduction in crowds5-6.

Bounded Retransmission protocol Bounded transmission protocol (BRP)
has a sender and a receiver communicating with each other through two lossy
unreliable channels [DJJL01]. The sender transmits the file in N chunks and
each chunk can be transmitted for a maximum of K times in case of a fail-
ure in transmission. The property in consideration is that the receiver does
not receive any message (¬recv@receiver) and the sender has tried to send
a message and is not in an idle state (¬idle@sender). This corresponds to
property 2 in [DJJL01]. This can be specified in PCTL in the following way,
P<=λ[ ttU ¬idle@sender ∧ ¬recv@receiver]. We will check many models de-
noted by brp-N-K with different N and K values. From running the experiments
for crowds protocol, we realized that applying all optimizations for SMT does
not always benefit. Hence, we perform experiments with the Z3 SMT solver to
evaluate the various optimizations within the SMT formulation.

Table 4.5 lists the name of the model, the number of states,the number of tran-
sitions, the upper probability bound and the size of minimal critical subsystems
calculated. Given the small size of the model and the very low probability
bounds, this model is appropriate to test the behaviour of the SMT formula-
tion due to the high running times of SMT. Table 4.6 lists the running times of
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Model |S| |E| λ |SMCS |
brp16-2 677 867 7.000000000000001E − 6 9
brp16-3 886 1155 0.6000000000000003E − 7 11
brp16-4 1095 1443 2.2000000000000005E − 9 13
brp16-5 1034 1731 5.400000000000001E − 11 15

Table 4.5: Sizes of the benchmark models for BRP

Model SMT Solver Z3
Bound cut Sat. cut Fwd cut Fwd reach All Opt. Best conf.

brp16-2 13.78 11.58 11.42 12.17 11.30 11.241
brp16-3 28.93 23.99 23.51 26.13 23.51 22.22
brp16-4 58.63 49.93 57.26 53.60 51.30 49.93
brp16-5 93.48 86.37 86.36 89.61 85.19 85.19

Table 4.6: Running times for the benchmark models in seconds

the formulation. The first column has only bound cut enabled, the rest of the
columns have different optimizations enabled coupled with bound cuts since we
are interested in the effect of other optimizations. The second column lists the
effect of satisfiability cuts, followed by forward cuts, followed by forward reacha-
bility cuts, followed by all optimizations and then comes the best configuration.
In case of brp16-2 and brp16-3, the best configuration was a combination of sat-
isfiability and forward cuts. In brp16-4, satisfiability cut outperformed all other
optimizations. In brp16-5, all optimizations together perform better, however
satisfiability and forward cuts come at a close second. The optimizations that
are most likely to benefit the most are satisfiability cuts and forward cuts. For-
ward reachability turns out to be an expensive optimization probably because
of the chain of implications.
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Chapter 5

Conclusion

In this work, we have presented methods to compute optimal counterexamples
in form of state-minimal critical subsystems for full PCTL properties. This
involves reachability, bounded reachability and constrained reachability and
other nested PCTL formulae. We provide both SMT and MILP formulation
for DTMCs. The method involves building linear constraints for the satisfia-
bility of every sub-formula in the property along with building constraints for
the violation of the bound of the outer formula. The MILP formulation clearly
outperforms the SMT formulation. The MILP formulation is manifold faster.
We provide many optimizations such as forward reachability, forward cuts, sat-
isfiability cuts and bound cuts that considerably speed up the running time.
The experimental evaluation reveals that the optimization applied on the SMT
formulation results in a best case reduction of 64% in the running time. The
optimizations on MILP show a best case reduction of 50% in the running time.
Bound cuts drastically reduce running times for SMT while a combination of
forward cuts and satisfiability cuts do the trick for MILP.

Future work The formulation can be extended for Markov decision processes.
There needs to be a theoretical investigation on the complexity of computing
MCS for DTMCs [WJÁ+12b]. Given certain optimizations such as backward
reachability and backward cuts cannot be applied while calculating MCS for full
PCTL properties, we need to formulate other optimizations.
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