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Abstract

Nowadays, hybrid systems are on the rise in �elds such as control
theory and therefore there is an urgent need for tools that are capable of
verifying these systems. In context of a reachability analysis the reachable
state set of a hybrid system is approximated, such that certain system
properties can be examined on basis of the approximation.

This thesis covers a polytope centric implementation of such a reach-
ability algorithm for the class of autonomous, linear hybrid systems and
introduces the basic concepts beforehand. Furthermore, possible opti-
mizations for the algorithm are explored. A special focus lies on the
Minkowski sum operation, for which a recently proposed reverse search
approach is implemented and evaluated.
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Chapter 1

Introduction

This thesis resides in the �eld of system modeling and veri�cation. Here, the
general notion is to abstractly model a real-world system and then perform
veri�cation with respect to some property on this abstraction. This procedure
may for instance be used for validating complex systems, which are often found
in context of control theory and physical processes. Imagine an air tra�c control
(ATC) system: Its purpose is to manage the airplane tra�c and provide the
pilots with crucial and safety-relevant information. One of the ATC's most
important tasks involves collision avoidance for airplanes, for which complex
computations based on several parameters have to be conducted. To decide
whether a collision may occur, it is then a question of determining if a certain,
marked as dangerous, system state may be reached depending on the input
data that is steadily generated by the airplanes. Therefore, by performing a
reachability analysis on an abstraction of the ATC, it is possible to deduce
whether a collision is impending or not.

In context of this thesis the focus will be on so-called hybrid systems, which
exhibit both discrete as well as continuous characteristics. To provide an ad-
equate abstraction, such a system is modeled by a certain class of automata:
hybrid automata.

Essentially, by performing a reachability computation it would be possible
to derive statements about whether the system satis�es a certain property, may
that be safety or some other characteristic according to the speci�ed system
requirements. However, the reachability problem for hybrid systems is in general
undecidable [LG09]. As such, we have to resort to over-approximating the
system states and if our over-approximation is considered safe then the system
itself can be assumed to be so too.

Such an over-approximation is done on the basis of the hybrid automaton (i.e.
the abstraction that describes the behaviour of the hybrid system). In general
there are various approaches on how to perform the reachability computation,
each with distinct computational characteristics. Therefore, the aim of this
thesis is to provide an e�cient and accurate implementation of a reachability
algorithm for hybrid systems, which is ought to be usable as part of a library.
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Outline of the Thesis

Chapter 2 �rst provides background knowledge that is required in the context
of reachability analysis. Speci�cally, Section 2.1 introduces the class of hybrid
automata, while Section 2.2 continues with existing state set representations
and operations that need to be performed on these sets.

Chapter 3 introduces the general reachability algorithm, where reachability
in context of locations (Section 3.2) is considered in detail, followed by transi-
tions (Section 3.3). In Chapter 4 possibilities for optimization are investigated.
The focus is set on the Minkowski sum operation, for which an algorithm that
has been proposed in recent literature is introduced.

Chapter 5 provides implementation details for both the Minkowski sum and
the reachability algorithm as well as respective evaluation results. Lastly, Chap-
ter 6 gives insight into related work before Chapter 7 concludes the thesis.



Chapter 2

Background

Before presenting the theoretical details of the reachability algorithm in Chapter
3, �rst some foundations and terminology shall be established in the following.

2.1 Hybrid Automata

Hybrid automata provide a formal model for hybrid systems. In principle, a
hybrid automaton may be seen as an extension of ordinary discrete automata.
Whereas discrete automata aim to model discrete behaviour, i.e. digital pro-
cesses, a hybrid automaton is also capable of describing continuous behavior,
i.e. analog processes.

A hybrid automaton is a tuple H = (Loc, Var, Lab, Inv, Act, Trans, Init)
[LG09], where:

� Loc denotes a �nite set of locations.

� Var is a �nite set of variables with real domain.

� Lab is a �nite set of synchronization labels, where τ ∈ Lab denotes the
empty label. Given a network of hybrid automata, such labels may be
used to synchronize discrete steps between multiple automata.

� Inv ⊆ Loc×Rd is a set of invariants, where d = |Var|. An invariant Il ∈ Inv
is mapped to location l ∈ Loc and restricts the values of the variables in
this location.

� Act ⊆ Loc×Rd×Rd denotes a set of activities. Again, al ∈ Act is speci�c
to a location l ∈ Loc and al holds a di�erential equation describing the
change of a variable over time.

� Trans ⊆ Loc×Lab×2R
d×Rd×Loc is the set of transitions of the automaton.

A transition t ∈ Trans is of the form t = (l,a, µ, l′), where:

� l ∈ Loc is the source location and l′ ∈ Loc is the target location

� a ∈ Lab is the synchronization label for t
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� µ is the reset map: For any two valuations v,v′, if (v,v′) ∈ µ and
(l′,v′) ∈ Inv, then the automaton may jump from state (l,v) to (l′,v′).
A reset map µ consists of a guard and a reset relation. The transition
is only enabled if its guard is ful�lled by v and if the transition is taken
then the reset is applied on the variables of the automaton, changing
the current variable valuation to v′.

� Init ⊆ Loc× Rd is the set of initial states, specifying initial locations and
their initial valuations.

A state s ∈ Loc×Rd of a hybrid automaton is described by a location l ∈ Loc
and a valuation over Var, which assigns a value vi ∈ R to each variable xi ∈ Var,
i ∈ {1,..,d}.

Figure 2.1 shows the graphical representation of a hybrid automaton H =
({l1,l2},{x,y},{τ, a}{(l1, x ≤ 1), (l2, true)}, {al1 , al2}, {t1 : (l1,a, x := 0,l2), t2 :
(l2, τ, x ≥ 15→ x := 0, l1)}, Init).

l1

ẋ(t) = 1
ẏ(t) = 1
x ≤ 1

x=0 ∧ y=0

l2

ẋ(t) = 1
ẏ(t) = 0

a : x := 0

x ≥ 15→ x := 0

Figure 2.1: Exemplary hybrid automaton H.

Here, the automaton consists of two locations l1,l2 ∈ Loc and two variables
x,y ∈ Var. The initial state is described by Init = {(l1,(0,0)T )}, where both
variables are initially set to zero. The activities are given by al1 : {ẋ(t) =
1, ẏ(t) = 1} and al2 : {ẋ(t) = 1, ẏ(t) = 0}. Also, there is an invariant Il1 ∈ Inv
for location l1, which limits the valuation of x to less than or equal to 1. The
invariant of l2 is true. Furthermore, two transitions t1 = (l1, a, µ1, l2) and
t2 = (l2, τ, µ2, l1) are speci�ed. Formally, µ1 = {(v,v′) ∈ V 2 | v′(x) = 0} and
µ2 = {(v,v′) ∈ V 2 | v(x) ≥ 15 ∧ v′(x) = 0}, signifying that t1 has no guard
but performs a reset of x to 0, whereas t2 performs the same reset but is only
enabled if the guard x ≥ 15 is ful�lled.

For the formal semantics of hybrid automata we refer to [HKPV95].

2.1.1 Linear Hybrid Automata

In this thesis the focus will be on linear hybrid automata, meaning that activities
al ∈ Act may be described by linear ordinary di�erential equations (linear ODE)
[LG09]:

ẋ(t) = Ax(t) (2.1)

where A is a d × d matrix with d specifying the number of variables in the
automaton and respectively the dimension of the model. In general, a linear
hybrid system may also contain a constant part b, i.e. ẋ(t) = Ax(t)+b. However
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it is possible to rewrite this notation to �t Equation 2.1 by encoding b into a
new matrix A′. The details of this procedure will be explained in Chapter 5.

For linear ODEs, solutions may be computed using the following equation
[LG09]:

x(t) = etAx0 (2.2)

Here, x(0) = x0 is the initial value of x and etA denotes the matrix exponen-
tial, which is de�ned as [MVL03]:

eA =

∞∑
k=0

Ak

k!
(2.3)

Equation 2.2 is relevant for the reachability analysis procedure presented in
Chapter 3.

2.1.2 Autonomous Systems

In general the systems to be analyzed may have an additional external input
u(t), such that the ODE is of form [LG09]:

ẋ(t) = Ax(t) + u(t) (2.4)

with solution:

x(t) = etAx0 +

∫ t

0

e(t−s)Au(s)ds (2.5)

We call these systems non-autonomous. However, in this thesis the focus
will be on autonomous systems, i.e. ODEs that satisfy the notation given in 2.1.
An extension of the reachability algorithm for non-autonomous systems is part
of future work.

2.2 Reachability Analysis

As mentioned in the introduction, the reachability problem for hybrid automata
is generally undecidable [HKPV95]. Therefore, instead of computing the exact
set of reachable states, an alternative is to compute an over-approximation of
this set. Such an over-approximation may be computed using one of many
possible set representations, some of which will be introduced in the following.
With few exceptions, a set representation is a geometric object that describes
the possible variable valuations for a system state. Figure 2.2 illustrates the
general notion of this approach, with the exact behaviour being depicted on the
left and the approximation by rectangles on the right.

The basic idea to retrieve the set of reachable states is a �xed point calcula-
tion. Starting from the initial states Init, the general procedure is to take both
continuous (i.e. let time elapse) and discrete steps (i.e. take a transition in the
automaton) until no new states can be explored. However, since some hybrid
systems may have an in�nite state space, for the computation to �nish it has
to be limited by either a time or discrete step boundary (or a combination of
both).
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P
P

Figure 2.2: Exemplary reachability approximation.

2.2.1 Operations

In the following, the set operations that are needed to perform the reachability
computation are introduced in detail:

- Computing the union ∪ of two sets or the convex hull CH over such a
union

- Intersection ∩ of either two sets or one set with a hyperplane

- Linear transformation of a set (by multiplication with a matrix A)

- Computing the Minkowski sum of two sets

The union of two sets A,B is the collection of all those set elements which
are in either A or B: A∪B = {x | x ∈ A∨x ∈ B}. In contrast, the intersection
of two sets denotes those elements that are shared between both sets: A ∩B =
{x | x ∈ A ∧ x ∈ B}. Both of these operations are graphically illustrated in
Figure 2.3 for two sets in R2.

A B

(a) A ∪B.

A B

(b) A ∩B.

Figure 2.3: Union and intersection of two sets.

A linear transformation T is a mapping from one vector space V to another
vector space W [Str03]. By de�nition, this mapping preserves both addition
and multiplication with a scalar:

T (v1 + v2) = T (v1) + T (v2)

T (αv) = αT (v)
(2.6)
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where v, v1, v2 are vectors in V and α is a scalar. Furthermore, lines are always
mapped to lines or to zero. The matrix multiplication T (v) = Av for a n ×m
matrix A is an example of a linear transformation from V = Rm to W = Rn.

Figure 2.4: An illustration of the convex hull. [LG09]

The convex hull CH(P) of a non-convex set P refers to the smallest convex
set that contains P . For instance, Figure 2.4 illustrates the convex hull for the
given set.

The Minkowski sum of two setsA and B is formally de�ned as follows [LG09]:

A⊕ B = {a+ b | a ∈ A, b ∈ B} (2.7)

Essentially, every element in set A is added up with every element in set B,
yielding a set of sums. Graphically, such a computation describes sliding one
set along the edges of the other set and taking the union of all subsets that have
been observed while doing so (ref. Figure 2.5).

Figure 2.5: An illustration of the Minkowski sum. [LG09]

2.2.2 Representations

This section brie�y introduces four possible geometric set representations. The
common characteristic among all representations is their convexity, meaning
that for any two points a and b of a convex set P ⊆ Rd, every point on the line
segment between a and b is also contained in the set:

∀a,b ∈ P. ∀x ∈ [0,1]d ⊆ Rd : a+ x(b− a) ∈ P (2.8)
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Figure 2.6: Approximating a set by a (hyper-)rectangle. [LG09]

Hyper-rectangle. A hyper-rectangle R is the generalization of a rectan-
gle to an arbitrary dimension d, which can be mathematically described
as a product of intervals [LG09]:

R = [x1, x1]× ...× [xd, xd] (2.9)

As Figure 2.6 shows, approximating a set with a hyper-rectangle is rather
inaccurate, however it can be computed and stored very e�ciently.

Figure 2.7: Approximating a set by a polytope. [LG09]

Polytope. A d-dimensional halfspace is a set h = {x ∈ Rd | cTx ≤ z},
where c ∈ Rd is the normal of h and z ∈ R is the o�set. A polyhedron1 P
is the intersection of halfspaces from a �nite set H:

P =
⋂
h∈H

h (2.10)

A polytope is a bounded polyhedron and may be de�ned in two di�erent
ways: Either by the set V of its vertices (V-representation), or by encoding

1In this thesis we consider only convex polyhedra.
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the halfspacesH = {cTi x ≤ zi | i = 1,...,m} as
(
(c1,...,cm)T , (z1,...,zm)T

)
∈

Rm×d × Rd (H-representation).
Each of those representations has their own bene�ts and drawbacks with
respect to computational e�ciency when performing certain operations on
polytopes [Zie95]. Therefore it is common to make use of both represen-
tations, however the translation from one representation to the other may
be exponential in the state space dimension [Zie95]. Figure 2.7 provides
an example of how a set may be approximated using a polytope.

Figure 2.8: Approximating a set by a zonotope. [LG09]

Zonotope. A zonotope Z in Rd can be de�ned as the �nite Minkowski
sum of line segments, also called generators of Z, shifted by a vector c ∈ Rd
[LG09]:

Z = c+ [−1,1]v1 ⊕ ...⊕ [−1,1]vk (2.11)

where vi, i ∈ {1,..,k} is a d-dimensional vector. As illustrated in Figure
2.8, zonotopes always have a center of symmetry and form a subclass of
polytopes.

Figure 2.9: A hyperplane given by a support function. [LG09]
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Support Function. Support functions are di�erent from the other set
representations because here, convex sets are represented by a function
instead of a set of parameters. Formally, the support function ps : Rd →
R ∪ {−∞,∞} of a set S is de�ned as [LG09]:

ps(l) = sup
x∈S

x · l (2.12)

where l ∈ Rd. In essence, a support function maps any direction l to a
hyperplaneHl which is orthogonal to l, such thatHl contains the whole set
and its surface is tangential to the set that is to be approximated. Figure
2.9 pictures one such hyperplane for a given direction l. Depending on the
amount of directions li considered, the set is approximated more accurate
with increasing i, culminating in the intersection of the Hli .

In context of this thesis reachable state sets are approximated by polytopes,
which allow for a lot of �exibility.

Table 2.10 shows the complexity of the previously introduced operations
for di�erent set representations. Here, �+� indicates low complexity, �∗� low
complexity for most instances and �−� high complexity. An empty �eld signi�es
that the operation is not feasible using the respective representation.

Figure 2.10: Complexity of operations depending on representation. [LG09]

The computation of the Minkowski sum stands out as being computationally
hard for both polytope representations. As pointed out in [Wei07], it is di�cult
to �nd an e�cient algorithm and the resulting representation is often dramati-
cally increased in size. The fundamental problem of a brute force computation
of the Minkowski sum, that is to add up every element in one set with every
element in the other set (based on a V-representation), is the fact that a signif-
icant amount of computed vertices are inner vertices of the resulting polytope.
For both high dimensions and a high amount of vertices in each summand this
leads to a very high computational e�ort, which is further increased by having
to compute the convex hull of the result to recover the V-representation and
thus to reduce the representation size.

Consequently, a major focus of this thesis is the optimization of the Minkowski
sum operation in context of V-Polytopes, with the aim of signi�cantly improving
the performance of the reachability computation for complex hybrid systems.
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Reachability Analysis

Recalling the purpose of reachability analysis as a whole, it is to identify the set
of reachable states of a given hybrid system under consideration of some time
or discrete step bound. As previously stated, the basic idea is to approximate
the exact reachability result using an appropriate state set representation, in
this case polytopes. Each computed polytope represents the set of possible
valuations the system can reach at some point in time. Based on this over-
approximation it is possible to assert certain system properties, such as whether
the system is safe with respect to some pre-de�ned set of malicious states, also
represented using the chosen representation.

In general, considering only continuous progress within one location of a hy-
brid automaton (i.e. letting time advance up to a �xed time point), the reach-
ability result as a whole may be considered to be a �owpipe (ref. Figure 3.1).
Given a discretization factor f , a �owpipe may be divided into f connected
parts, called �owpipe-segments, where the union over all segments yields the
�owpipe itself again. Each of these segments is approximated by a polytope,
and consequently the whole �owpipe is formed by a set of polytopes.

Moving on to discrete transitions between the locations of a hybrid automa-
ton, the previously introduced reset map yields a new variable valuation in the
target location. Given this valuation, a �owpipe for this target may be com-
puted as well, such that the reachable state set of a construct consisting of two
locations and a transition in between may simply be considered to be the union
of both �owpipes.

3.1 General Reachability Algorithm

In Listing 1 the general reachability algorithm is described abstractly [Ábr12].
The fundamental idea of this algorithm is to start with the set of initial

states Init as given by the hybrid automaton (line 1 of Listing 1) and to com-
pute a �rst �owpipe approximation based on this input set in context of the
function Reach(..) (line 5 ). After that, Reach(..) performs one dis-
crete step in which every outgoing transition of the initial location(s) is taken
into consideration: By intersecting the guard of a transition's reset map with
each �owpipe segment individually, it is possible to identify non-empty inter-
section parts. On these parts, which are itself polytopes, the reset relation of
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Input : Set Init of initial states

Algorithm:
1 Rnew := Init;
2 R := ∅;
3 while (Rnew 6= ∅) do
4 R := R ∪Rnew;
5 Rnew :=Reach (Rnew)\R;

end

Output: Set R of reachable states

Algorithm 1: General reachability algorithm.

the reset map is then applied, yielding a new valuation in the target location.
Continuing this procedure for each location that is observed while performing
the reachability computation, the �nal result is a set of �owpipes for each lo-
cation (as one location may have multiple incoming transitions). The union of
all these location-speci�c �owpipes (line 4) describes an over-approximation for
the reachable state set of the whole hybrid automaton, where a state is de�ned
as a tuple consisting of a location and the respective variable valuation.

In the following the concept of reachability in context of locations and tran-
sitions is explained in detail.

3.2 Reachability in Context of Locations

Given an initial valuation, the reachability of a single location may be described
by computing a bounded over-approximation of the exact �owpipe. The under-
lying idea behind such a �owpipe is to let time elapse within one location and
observe the possible valuations of all variables (which spans the state space).
Speci�cally, the variables evolve according to the location's activity al ∈ Act,
which may be interpreted as a di�erential equation that is dependent on a time
variable t. Based on the computed data it is possible to assert whether a cer-
tain (location-speci�c) state may be reached during system execution or not.
An exemplary �owpipe approximation is depicted in Figure 3.1.

3.2.1 Flowpipe Computation

There are various approaches in literature for computing an over-approximation
of a �owpipe for one location of a hybrid automaton, each with di�erent charac-
teristics regarding both e�ciency as well as accuracy. A brief overview for these
approaches is given in Chapter 6, while in the following the approach that has
been implemented in context of this thesis will be explained in detail.

Recalling Equations 2.1 and 2.2, activities al ∈ Act are considered to be
linear ODEs:

ẋ(t) = Ax(t)

with solutions being of the form:

x(t) = etAx0
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Figure 3.1: Exemplary approximation of a �owpipe, where X0 denotes the
initial set. The �owpipe is divided into twenty segments, each of which is

approximated by a single polytope. [CK98]

The matrix A is referred to as the activity matrix of a location, storing the
coe�cients of the ODE. Applied to any set S, the reachable variable valuations
Rδ(S) in location l at time t = δ are given by the expression eδAS, which
describes a linear transformation of set S with matrix eδA [LG09]. Consequently,
the sequence of reachable sets Ω0, ... ,ΩT that is to be computed may be de�ned
by a recurrence relation:

Ωi+1 = eδAΩi (3.1)

Here, each Ωi represents an approximation of one �owpipe-segment. δ refers
to the (static) timestep size that is used for the approximation, i.e. segment Ω0

would approximate the time interval [0,δ],Ω1 the time interval [δ, 2δ], continuing
up to ΩT , where T = nδ signi�es the upper time bound. As a result of this
approximation scheme, a smaller δ results in a more granular segmentation of
the �owpipe, yielding higher accuracy at the cost of greater computational e�ort.

Furthermore, two things are noteworthy concerning Equation 3.1: First,
since δ is a constant it is su�cient to compute eδA only once per location.
As eδA describes the computationally very expensive matrix exponential (ref.
Equation 2.3), this is a great bene�t of any approximation approach that is based
on recurrence relations. Even more so, depending on the implementation of the
matrix exponential, its computation might not even terminate in reasonable
time for huge δ [MVL03].

Secondly, the upper time bound T de�nes the last �owpipe segment that
is considered in the reachability analysis of one location l. This timebound
might be an arti�cial bound passed along to the algorithm as a parameter to
guarantee termination (i.e. if the reachable state space is in�nite). However, the
variable valuations and as such also the �owpipe as a whole is primarily bounded
by the location-speci�c invariant Il ∈ Inv. Therefore, while computing the
approximation for each �owpipe segment according to the recurrence relation,
in each step it has to be checked whether the next segment still satis�es the
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bounds given by the invariant. This is done in context of a containment test,
since the invariant may also be represented as either a polytope or a hyperplane.

Given the recurrence relation, the remaining part is to approximate the
initial �owpipe segment Ω0, which is used as a basis for all approximations of
later segments.

Approximating Ω0

The approximation of Ω0 depends on the initial valuation in a location. We
assume any state set description to be given by a polytope. For a starting point
of the algorithm it is reasonable to consider the set of initial states Init, which
de�nes one or multiple starting locations with individual variable valuations. As
it is indi�erent for the general procedure whether there is more than one starting
location, in the following it will be assumed that |Init| = 1 for purposes of
simplicity. Let Init = {(l,X0)}, whereX0 refers to the initial variable valuations.

Ω0 may then be approximated according to the following equation [LG09]:

Ω0 = CH(R0(X0) ∪Rδ(X0))⊕B(αδ) (3.2)

where:

� Ri(X0) refers to the manifestation of X0 at time i with respect to the
previous recurrence relation. For instance, R0(X0) = e0AX0 = X0 and
Rδ(X0) = eδAX0.

� ∪, CH(·) and⊕ refer to the set operations union, convex hull and Minkowski
sum respectively.

� B(αδ) describes the ball of appropriate dimension with radius αδ. Note
that the shape of the ball entirely depends on the chosen norm, which for
our purpose is induced by the computation of αδ.

� αδ is an upper bound for the so-called Hausdor� distance between the
approximation and the exact �owpipe.

The Hausdor� distance dH(A,B) for two sets A and B is formally de�ned
as follows [LG09]:

dH(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
In essence, dH is the greatest of all distances from a point in one set to the

closest point in the other set. Figure 3.2 illustrates the meaning of the Hausdor�
distance for two exemplary sets.

In the following, the procedure of approximating Ω0 is examined in detail.
An intermediate goal of the approximation is shown in Figure 3.3a. Here, the
dotted line represents the exact �owpipe, while the bold polytope denotes a �rst
approximation. This approximation is computed by the �rst part of Equation
3.2: CH(R0(X0) ∪ Rδ(X0)). Speci�cally, R0(X0) = X0 refers to the initial
valuations given by (l,X0). According to the recurrence relation a linear trans-
formation is applied to X0 to compute a further valuation that is also part of
the exact �owpipe: Rδ(X0) = eδAX0. These two valuation sets then serve as a
basis for the approximation, and by computing the convex hull over the union of
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Figure 3.2: Illustration of the Hausdor� distance. [LG09]

both sets the set in Figure 3.3a is obtained. However, this �rst approximation
is not su�cient, as there is still some part of the exact �owpipe which is not
contained within the approximation. Having an over-approximation is impor-
tant for being able to assert certain system properties, e.g. safety, because in
contrast to an under-approximation a statement about the over-approximated
state set still holds for the exact �owpipe, which is not computable due to the
undecidability of the problem [HKPV95].

(a) Intermediate approximation result. (b) Final (bloated) approximation result.

Figure 3.3: Approximation process for one �owpipe segment.

To receive an over-approximation, the hull of the intermediate result is
bloated. To do so, the Minkowski sum of the intermediate result and the ball
B(αδ) is computed. While there are multiple ways to approximate the Haus-
dor� distance between two sets, the following approach based on the in�nity
norm ‖ · ‖∞ is implemented in context of this thesis [Gir05]:

αδ = (eδ||A|| − 1− δ||A||) max
x∈X0

||x|| (3.3)

Consequently, the ball B(αδ) is also de�ned with respect to the in�nity norm.
This is very important, as the ball then has the shape of a hypercube as Figure
3.4 visualizes. Since any hypercupe is also a polytope, we preserve the polytope
representation through the application of the Minkowski sum.
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x

y

(a) Manhatten norm:
‖x‖1.

x

y

(b) Euclidean norm: ‖x‖2.

x

y

(c) In�nity norm: ‖x‖∞.

Figure 3.4: Unit ball in R2 for di�erent norms.

One possible over-approximation that is a result of bloating the hull is shown
in Figure 3.3b. Note that the depicted case is an ideal over-approximation,
where each edge of the polytope touches one part of the exact �owpipe. In
general the hull will be bloated to a greater e�ect, meaning that there might
be a considerable over-approximation in all directions. As one summand of the
Minkowski sum is a ball, every dimension will be bloated accordingly, even if
not necessary.

Having computed an approximation Ω0 for the �rst �owpipe segment, apply-
ing a linear transformation on this segment according to the recurrence relation
3.1 yields the next segment. This way, the whole �owpipe of a location may
be approximated using a sequence of polytopes, describing the set of reachable
states when letting time elapse in one location.

3.3 Reachability in Context of Transitions

Having considered reachability in the context of single locations, the next step
is to involve discrete transitions between multiple locations and examine their
impact on the reachable state space. Let t = (l,a, µ, l′) be a transition where the
�owpipe approximation for location l has already been computed. The transi-
tion t is enabled when the guard de�ned by the reset map µ is satis�ed for a given
variable valuation. A guard may be stored as either a hyperplane or a poly-
tope and therefore the intersection between the guard and each approximated
�owpipe segment can be computed in context of the reachability algorithm. If
the intersection is not empty, the transition may be taken from the state space
de�ned by the intersection. In general the concept of a transition involves non-
deterministic behaviour, as it is not known whether a transition is taken even
if its guard is enabled. However, since the intent is to over-approximate the
reachable state set, one valid approach is to just compute all possibilities. Con-
sequently, the reachability algorithm applies the reset of µ to every non-empty
intersection individually, yielding a set of new valuations in the target location.
Here, a reset is assumed to primarily be a linear transformation, followed by an
optional translation in any dimension.

Figure 3.5 illustrates the intersection of a hyperplanar guard g (indicated by
the blue line, where everything above ful�lls the guard) with a given �owpipe
approximation.
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g

t

Figure 3.5: Intersection of a hyperplanar guard g with a �owpipe. The reset
map of transition t is applied, yielding a new initial state set in the target

location.

After applying the reset of transition t, it is necessary to �rst unite the new
valuation sets in the target location. As the union of connected sets is generally
not a convex polytope, we also need to compute the convex hull as indicated in
Figure 3.5 by the solid red line. This convex hull is a valid X0 for the target
location, which may be used to approximate the �rst �owpipe segment Ω0 and
therefore also the reachable state set in the given context. However, there
may be another, di�erent X0 when taking a transition to l′ from any location
other than l as shown in Figure 3.6. Considering this possibility a location
may produce multiple �owpipe approximations, which are all relevant for the
reachability analysis procedure.

t1 t2

t3

X01
X02

X03

Figure 3.6: Each incoming transition contributes to one initial state set X0i .

Having seen how the reachability algorithm operates in detail, we deal with
some limitations of the presented approach in the next section.
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3.4 Limitations

While there are a lot of computational bene�ts to the reachability computation
approach presented in this chapter, its accuracy might be improved in context
of future work.

For instance, the approximation error of the �rst segment Ω0 is carried over
into the computation of later segments, as per recurrence relation only a linear
transformation is applied on the preceding segment. This might cause a large
error accumulation especially for the last parts of the �owpipe. An alternative
would be to recompute the approximation of a �owpipe segment after e.g. a
�xed amount of segments have been observed. This implies that a further exact
segment of the �owpipe Xp is computable, which could then be used to generate
a better �owpipe approximation Ωp. However, it holds that Xp = epAX0, but
in contrast to the usual step size δ, p is much greater and only increases each
time a new exact segment shall be computed. As outlined in [CK98], computing
the matrix exponential for big p may prove di�cult if not even impossible.

A further factor that could theoretically lessen the size of the over-approx-
imation is the handling of the multiple valuations that result of a transition's
reset. Instead of uniting and then computing the convex hull, which includes
�irrelevant� state space, one approach would be to just handle the result of each
segment reset individually. One transition would then cause the emergence of
multiple �owpipes in the target location. However, if a system is of any con-
siderable complexity such an approach would probably cause a state explosion,
rendering the computation infeasible.



Chapter 4

Optimization

In context of the reachability analysis approach that has been presented in
Chapter 3, there are many opportunities for optimizing di�erent parts of the
procedure. A major factor that in�uences the computational complexity of
the algorithm is the e�ciency of the operations that are applied on the set
representations (i.e. on polytopes). As previously outlined in Section 2.2.2,
the Minkowski sum is explicitly hard to compute independently of whether a
V- or H-representation is used. In the following a di�erent approach for the
computation of the Minkowski sum based on the �ndings by Komei Fukudua
[Fuk04] shall be examined, which has also been implemented as part of this
thesis.

4.1 Minkowski Sum

v1 v0

v2 v3

Figure 4.1: Computed vertices of a brute force Minkowski sum approach.

For complex hybrid systems that cause the approximative polytopes to be
of high dimension and to have a high amount of vertices, the standard brute
force Minkowski sum computation may cause a huge computational overhead.
As every vertex of one summand is just aggregated with every vertex of the
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other summand, the result is exponential in its output size [Wei07] [Fuk04].
Even worse, in order to reduce the V-representation, the convex hull has to be
computed over the returned set of points (as some points may not be vertices
of the sum polytope, but inner points instead), which may be computationally
very expensive by itself. On the other hand, if the representation is not reduced,
its size increases signi�cantly.

Figure 4.1 illustrates the brute force computation for two polytopes R1 and
R2 in R2. We observe that in total nine unique points have been computed,
although only v0, ..., v3 are vertices and as such belong to the V-representation
of the sum polytope R1⊕R2. Indeed, some computed points are redundant and
consequently the brute force approach returns 4 · 4 = 16 instead of the required
four points. While duplicates may be recognized during the computation, to get
rid of any inner points, the convex hull has to be computed on the given set of
points.

An alternative approach proposed by Fukuda [Fuk04] is tailored for the Min-
kowski addition of k polytopes Pi, i ∈ {1,...k}, with dimension d and assumes
that every summand is a V-polytope. The general idea is to perform a reverse
search on the directed spanning tree of the sum polytope P = P1 + ... + Pk,
which is derived from the neighbor relations of the summands Pi. In principle
the algorithm traverses all possible edge directions in P , iteratively enumerating
the vertices as soon as they are identi�ed.

4.1.1 Reverse Search

R1

x

y

R2

R1 ⊕R2

v1

v2

ve

e2

e1

Figure 4.2: Vertex and edge decomposition in R1 ⊕R2.

Fukuda's algorithm makes use of several properties of the Minkowski sum.
The two most important are given by the following propositions [Fuk04] [GS93]:

Proposition 1: Let P1,..,Pk be polytopes in Rd and let P = P1 + ... + Pk
be the Minkowski sum result. A vector v ∈ P is a vertex of P if and only if
v = v1 + ...+ vk for some vertex vi of Pi. v = v1 + ...+ vk is referred to as the
Minkowski decomposition of vertex v.

Proposition 2: Let P1,..,Pk be polytopes in Rd and let P = P1 + ... + Pk.
Let u and v be adjacent vertices of P with the Minkowski decomposition u =
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u1 + ...+ uk and v = v1 + ...+ vk. Then ui and vi are either equal or adjacent
in Pi for each i, and all adjacent pairs are linked by parallel edges.

The essence of these propositions is that a) the vertices of the sum polytope
may be decomposed into vertices of the summands and b) the edges of the sum
polytope are decomposed into either vertices or parallel edges of the summands.
Figure 4.2 visualizes both propositions: The vertex v ∈ R1 ⊕R2 can be decom-
posed into vertices v1 ∈ R1 and v2 ∈ R2. Respectively, the two parallel edges e1
and e2 contribute to the edge e in the sum polytope, while the other two edges
at v1 and v2 do not.

The algorithm design is based on these two observations and the funda-
mental idea is the following: Starting from a pre-computed vertex v∗ of P , an
adjacency oracle is used to deduce any incident edges and therefore also any
neighboring point. Following a depth-�rst-search (DFS) pattern that is induced
by a local search, the neighbors are examined iteratively until all vertices have
been explored. Listing 2 abstractly describes the algorithm.

Input : The summands P1,...,Pk in V-representation
Algorithm:

1 v∗ := computeInitVertex (P1,...,Pk);
2 P.addVertex (v∗);
3 current := v∗;

repeat
4 while (current still has unexplored edges) do
5 next := AdjOracle (current);
6 if (localSearch (next) = current) then
7 P.addVertex (next);
8 current := next;

end

end
9 if (current 6= v∗) then

10 return to the predecessor of current;
end

until11 current = v∗ and all edges at current have been explored ;

Output: The sum polytope P in V-representation

Algorithm 2: Minkowski sum computation according to Fukuda.

First, the initial vertex v∗ is computed and added to the sum polytope P
(lines 1 and 2). Then, a depth-�rst-search is started at vertex v∗, i.e., the
algorithm terminates only if we return to v∗ and have explored all of its edges
(line 11). In context of the DFS, at every vertex v the adjacency oracle is queried
(line 5) for the next neighbor. As soon as a neighbor n is found, we perform the
local search on n to determine whether we proceed with our depth-�rst-search
on n or instead consider the next neighbor of v (line 6). If the local search on n
returns v, then n is added to the sum polytope P and we continue the DFS at
n (lines 7 and 8). If at any time we cannot advance at a vertex v because the
local search on any of its neighbors does not relate the neighbor to v again, we
return to the predecessor of v with respect to the DFS (line 10).
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Graphically, a directed spanning tree as depicted in Figure 4.3 with sink
node v∗ is constructed, where every node is a vertex of P and every edge refers
to an existing edge between two vertices in P . For every node but the sink, this
edge is pointed at the so-called parent of the node, which is determined with
the local search.

v∗

Figure 4.3: Exemplary spanning tree with v∗ as a sink.

Since the algorithm requires an initial vertex v∗ ∈ P to start, which is also
the sink of the spanning tree, we examine how one such vertex can be computed
in the following.

For an arbitrary vector p, a unique vertex vi may be computed for each
summand Pi such that vi is the maximum vertex within Pi in direction p. For
instance, a valid approach would be to maximize vi in each coordinate, with
the priority being induced by the order of appearance. Then v∗ = v1 + ...+ vk
holds according to proposition 1, yielding the vertex v ∈ P with the highest
coordinates (in relation to the variable order).

Having computed v∗, the next step is to query the adjacency oracle for a
neighbor, and then check if the DFS does indeed continue on this neighbor by
engaging the local search.

4.1.2 Adjacency Oracle

Recalling the purpose of the adjacency oracle, it is to identify incident edges for
a given vertex v ∈ P . This is achieved on basis of Proposition 2, which states
that every edge of the sum polytope may be derived from the edges of the
summand polytopes. However, this implies that the edges of the summands are
known, i.e., for each summand Pi there has to be an adjacency list which stores
the neighbors of any vertex vi ∈ Pi. Computing this adjacency list for each Pi
has a signi�cant impact on the complexity of the Minkowski sum algorithm, as
generating such a list in general is not trivial [Bur12]. Nevertheless, in Chapter
5 it will be explained why this impact is manageable in practice given the
previously presented reachability analysis procedure.

Assuming the adjacency lists are available for each Pi, the adjacency oracle
works as follows: First, for the given input vertex v ∈ P its decomposition
vertices v1,...,vk are retrieved. Then each possible edge direction may be checked
individually. Without loss of generality, let p1 be the vector that describes an
incident edge of v1 ∈ P1 (derived from the adjacency list). First, for all vertices
v2,...,vk it is checked whether there is a parallel edge that points in the same
direction as p1. Let all these directions be grouped together in ∆(p1). Then the
following linear feasibility problem is solved [Fuk04]:
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∃ λ s.t.
pT1 λ < 0

pTj λ ≥ 0 for all edge directions pj 6∈ ∆(p1)

If the problem statement is feasible, i.e. a solution λ exists, then there is
a hyperplane separating p1 from the other, non-parallel edge directions and
consequently p1 determines an edge of the sum polytope P [Fuk04]. Intuitively,
by requiring the scalar product pT1 λ to be less than zero, the vector λ points in
a direction that is roughly opposite to that of p1. In contrast, all other edge
directions pj must approximately describe the same direction as λ since pTj λ ≥ 0
has to be satis�ed. At most the pj 's may be orthogonal to λ, which is indicated
by the scalar product being exactly zero.

In case of feasibility, the target vertex v′ ∈ P with the decomposition v′ =
v′1 + ... + v′k may be computed based on this information. If vi contributed to
the set ∆(p1) with a parallel edge in Pi, then v′i is set to the target of that
edge, else v′i = vi. Figure 4.4 shows a slightly adjusted version of the previous
Figure 4.2. Assume we have successfully solved the above LP for this instance,
telling us that edge e is indeed an edge in the sum polytope R1 ⊕ R2. Then
we can deduce the vertex composition of v′ by considering the target vertices of
the parallel edges e1, e2 ∈ ∆(e1), i.e. v′ = v3 + v4. If hypothetically e2 was not
parallel to e1, so e2 6∈ ∆(e1), then v2 would contribute to the decomposition of
v′ instead of v4.

R1

x

y

R2

R1 ⊕R2

v1

v2

ve

e2

e1

v′

v3

v4

Figure 4.4: Computing the vertex decomposition of v′ ∈ R1 ⊕R2.

By considering each edge direction induced by the summands Pi iteratively,
the adjacency oracle may be used to compute all neighbors of a given vertex
v in P. To decide on which neighbor n the depth-�rst-search is continued, it is
necessary to perform a local search on each one of them as they are discovered.

4.1.3 Local Search

The local search determines the directed spanning tree that is constructed in
context of the reverse search by assigning to each vertex v ∈ P another vertex
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v′′ as its parent (with the exception of the sink v∗). Before examining the local
search in detail, a further proposition is needed that refers to the normal cone
N(v,P ) of a vertex v ∈ P [Fuk04]:

Proposition 3: Let v and v′ be two distinct vertices of the sum polytope P
and let mv ∈ N(v,P ), mv′ ∈ N(v′,P ) each be a vector in the normal cone of the
respective vertex. Then there exists a vertex v′′ adjacent to v such that N(v′′,P )
contains a point of form (1− θ)mv + θmv′ for some 0 ≤ θ ≤ 1.

It is important to note that v′′ = v′ may hold in this proposition. A normal
cone of a vertex is indirectly de�ned by its incident edges and generally consists
of multiple hyperplanes. The computation of the normal cone N(v,P ) is depen-
dent on the dimension d of P : Let E be the ordered set of edges incident to a
vertex v ∈ P . Then every sequence of d − 1 successive edges in E contributes
to one of d− 1 support vectors that de�ne one hyperplane of the normal cone.
Speci�cally, a vector vd describes one direction of the hyperplane if it is orthog-
onal to all d − 1 edges of one edge sequence, i.e. the scalar product is 0. As
an example, consider the normal cone depicted in Figure 4.5 where d = 3. The
vertex v has four incident edges and since d − 1 = 2, successive pairs of edges
have to be considered, of which there are four considering a clock-wise order.
Consequently, four support vectors may be constructed, where again every pair
of those de�nes one hyperplane of the cone. For instance, the edges e1 and e2
induce one of two hyperplane support vectors vd, with vd being orthogonal to
both source edges.

vd

e1 e2

v

Figure 4.5: The normal cone of a vertex.

The vector mv described in Proposition 3 may be computed by solving the
following LP [Fuk04], thus also yielding an interior point of the normal cone
N(v,P ). Let ∆ be the set of all edge directions of vertices v1,...,vk, vi ∈ Pi, where
v ∈ P is decomposed into these vertices and let K be any positive constant.

maximize λ0 s.t.

pTj λ+ λ0 ≤ 0 for all edge directions pj ∈ ∆

λ0 ≤ K

It is not important for ∆ to exclude any �false� edge directions, i.e. those that
are not present in the sum polytope, because they merely provide redundant
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inequalities for the normal cone. The solution λ that is returned by the LP
is the desired mv, while λ0 is a scalar and is used to assure the solution is
deterministic. In particular, since the LP maximizes λ0 the scalar product pTj λ
is minimized, intuitively trying to �nd the vector mv that points in the most
di�erent direction with respect to each pj .

By computing a vector mv′ ∈ N(v′,P ) for a distinct vertex v′ ∈ P accord-
ingly, the procedure to �nd the parent vertex of v can be initiated. In context
of the algorithm's local search v′ always refers to the sink node v∗, meaning the
parent relation is de�ned based on the sink of the spanning tree. To identify the
parent of vertex v, a ray r is shot from the target of vector mv to the target of
vector mv′ . Figure 4.6 illustrates this procedure for cones consisting of 3 hyper-
planes. Both vectors mv and mv′ are slightly perturbed for purposes of clarity.
However, perturbation may also be useful in context of degenerated polytopes
such that the local search is able to identify one unique parent.

x

y

z

mv

mv′

r
s

ev′ = v′′

v

Figure 4.6: Ray shooting from mv to mv′ .

The ray r intersects one hyperplane h of the normal cone N(v,P ), with inter-
section point s. By backtracing the computation of h, it is possible to identify
one unique edge e that is characteristic for the description of the hyperplane.
This edge is parallel to the normal of the intersected hyperplane and as such,
instead of backtracing one can iterate through ∆ and test for parallelism. Any
edge ei ∈ ∆ that ful�lls this test accurately describes the direction of an edge
e incident to v ∈ P that has v′′ ∈ P as its target. However, as decomposition
edges only yield the direction but not the exact distance, the adjacency oracle
is queried with direction ei to determine the parent v′′ explicitly. This step is
necessary as when traversing the spanning tree according to depth-�rst-search,
it might occur that v′′ is a vertex that has not yet been observed.
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In particular, we always shoot our ray at the sink vertex v′ = v∗, however
contrary to the case that is depicted in Figure 4.6, v′ = v′′ may not always hold,
i.e. for any vertex that does not have a direct edge to v∗.
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(a) First adjacency oracle call.

R1

x

y

R2

R1 ⊕R2

v∗v1

rs

(b) First local search call.
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Figure 4.7: Computation of the Minkowski sum according to Fukuda.

In the following, we consider the example given in Figure 4.7 to observe
how the algorithm operates as a whole. Here, two polytopes R1 and R2 are
aggregated to the sum polytope R1 ⊕ R2. Vertex v∗ is the pre-computed sink
that is used as a starting point for the algorithm.

First, in Figure 4.7a the adjacency oracle is queried based on the edge direc-
tions at the decomposition of v∗, yielding v1 (marked by Step 1 in Fig. 4.7c.).
In Step 2 the local search is engaged to retrieve the parent of v1 as shown in
detail in Figure 4.7b. Here, two edges of the summands are parallel to the nor-
mal of the intersected hyperplane and as such v∗ is the parent of v1. Therefore
v1 is considered to be a node in the spanning tree and the DFS proceeds from
here. Consequently, the adjacency oracle is asked for v1 and returns the vertex
v2 based on the edge directions at the decomposition vertices of v1 (Step 3).
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Again, the local search on v2 is successful and identi�es the parent v1 (Step 4),
i.e. the search continues from v2 onwards. Then, the adjacency oracle returns
v3 when queried from v2, however the local search does not identify v2 as its
parent (Steps 5 & 6).

As v2 has no other edges to examine, the DFS returns to the previous level
in the spanning tree, which is given by vertex v1. Again, all edges of v1 have
already been considered, such that the algorithm returns to the sink node v∗.
Here, there is one further edge to explore, which is done in Step 7. The call
to the adjacency oracle once again yields v3, but this time the local search
on v3 identi�es the node that the algorithm came from as its parent (Step 8).
Since neither v3 nor v∗ have any more edges that are unexplored, the algorithm
terminates. The spanning tree in its form after termination may be observed in
Figure 4.8.

v∗

v1 v3

v2

Figure 4.8: Spanning tree for the given example after termination.

Regarding computational complexity, the Minkowski sum algorithm pro-
posed by Fukuda is dependent on solving linear programs and runs in time
O(δ · LP (d,δ) · v(P )), whereas the required space is linear in the input size
[Fuk04]. Here, δ is the aggregation of all δi, i ∈ 1,...,k, where each δi is the
maximum vertex degree occuring in Pi. v(P ) refers to the amount of vertices
in the sum polytope P whereas LP (d, δ) denotes the required time to solve a
linear program with d variables and δ inequalities, with d again referring to the
dimension of the summands.

Having seen the theory behind both the reachability analysis and the Min-
kowski sum optimization, the next chapter introduces some details speci�c to the
implementation of both algorithms, followed by exemplary evaluation results.
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Chapter 5

Implementation & Evaluation

The purpose of this chapter is to provide insight into the implementation of
both algorithms that have been presented in Chapter 3 and 4 respectively. We
will also present evaluation results and brie�y introduce the data model that
represents hybrid automata.

The implementation took place in HyPro [HyP], which is a C++ library for
various state set representations and computations that are involved when per-
forming reachability analysis using these representations. HyPro is an ongoing,
collaborative project at the university RWTH Aachen funded by the DFG.

5.1 Hybrid Automaton Data Model

The hybrid automaton data model that is used for the reachability analysis is
described by the class diagram in Figure 5.1.

We can identify the following properties according to the previously given
formal de�nition (ref. Section 2.1):

� a HybridAutomaton consists of:

- a set L of Locations.

- a set T of Transitions.

- a set I ⊆ L of initial locations, where currently we assume |I| = 1.

- an initial valuation V , which is stored as a polytope.

� a Location has:

- an invariant, which consists of a matrix, a vector and an operator.

- an activity matrix A, describing the linear ODE ẋ(t) = Ax(t) as
introduced in Section 2.1.1.

- a set of pointers to outgoing transitions.

- and lastly a matrix E for external input. The purpose of this matrix
is to support non-autonomous systems (see Section 2.1.2), which are
not in the scope of this thesis, but may be part of future work.

� a Transition has:
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HybridAutomaton

locations:Location[*]

transitions:Transition[*]

init:Location

valuation:polytope

Transition

start:Location[1]

target:Location[1]

guard:struct

reset:struct

Location

invariant:struct

actA:matrix

out:Transition[*]

extE:matrix

#transitions
*

1

1

#locations

*

1

#out

*

1
#start 1

1

#target

1

pkg Root

Figure 5.1: Class diagram of the hybrid automaton data model. A hybrid
automaton consists of multiple transitions and locations, as well as one initial

location and a variable valuation in form of a polytope.

- a pointer to its start and target locations.

- a guard, which again consists of a matrix, vector and operator.

- a reset, implemented in form of a transformation matrix and an op-
tional translation vector.

In order to store matrices and vectors as well as perform operations on them,
HyPro uses the library Eigen3 [Eig]. Eigen3 is a C++ template library for linear
algebra and provides the MatrixBase class from which matrices and the like
may be derived.

In the given data model, the activity matrix A is of particular importance
as it determines the behaviour of the �owpipe that we want to compute. As
previously alluded in Section 2.1.1, the activities of a linear hybrid automaton
may also contain a constant part b: ẋ(t) = Ax(t) + b. Since the recurrence
relation we used in Chapter 3 for approximating the �owpipe segments is based
on equations of the form ẋ(t) = Ax(t), we have to encode b into a new matrix
A′. Equation 5.1 illustrates how this is done for an exemplary ODE.

ẋ(t) =

(
1 0
0 1

)
x(t) +

(
b1
b2

)
=⇒ ẋ(t) =

1 0 b1
0 1 b2
0 0 0

x(t) (5.1)



5.2. Reachability Algorithm 31

A′ has one additional row and column when compared to A, which are used
to encode the constant factor b. In particular, a new arti�cial dimension and
thus also a variable is introduced into the model. Let x3 be this variable. We
require the row in A′ that corresponds to x3 to be a strict zero row, and by
setting x3(0) = 1 initially we get the system of linear equations as illustrated in
Equation 5.2.

ẋ1(t) = x1 + x3 ∗ b1 = x1 + b1

ẋ2(t) = x2 + x3 ∗ b2 = x2 + b2

ẋ3(t) = 0

(5.2)

We can see that by setting x3 to 1 and keeping it at that value independently
of how much time passes, we can emulate a constant factor b that is added onto
the variables x1 and x2.

However, it is important to note that x3 is only considered to be an arti�cial
dimension. Therefore we have to explicitly exclude it for certain parts of the
reachability algorithm, i.e. when bloating a �rst approximation based on the
computed upper bound for the Hausdor� distance. Since we do not want to
bloat in dimension x3, we have to be aware of whether such an encoding took
place or not.

After this brief introduction to how hybrid automata are stored and pro-
cessed in HyPro, the next section will deal with some implementation details of
the reachability algorithm.

5.2 Reachability Algorithm

Let us recall the general reachability algorithm that has been presented in Chap-
ter 3:

Input : Set Init of initial states

Algorithm:
1 Rnew := Init;
2 R := ∅;
3 while (Rnew 6= ∅) do
4 R := R ∪Rnew;
5 Rnew :=Reach (Rnew)\R;

end

Output: Set R of reachable states

Here, Reach(..) is called on a set of states and computes those states
that are reachable from the given set. Since this reachability relation includes
both continuous as well as discrete steps, in the implementation the func-
tionality is split into two sub-functions: computeTimeClosure(..) and
computePostCondition(..).

The function computeTimeClosure(..) computes the �owpipe approx-
imation for one speci�c location. Its implementation is abstractly described by
Listing 3.
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Input : One location l, a corresponding valuation X0 and a timebound tbound.

computeTimeClosure()
1 ts := tbound/discretizationFactor;
2 InitApprox := convexHull (X0 ∪ etsAX0);
3 αts := computeHausdorffBound(X0, ts, A);
4 Bloating := Ball(αts);
5 Ω0 := InitApprox⊕Bloating;
6 lastSegment := Ω0;
7 for (i ≤ tbound) do
8 if (lastSegment not in invariant of l) then abort ;
9 F.addSegment(lastSegment);

10 lastSegment = etsA(lastSegment);
11 i+ = ts;

end

Output: Flowpipe approximation F for location l.

Algorithm 3: Computing the �owpipe approximation of one location.

The function �rst approximates the initial �owpipe segment Ω0 according to
the procedure presented in Chapter 3: Ω0 = CH(R0(X0) ∪Rδ(X0))⊕B(αδ).

To do so, we �rst compute our approximation step size ts = δ in line 1 of
Listing 3. Since the valuation X0 is stored as a polytope, the initial approxi-
mation can be computed (line 2), which is bloated based on an upper bound
for the Hausdor� distance (lines 3 and 4). The result of the Minkowski sum
then yields the �nal approximation of Ω0 (line 5). In lines 7 to 11 we compute
the following �owpipe segments iteratively, until either the timebound tbound is
reached or the invariant of location l is violated, causing the computation to
stop. It is noteworthy to mention that the computation of the matrix exponen-
tial is currently delegated to the Eigen3 library, which is bene�cial in the sense
of reliability, but does not leave any space for optimization or parametrization.

The function computePostCondition(..) on the other hand computes
the reachability in context of one discrete step, i.e. one transition in the au-
tomaton. It is called on each �owpipe segment of one location individually, �rst
asserting whether the transition's guard is ful�lled. Again, Listing 4 conveys
the basic idea.

In line 1 the intersection between the given �owpipe segment and the guard
of the considered transition is computed. This boils down to intersecting either
two polytopes, or one polytope (the �owpipe segment) and a hyperplane (the
guard). If this intersection is empty, intuitively it is not possible to make this
discrete step given the variable valuation as de�ned by the �owpipe segment
(line 5). However, if the intersection is not empty the reset of the transition
is applied to this intersection, which is a linear transformation followed by an
optional translation (line 3). The result is a new valuation Val in the target
location of t, which is stored as a polytope.

Since computePostCondition(..) only processes individual �owpipe
segments, the function that calls it has to provide the scope of a whole, connected
�owpipe. As outlined in Chapter 3, if multiple �owpipe segments have a non-
empty intersection, all the returned valuations are united in the target location.
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Input : One �owpipe segment P and one transition t.

computePostCondition()
1 Intersection := P ∩ t.guard();
2 if (Intersection 6= ∅) then
3 Val := t.applyReset(Intersection);
4 return Val ;

end
else

5 return false;
end

Output: False or a new X0 in the target of t.

Algorithm 4: Application of one discrete step to a �owpipe.

By applying the convex hull thereafter, we obtain the new initial state set X0,
which may be used to approximate one �owpipe of the new location.

In the following, results of the algorithm shall be presented.

5.2.1 Reachability Evaluation

In this section we will focus on the reachability in context of one location (dis-
regarding any discrete steps), as this is where the major work is done and where
various approaches in literature di�er.

First, a brief toy example shall illustrate how the reachability approximation
result compares to the exact �owpipe. Let X0 = {(0,0)T , (0,1)T , (1,0)T , (1,1)T }
be the initial valuation representing a two-dimensional box of width 1. As
any box is also a polytope, X0 is a valid input for the reachability algorithm.
Furthermore, let us assume we want to scale this box by a factor of two in each
time-unit. Then the linear ODE is given as follows:

ẋ(t) =

(
ln(2) 0

0 ln(2)

)
x(t) (5.3)

Here, we do not include any constant part b, such that our matrix A describes
only the two dimensions that are indeed part of the example. For the step size
we choose δ = 1 for purposes of clarity. Also, we set x1 < 16 ∧ x2 < 16 as the
invariant, which limits the �owpipe size to three segments given δ = 1, since we
don't count X0 to be a segment of its own.

Then the upper bound for the Hausdor� distance yields the result:

αδ = (eδ||A|| − 1− δ||A||) max
x∈X0

||x||

≈ 0.306852

The exact �owpipe for this exemplary setup is given in Figure 5.2a, where
the initial box X0 is �lled white. We can see that the �owpipe consists of three
segments, each being indicated by a di�erent colour, starting with red. However,
it has to be pointed out that each segment also completely contains the previous
one due to the setup, which may not be visible in the �gure. As a comparison,
the result of the reachability algorithm is illustrated in Figure 5.2b.
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Υ0

Υ1

Υ2

(a) Exact �owpipe.

Ω0

Ω1

Ω2

(b) Approximated �owpipe.

Figure 5.2: Comparison between approximation and exact result.

First, we may observe that the approximation also consists of three �owpipe
segments Ω0,Ω1 and Ω2. The approximation of the �rst �owpipe segment Ω0 is
essential, as the error here is accumulated in the later segments. When compar-
ing both �gures with each other, it is obvious that Ω0 is an over-approximation
of the exact set Υ0 in Figure 5.2a. In particular, one vertex of Υ0 is (2,2),
whereas the equivalent vertex for Ω0 is (2 +αδ, 2 +αδ) ≈ (2.3069, 2.3069). Fur-
thermore, since the bloating has been performed on the basis of a 2-dimensional
hypercube, there is also an over-approximation into the negative directions. For
instance, the vertex (−αδ,−αδ) ≈ (−0.3069,−0.3069) is also part of Ω0.

Nevertheless, as the exact �owpipe is generally not computable for hybrid
systems [HKPV95], an over-approximation on basis of the presented reachability
algorithm still allows us to derive statements about the reachable state set. For
instance, if a safety property holds on the over-approximation then it also holds
on the exact solution.

In the following the result of the reachability algorithm that has been imple-
mented in context of this thesis shall be compared to the computations of the
tool Flow*, which will be introduced in detail in Chapter 6.

The initial valuation of the test case is again described by a box X0 =
{(0.9, − 0.1)T , (0.9,0.1)T , (1.1, − 0.1)T , (1.1,0.1)T }, whereas the ODE is given
by:

ẋ(t) =

(
−1 −4
4 −1

)
x(t) (5.4)

The time horizon is set to 5 seconds and the employed stepsize is 0.05,
resulting in a total of 100 �owpipe segments for the approximation. The output
of both algorithms is shown in Figure 5.3, where GnuPlot [Gnu] has been used
for visualization.

The initial valuation box is included within the �rst approximated �owpipe
segment and as a whole, both approximation results are reasonably similar.
The major di�erence lies in the set representation that is used in each case:
Whereas Flow* is based on octagons, our implementation yields polytopes with
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(a) Output of Flow*, using octagons for approximation.
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(b) Output of our implementation, making use of polytopes.

Figure 5.3: Comparison between two reachability approximation approaches.
Both plots have been generated with GnuPlot.
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(c) Step size: 0.01 | Segments: 500 | αδ = 0.0014 | Computation time: 0.155s

Figure 5.4: Impact of di�erering step sizes. The time horizon is always 5,
whereas individual parameters for each case are listed below the �gures. Here

αδ refers to the computed Hausdor� distance estimate.
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eight vertices each as well, although they are rather hard to identify. In case
of computation time, both approaches required less than 0.1 seconds including
writing the data to an output �le.

In Figure 5.4 the impact of di�erent step sizes is illustrated: Sub�gure 5.4a
shows the result for a step size of 0.1, while Sub�gures 5.4b and 5.4c each provide
a re�nement. A decrease in the step size correlates to an increase in the total
amount of �owpipe segments and as such the approximation is more accurate,
albeit at the cost of taking longer.

Having seen how the reachability algorithm performs, we continue with some
implementation details of the Minkowski sum algorithm.

5.3 Minkowski Sum

Before evaluating the implemented Minkowski sum algorithm, in the following
some speci�c deviations from its original form as suggested in [Fuk04] will be
introduced.

Summation of k polytopes

The approach proposed by Fukuda is tailored for the simultaneous addition of k
polytopes P1,...,Pk. In contrast, the implementation in this thesis is restricted
to the addition of two polytopes at one time. While an addition of k polytopes
may be simulated by sequentially adding each polytope onto the sum of the
previous iteration, there might be some computational concerns when doing so
as outlined in [Wei07].

In particular, summing all polytopes in a single computation has been ex-
tensively compared against an incremental scheme. The restraining factor of
the latter has been identi�ed to be the adjacency list that is required at ini-
tialization of the algorithm: Instead of computing the adjacency list for each of
the k summands once, the iterative approach required a recomputation of the
adjacency list for each intermediate sum, which took signi�cantly more time
than solving the Minkowski sum computation itself [Wei07].

Therefore, in this thesis Fukuda's algorithm has been extended to also com-
pute the adjacency list of the sum polytope during execution. This is done as
soon as a neighboring vertex is discovered by the adjacency oracle. While this
requires a greater amount of memory to store intermediate sum polytopes, the
computational complexity stays the same.

As suggested in [Wei07], considering this adaptation an incremental com-
putation of the sum of k polytopes may even be bene�cial. Furthermore our
application area, which is the reachability algorithm, only requires two poly-
topes to be aggregated at the same time, which happens in context of bloating
the �rst, possibly under-approximating polytope.

Indeed, following an incremental scheme in the context of the reachability
algorithm we only need to compute exactly two adjacency lists per �owpipe:
The �rst one for the initial polytope X0 that is used as a basis for the �owpipe
approximation and the second one for the hypercube which is used for bloating.
As the Minkowski sum algorithm is extended to update the adjacency list of the
sum polytope as soon as vertices are discovered, our initial �owpipe segment Ω0

already stores all neighbor information that is needed. Since later segments are
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only computed by application of a linear transformation to the previous seg-
ment, we can preserve the adjacency list by extending the linear transformation
procedure.

Therefore, considering the given context, having to compute the adjacency
list for a polytope before application of the Minkowski sum has a rather small
impact on the e�ciency of the reachability algorithm.

Optimization of local search frequency

A further optimization to the Minkowski sum algorithm that took place in this
thesis is in regard to how often the local search is engaged. The original proposal
by Fukuda in [Fuk04] suggests a redundant use of the local search function when
determining to which node the algorithm returns in the spanning tree as soon
as one branch has been completely examined. Instead of engaging the local
search to query for the parent of the already processed node, we store parents of
nodes in a map as soon as they have been computed once. Therefore, the local
search is not unnecessarily engaged multiple times on the same vertex, which
may result in up to n − 1 less calls to the function (where n is the amount of
nodes in the spanning tree).

5.3.1 Performance Comparison

In the following, the implemented Minkowski algorithm (also referred to as re-
verse search) shall be compared to a brute force implementation. Here, brute
force again refers to the method of aggregating every vertex of one summand
with every vertex of the other summand, followed by an application of the con-
vex hull (ref. Section 4.1). The goal is to examine whether the proposed imple-
mentation is bene�cial for complex hybrid systems that often occur in practice,
where 10+ variables are involved and consequently polytopes of relatively high
dimension with a multitude of vertices have to be aggregated.

x

y

z

Figure 5.5: Setup for the vertex test of the Minkowski sum.
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For the evaluation, we assume the adjacency list of the summand polytopes
to be pre-computed, as we previously identi�ed this requirement to have a neg-
ligible impact given the reachability analysis context. All computations have
been performed on a commercially available Intel I7 notebook. Speci�cally, up
to 4 GB of RAM and four cores each with a CPU frequency of 1.6 GHz were
available.

Dimension #Vertices Reverse Search Brute Force
3 8 0.031 0.002
3 20 0.072 0.031
3 100 0.404 2.705
3 200 0.985 24.119
3 500 3.756 708.690
3 1000 11.809 -
3 5000 229.142 -

Table 5.1: Vertex test results: computation time in seconds. For upwards of
100 vertices the performance of the reverse search was signi�cantly better.

The �rst evaluation example consists of the addition of two polytopes that
each have the form of a prism and will be referred to as the vertex test. One
summand is conceptually depicted in Figure 5.5, whereas the second summand
is just a shifted copy of the �rst one. In this test case the dimension d is always
three, whereas the amount of vertices that the prism consists of is variable. It
is noteworthy that the prism will always retain its symmetry, i.e. vertices will
be lost or gained at both of its sides.
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Figure 5.6: Bar chart that visualizes the results for the vertex test.

There are multiple reasons for why this speci�c example setup has been
chosen. First, the prism structure allows for pre-computation of the adjacency
list with relatively low e�ort and secondly, a moderate amount of inner points
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are discarded in context of the brute force algorithm. The results are an average
over three iterations of the same computation and can be observed in Table 5.1.

While the brute force approach performs better for a low amount of vertices,
the reverse search algorithm is distinctly bene�cial when it comes to higher
amounts. In fact, for more than 500 vertices it does not seem feasible to use the
brute force computation anymore, since the needed computation time already
exceeded 10 minutes, which is a strong contrast to the 3.8 seconds that the
reverse search required. Consequently, the measurements for 1000 and 5000
vertices have only been performed for the reverse search algorithm. Still, even
for 5000 vertices the reverse search took less time than the brute force approach
required for 500, suggesting a great scalability with respect to the total amount
of vertices in a polytope. Figure 5.6 summarizes the results of the comparison
in context of a bar diagram.

A further test has been conducted where both the vertices and the dimension
are variable (albeit we will still refer to it as the dimension test). The test
setup consists of two unit hypercubes, where again the second summand is a
shifted version of the �rst one. In general, for dimension d a unit hypercube
has 2d vertices and each vertex has d neighbors. Two exemplary hypercubes for
dimensions 2 and 3 respectively are shown in Figure 5.7.

x
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z

Figure 5.7: 2-dimensional hypercube (left) and 3-dimensional hypercube
(right).

Again, results may be observed in Table 5.2 and re�ect the average over
three measurements. Initially, the brute force algorithm is more competitive
than in the vertex test when compared to the reverse search. However, as both
the dimension and the amount of vertices increase, the computation time for
the brute force approach rises to signi�cant heights again. The bar diagram in
Figure 5.8 illustrates the results graphically.

Intuitively, it is reasonable to expect that the brute force approach scales
comparatively better for higher dimensions, while the reverse search algorithm
scales better for a high amount of vertices. The reason being that the brute force
method aggregates every vertex in one set with every vertex in the other set,
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i.e. there is a high computational e�ort for a lot of vertices, but only changing
the dimension does not impact the performance as much.

Dimension #Vertices Reverse Search Brute Force
2 4 0.005 0.001
4 16 0.106 0.018
6 64 1.329 1.203
8 256 12.015 100.266
9 512 43.327 874.063
10 1024 123.983 -
11 2048 364.687 -

Table 5.2: Dimension test results: computation time in seconds. From
dimension 6 onwards the reverse search performed either comparably or

signi�cantly better.

In contrast, the reverse search enumerates the vertices of the sum, such that
an increasing amount of vertices has a lesser e�ect on the required computation
time. In case of an increasing dimension however, vertices often also gain addi-
tional neighbors. As outlined in Chapter 4, the linear programs that are solved
in context of the reverse search depend on the amount of edges of the vertex
decompositions. Since those increase if a decomposition vertex gains additional
neighbors, it is reasonable to expect the reverse search algorithm to perform not
quite as well for an input of high dimension. However, as a side e�ect we gain
the neighborhood information without investing further computational e�ort.
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Figure 5.8: Bar chart that visualizes the results for the dimension test.

Altogether, we have seen that the implemented algorithm for the Minkowski
sum is a signi�cant improvement over a brute force approach. Since the Minkowski
sum is required in context of the reachability algorithm, we can expect to harvest
bene�ts there as well.
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Chapter 6

Related Work

This chapter gives insight into some related work for the complex topic of reach-
ability analysis in context of hybrid systems. First, an overview over existing
approaches is given, followed by the introduction of some tools that implement
reachability algorithms.

6.1 Reachability Analysis in Literature

In literature, there is a fair amount of approaches that also make use of polytopes
to approximate reachable state sets.

For instance, Krogh et al. [CK98] propose a procedure that is very similar to
the one implemented in this thesis. However, instead of relying on the Hausdor�
distance as a metric to determine a reasonable over-approximation, Krogh et
al. consider linear optimization problems to minimize the approximation error.
In order to solve those, it is necessary to simulate executions of the underlying
hybrid system, e.g. with MATLAB [CK98].

Another approach suggested by Alur et al. in [ADI02] combines the idea
of predicate abstraction with the polyhedral approximation of reachable sets.
The general notion is to compute an abstraction of the hybrid system based on
user-supplied predicates, where the continuous variables in the origin system are
replaced by discrete boolean variables. A state in the abstraction corresponds to
an existing truth assignment of the input predicate, such that if the abstraction
satis�es a certain property, so does the original system [ADI02]. To analyze
the reachability of the system, a veri�er performs a search on the abstraction
by manipulating the predicates, which are stored as polytopes. However, the
drawback of the presented approach is that the procedure is reliant on the
quality of the input predicates.

Leaving the realm of polytopes, there are various algorithms that make use
of other set representations to approximate the reachable set of hybrid systems,
some of which will be brie�y introduced in the following.

Zonotopes

In Section 2.2.2 zonotopes have been introduced as a sub-class of polytopes
with special properties. The main bene�t of using zonotopes over polytopes
to approximate reachable state sets lies in the e�ciency of the implementation
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[ADF+06]. Since most approximation methods involve the Minkowski sum,
polytopes cause an increase in representation complexity at each aggregation.
As zonotopes may be represented as the Minkowski sum of line-segments [LG09],
the Minkowski addition of two zonotopes can be computed very e�ciently. How-
ever, zonotopes have their own drawback in the context of reachability analysis:
Each successive linear transformation that is applied on a zonotope causes an
increase in its generators, leading to the computations becoming intractable for
large time bounds [ADF+06]. A solution to this problem has been proposed in
context of [Gir05], where a zonotope of higher order is over-approximated by a
zonotope of lower order and thus the representation complexity can be reduced.

Concluding, zonotopes are a considerable alternative to polytopes when ap-
proximating reachable state sets. While polytopes may generate more precise
approximations especially for larger time horizons, zonotopes allow for a very
e�cient and scalable implementation.

Besides approximating reachable state sets by geometric objects, there is
also the possibility of using support functions.

Support functions

Often, support functions allow for a closer approximation of the �rst �owpipe
segment compared to the alternatives [LG09], however there are frequently accu-
racy problems in context of discrete transitions, where the guard of a transition
(often a hyperplane) has to be intersected with the convex set that is de�ned by
the support function. Therefore, in [Ray12] an alternative approach to compute
the support function of the intersection is proposed, which reduces the task to
a convex minimization problem.

Non-linear hybrid systems

Finally, all previous considerations as well as the implementation that took
place in context of this thesis were targeted at linear hybrid systems. In case
of non-linear systems, where the dynamics are de�ned by non-linear di�eren-
tial equations, the reachability analysis is comparatively harder. A proposed
approach in this context is often referred to as hybridization, where the state
space is split into small disjoint regions [ADF+06]. For each region, a primitive
piecewise approximation of the system is computed and then the reachability
analysis is initiated on these region approximations.

6.2 Existing Tools

In the following, two tools that implement reachability analysis algorithms are
introduced brie�y.

6.2.1 SpaceEx

SpaceEx is a tool that serves the purpose of performing safety analysis for hybrid
systems by computing the reachable state set [FLGD+11]. To do so, it com-
bines both support functions as well as polytope representations to compute the
over-approximation. SpaceEx has been proven to be capable of handling fairly
complex systems, with up to 200 variables [Ray12]. The hybrid system that is
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to be analyzed may be speci�ed as a network of hybrid automata and the model
is stored in a proprietary �le format. Furthermore, SpaceEx also supports the
analysis of some non-linear hybrid systems by incorporating the approach of
hybridization as outlined previously.

6.2.2 Flow*

Flow* [Flo] is a fairly new tool that has been released in November 2013. The
tool supports hybrids systems with non-linear ODEs as well as uncertain inputs
and computes Taylor model �owpipes. The approximation step sizes are adap-
tively changed during the �owpipe construction and the visualization is done in
context of a projection on a two dimensional plane.



46 Chapter 6. Related Work



Chapter 7

Conclusion

7.1 Summary

In this thesis, methods to approximate the reachable state set of linear hybrid
systems have been explored. After a brief introduction to existing set represen-
tations and the operations that need to be performed on these sets, the general
reachability algorithm for autonomous systems has been introduced. The pre-
sented algorithm uses polytopes to approximate state sets and relies on the
Hausdor� distance to guarantee an over-approximation.

Furthermore, optimization opportunities for the reachability analysis have
been investigated. In particular, since the main hindrance for the polytope based
analysis relates to the computation of the Minkowski sum, a sophisticated ap-
proach that enumerates the vertices of the sum polytope has been implemented.
The results of the evaluation propose that the sum implementation is able to
handle even complex hybrid systems, while the reachability algorithm provides
accurate over-approximations of the reachable state sets for at least the tested
examples.

Nevertheless, there is a lot of room for improvement and additional features
in context of future work.

7.2 Future Work

One of the most important tasks is the extension of the reachability algorithm to
support non-autonomous systems as introduced in Section 2.1.2. As the hybrid
automata data model already considers an optional user input, what is left is
to adjust the recurrence relation according to which the �owpipe segments are
computed. In particular, a set V that accounts for the in�uence of the uncertain
inputs has to be added onto the previously computed segments [ADF+06]:

Ωi+1 = eδAΩi ⊕ V (7.1)

As this new recurrence relation implies the use of the Minkowski sum at
every computed �opwipe segment, it is of even greater bene�t that we found a
scalable solution that has already been implemented successfully.

Furthermore, some other operations may be optimized to improve the com-
putational e�ciency of the reachability algorithm. Notably, the computation of
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the convex hull seems to provide the opportunity to harvest signi�cant bene�ts
as outlined in [AB95].

Also, currently visualization for the the computed �owpipe approximations
is only available for two dimensional input models. An extension to higher
dimensions is desireable, where a projection of the results to a 2D or 3D plane
is possible in context of GnuPlot [Gnu].
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