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Abstract

There are several decision procedures for the existential fragment
of real algebra, for example the cylindrical algebraic decomposition
(CAD) method or the virtual substitution. Both need efficient ways
to isolate real roots of univariate polynomials and operate on these
roots afterwards.
In this thesis we discuss different real-root representation techniques
and isolation algorithms, and propose optimizations and efficient com-
binations of them to increase their applicability in real-algebraic de-
cision procedures.
While real roots are traditionally isolated by bisection, we generalize
this to an arbitrary partitioning. This allows for the integration of
approximate methods, such as the Aberth iteration or the companion
matrix method, in the first bisection step.
The real roots are usually represented by intervals with exact bounds.
These are bounds represented by numbers of an arbitrary precision
library. To speed up computations on such real roots, we explore
the usage of inexact intervals that make use of native floating-point
operations.
The content of this thesis is implemented and used in the CADmodule
of the SMT-RAT project. Experimental results in terms of compar-
isons between different configurations of the new algorithm and other
algorithms are presented. While the new isolation algorithm proves
to be an improvement for SMT-RAT, the performance of the CAD
method as a whole still suffers from the preliminary integration of the
new data types for inexact operations.
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1 Introduction

Satisfiability checking (SAT) as well as its extension Satisfiability modulo theories
(SMT) became widely used in practice in the last decades. While SAT checks for-
mulas from the propositional logic for satisfiability, SMT combines a SAT solver with
a theory solver to decide formulas from the existential fragment of first order logic over
some theory.

1.1 Satisfiability Modulo Theories

The general architecture of an SMT solver is depicted in Figure 1.1. There are two
major subroutines that are needed, a SAT solver and a theory solver for the underlying
theory.

Quantifier-free first order logic formula
over some theory

SAT solver

theory solver

Boolean skeleton

set of constraints UNSAT

UNSAT

SAT

Figure 1.1: Architecture of a DPLL-style SMT solver

At first, the SMT solver transforms the input formula into negation normal form and
pushes the negations into the constraints. Then it creates a Boolean skeleton from
this formula replacing every constraint by a fresh Boolean variable. This results in a
propositional formula that the SAT solver can check for satisfiability.

For every satisfying assignment found by the SAT solver, the theory solver checks
whether this assignment is consistent in the theory. The assignment is transformed
into a set of theory constraints by selecting all constraints from the original formula
for which the corresponding Boolean variable is set to true by the current assignment.
The theory solver can then check whether this combination of constraints is satisfiable
in the theory.
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1 Introduction

The negation of those constraints whose corresponding Boolean variable is set to false
need not be considered due to the special form of the formula. The formula would still
satisfied, if such a Boolean variable was set to true.

If the combination of constraints is satisfiable, the whole formula is satisfiable and the
SMT solver returns SAT. If the constraints are unsatisfiable, this result is returned to
the SAT solver which searches for more satisfying assignments of the Boolean skeleton.
Once the SAT solver cannot find further satisfying assignments, the whole formula is
unsatisfiable and the SMT solver returns UNSAT.

Since different further issues like, for example, less lazy solving or the generation of
explanations for unsatisfiability by the theory solver, are not closely related to this
work, for a more detailed discussion refer to [KS08].

There are several theories that are supported by different SMT solvers. Examples
are linear real arithmetic pR, 0, 1,`,ăq, nonlinear real arithmetic pR, 0, 1,`, ¨,ăq and
linear integer arithmetic pZ, 0, 1,`,ăq. The focus of this thesis is in the nonlinear real
arithmetic.

There exist several methods to decide this theory. Approaches like the virtual substi-
tution are useful in practice but incomplete as there are always cases such that they
cannot decide the satisfiability of a given problem.

A complete approach is the cylindrical algebraic decomposition (CAD) method, however
it exhibits a doubly exponential running time in the number of variables. Our standard
application throughout this thesis is the CAD method, but efficient methods for real
root isolation are also used in the virtual substitution and in other decision procedures.

1.2 Cylindrical Algebraic Decomposition

Before explaining the idea of the CAD method, we first have a closer look at nonlinear
real arithmetic. A constraint in canonical form has the form p „ 0 with p being a
polynomial expression and „ P tă,ď,“,ą,ěu a relation. As for the CAD the actual
relation is not of interest, we only operate on the polynomials.

Given a set of polynomials Pn in n variables, a cylindrical algebraic decomposition
is a partitioning of Rn into regions such that all polynomials are sign invariant on
every region. A polynomial p is sign invariant on a region R Ď Rn if pprq „ 0 with
„ P tă,ą,“u for all r P R, that means the polynomial does not change its sign on R.

The consequence is that for any region, all points within this region are equivalent with
respect to the satisfaction of real-arithmetic formulas containing only polynomials from
Pn. If such a partitioning is computed, we only have to select an arbitrary sample point
from each region and check whether this point is a solution to the problem.

A set of sample points therefore constitutes a finite representation of Rn with respect
to the satisfiability of the given problem. To check the full infinite Rn for satisfiability,
only these finitely many sample points have to be checked.
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1.2 Cylindrical Algebraic Decomposition

The CAD method is an algorithm to obtain such a partitioning. We do not explain this
method in detail but only give a rough overview and show where real root isolations
are involved. A visualization is given in Figure 1.2.

Pn, |Pn| “ k

Pn´1, Opk2q

...

P1, Opk2
n

q

project

project

project

CAD1

CAD2

...

CADn

lift˚

lift˚

lift˚

sample˚

Figure 1.2: Outline of the CAD method

The CAD method starts with a set Pn of polynomials in the variables x1, ..., xn and
iteratively eliminates the variables through projections and thereby constructs a new
set Pk´1 of polynomials in the variables x1, ..., xk´1 out of Pk until P1 contains only
univariate polynomials in the variable x1. The projections preserves the roots of the
polynomials such that if ν P Rk is a root of a polynomial from Pk, there is a ν 1 P Rk´1

that is a root of a polynomial from Pk´1 and ν equals ν 1 in the first k´ 1 dimensions.

These projections create a new polynomial for each pair of polynomials in Pn and
hence produce quadratically many polynomials in each step. Therefore if |Pn| “ k,
then |P1| P Opk2

n
q.

For each univariate polynomial in P1 the sample routine calculates one sample point for
every sign-invariant CAD region. This set of sample points consists of the real roots,
an additional point between each two neighboring roots, a point below the smallest
real root and a point above the largest real root.

These real sample points are iteratively lifted to sample points in Rn by the lift oper-
ation. Given a polynomial p P Pk and a sample point s P Rk´1, lift substitutes s for
x1, ..., xk´1 which results in a univariate polynomial. These substitutions require addi-
tions and multiplications on the sample points, hence we must provide such operations
on the real roots.

Now sample is used once again to find sample points for these new polynomials. The
sample point s is extended with all real sample points to new sample points in Rk.

The sample routine, whose main part is finding the real roots, is called doubly expo-
nentially often in the number of variables and hence optimizations at this point have a
great impact on the overall performance. During the lifting, there are many operations
on the roots, mostly the partial evaluation of polynomials, which can also be optimized.
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1 Introduction

1.3 Overview

In this thesis, we explore different ways to find real roots and analyze possibilities to
speed up these methods as well as the subsequent operations on the roots in the lift
routine of the CAD method.

The implementation of the described algorithms and optimizations was done within
the SMT-RAT project [CLJA12], a toolbox that contains a SAT solver and several
decision procedures for nonlinear real arithmetic, including virtual substitution and
the CAD method. The root finding techniques described in this thesis were integrated
into the CAD method but may also be used in other modules.

The CAD method, along with several other routines, is not implemented in SMT-RAT
itself but in GiNaCRA [LA11], our extension to the GiNaC [BFK02] library.

We start in Chapter 2 with basic definitions of numbers, intervals and polynomials,
and some general insights on how these structures may be represented in a computer.

Afterwards, in Chapter 3 we present several approaches for real root finding and high-
light their benefits and drawbacks.

In Chapter 4 we continue with the operations on the real roots and see how we can
perform them properly. An important point is performance, hence we look how we can
use native floating point types maintaining correctness of our operations.

Some detail about the implementation is given in Chapter 5. We describe the software
structure, present a few methods in more detail and explain a few decisions in our
software design.

We have tested our implementation and compared to other options to measure perfor-
mance and quality of the results. We present the results in Chapter 6.

Finally, we give a summary and the status of the implementation in Chapter 7. We
then attempt an outlook about future work on this topic and possible applications
outside of the CAD method.

The main contribution of this thesis are as follows:

• We propose optimizations and novel combinations of existing root finding algorithms
for real root isolation.

• We dynamically connect two different representations for real roots, with the goal
of decreasing the computational costs.

• We implement the proposed approaches within the SMT-RAT project.

1.4 Related Work

Solutions to find real roots of a polynomial, or a function in general, are mostly in-
vestigated in two different communities. On the one hand, there are approximating
algorithms from numerical mathematics, on the other hand there are formal methods
that need provable guarantees on the results. Combined approaches are rare, although
they may be of interest for fast computations.
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1.4 Related Work

Approximating algorithms usually use a fixed-point iteration to refine approxima-
tions for the roots, usually also looking for complex roots. Examples are the New-
ton iteration, the Durand-Kerner method [Ker66], the Aberth method [Abe73] or the
Jenkins-Traub algorithm [JT68]. Another non-iterative method is the companion ma-
trix method [EM95].

The standard algorithm to find real roots in formal methods is bisection which in turn
requires an estimation about the maximum size of a real roots, algorithms to count the
number of real roots within a given interval and splitting heuristics for the bisection
process.

Upper bounds on the absolute value of the real roots of a polynomial have been found,
among others, by Cauchy [Cau28], Fujiwara [Fuj16] and Hirst and Macey [HM97].

As for the number of real roots within an interval, there are two popular possibilities.
Sturm sequences [HM90] can be used to obtain the exact number of real roots whereas
Descartes’ rule of signs [CA76] yields an upper bound on the number of real roots.

The splitting heuristic is the essence of the bisection algorithm, hence there is some
research about what constitutes a good splitting heuristic. Recent research analyzes the
usage of the Newton method [Sag12,Ye94]. This thesis contributes several theoretical
considerations about the usage of the Durand-Kerner method, the Aberth method and
the companion matrix method as splitting heuristic and provides a few experimental
results.

The representation of real roots by intervals is well-known also in the context of the
CAD method [CJK02] and the possibility to use inexact computations for intervals has
already been studied in [HJVE01,CJK02]. The necessity to switch between exact and
inexact intervals on demand has been analyzed [She96,CJK02]. The scope of this thesis
contains a practical implementation of this concept within the SMT-RAT [CLJA12]
project.
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2 Preliminaries

2.1 Representation of Numbers

Whenever we calculate with real numbers, we have two choices: Using the inexact
native floating-point types or using a library offering an exact data type. The latter
one is usually used whenever precision is crucial and the native precision is not enough.

Today almost all platforms support native floating-point arithmetic based on the IEEE
754 format [IEE08], usually called double. It offers eleven bits for the exponent and 52
bits for the mantissa, which fulfills most practical purposes.

However, for the correctness of our algorithms we often need exact computations.
Hence, we perform many calculations using GiNaC [BFK02] which in turn uses CLN
[HK].

CLN, the Class Library for Numbers, is a library that provides several arbitrary pre-
cision number types and efficient operations on them. Based on CLN is GiNaC, an
acronym for GiNaC is Not a CAS, that provides a framework for symbolic operations
and manipulations. We make use of these libraries to have consistent representations
for numbers and polynomials and fast implementations for several operations.

CLN represents rational numbers as fractions using integers of arbitrary size. Using
these numbers, we can represent every q P Q, but we still cannot represent irrational
numbers like

?
2.

It is possible to represent all algebraic numbers, the set of numbers that are roots of
rational univariate polynomials, by arbitrary precision libraries. However, if we would
represent such numbers by symbolic mathematical terms like

?
2, it would slow down

the calculations significantly. Furthermore, we may be able to represent all possible
roots, but we still may not be able to find them.

In the following, we call CLN numbers exact and double values inexact.

2.2 Intervals

We use a representation for real roots based on intervals.

Definition 2.1. An interval I Ď R is a connected subset of the reals. Although there
are several shapes of an interval, we only use two special types. For a, b P R we define

pa, bq “ tx P R | a ă x ă bu and
ra, bs “ tx P R | a ď x ď bu.

7



2 Preliminaries

We call a and b the lower bound and upper bound of the interval, pa, bq an open
interval and ra, bs a closed interval.

An interval I “ ra, bs with a “ b is called a point interval.

Unless stated otherwise in the following, we only deal with open intervals or point
intervals.

2.3 Polynomials

The most important structures throughout this work are polynomials.

Definition 2.2. Let x “ tx1, ..., xku for some k P N be a set of variables and K a
field. We define a term t as

t “ a ¨m “ a ¨
k
ź

i“1

xdii

where d1, ..., dk P N, m is a monomial of degree degpmq “
řk
i“1 di and a P K the coeffi-

cient of m. A polynomial p is a sum of terms t1, ..., tl and degppq “ maxi“1,...,l degptlq.

If the number of variables k “ 1, a polynomial is called univariate, otherwise multi-
variate. We denote the polynomial ring over K in the variables x by Krxs.

In this thesis K “ Q and all polynomials are called rational. In the following we write
ppxq to denote that p P Qrxs and for some v P R we write ppvq for the evaluation prv{xs
of p at v, that is substituting v for x in p.

Most of the time, we deal only with univariate polynomials. A univariate polynomial
p of degree degppq “ n P N can be written as

n
ÿ

j“0

aj ¨ x
j

with a0, ..., an P Q and an ‰ 0. Note, that the coefficients are the only data we need
to store to uniquely represent a univariate polynomial.

For a univariate polynomial p P Qrxs, we define p1 as the derivative of p.

As the evaluation of a univariate polynomial p at a given point v is used very fre-
quently, we have a closer look at its complexity. Calculating ppvq naively yields an
algorithm that needs n ´ 1 multiplications to obtain v, v2, ..., vn and another n mul-
tiplications for a1v, a2v2, ..., anvn. Including the following additions, we end up with
2n´ 1 multiplications and n additions.

However, using Horner’s method we are able to calculate ppvq using only n multipli-
cations and n additions. It works as follows: Starting with bn “ an, we iteratively
compute bk´1 “ ak´1 ` bk ¨ v. Finally, b0 “ ppvq.

8



2.4 Representation of Real Roots

Definition 2.3. A real root of a univariate polynomial p P Qrxs is a number ν P R
such that ppνq “ 0. The set of real roots of p is given by rootsppq “ tx P R | ppxq “ 0u
and the number of roots by #rootsppq “ |rootsppq|.

Please note that #rootsppq is bounded by degppq. We write rootspa,bqppq and #roots
pa,bq ppq

for the real roots of p and the number of real roots of p within the interval pa, bq. They
are defined by rootspa,bqppq “ tx P pa, bq | ppxq “ 0u and #roots

pa,bq ppq “ |rootspa,bqppq|.

We know that for each real root ν of p, we can find a polynomial p˚ such that ppxq “
px´ νq ¨ p˚pxq. We call px´ νq a linear factor of p. Hence, we can decompose p into

ppxq “ px´ ν1q
i1 ¨ ¨ ¨ px´ νnq

in ¨ p˚pxq

where tν1, ..., νnu “ rootsppq, i1, ..., in P N and p˚ is a polynomial that has no real
roots. We call ik the multiplicity of the root νk and call νk a multiple root if ik ą 1.
Note that #rootsppq counts the number of distinct roots.

2.4 Representation of Real Roots
Considering the possibilities to represent a real root, any root should usually be stored
as an exact number, as any operation on an inexact number might produce rounding
errors and therefore yields a wrong result.

Although exact numbers give us the theoretical possibility to calculate such roots to an
arbitrary precision, it leaves two problems to solve: The mere possibility to represent
it exactly and, if we can represent it, the costs to find it.

Operations on exact numbers are expensive. No matter how efficient the implemen-
tation might be, it cannot compete with inexact computations that are hard-wired in
the CPU. Therefore, an inexact representation of a root with a guaranteed error bound
seems reasonable.

Also, already the simple polynomial x2 ´ 2 has irrational roots, that are roots not
representable by a fraction. We may be able to calculate a value that is arbitrarily
close to the exact value and we may as well be able to obtain the exact value for
polynomials of small degree, given that we can represent algebraic numbers, but there
is no general way to find the exact value. As we are bound to guarantee correctness,
we must also handle such cases.

A possible solution for both problems is an interval representation for real roots. It
consists of a polynomial and an interval such that the polynomial has exactly one root
within this interval.

Definition 2.4. Let p P Qrxs and ν P R a real root of p. An interval representation
of ν is a pair pp, Iq such that I is an open interval or a point interval, ν P I and there
is no v˚ P I with v˚ ‰ ν and ppv˚q “ 0.

We also use the terms exact root for a real root ν and interval root for an interval
representation of a real root. Note that an interval root that consists of a point can be
converted easily to an exact root.

9



2 Preliminaries

Definition 2.5. Let ν1 “ pp, I1q and ν2 “ pp, I2q be interval roots. We call ν2 a
refinement of ν1, if I2 is a strict subset of I1.

We also call a method that constructs a refined interval root ν2 from a root ν1 a
refinement.

10



3 Isolating Real Roots

A basic task in many applications is to find all real roots of some polynomial. There
are several fundamentally different solutions to this problem. However, considering
that a real root might not even be representable by the number representation in use,
the meaning of finding all real roots is still unclear. In our case, we only need to isolate
real roots.

3.1 Isolation of Real Roots

Given a univariate polynomial p P Qrxs, isolating the real roots means to find interval
representations for all real roots of p.

Definition 3.1. Let p P Qrxs with rootsppq “ tν1, ..., νnu. A set of isolated roots is a
set tI1, ..., Inu of disjoint intervals such that Ik is an interval representation of the real
root νk for all k “ 1, ..., n.

Note that we can always construct isolated roots from exact roots or sufficiently precise
approximations of the exact roots. This may be possible using guarantees on the error
bounds provided by a specific algorithm or a combination of expansions and refinements
of intervals around every root approximation.

In the following, we use the term root finding synonymously for isolating roots.

3.2 Optimal Root Finding

When comparing different root finding algorithms, we want to reason about their
quality. As there is not a unique correct result but a infinite number of them, we
are interested in the performance of the methods and the quality of their results.

Performance is a property that is conceptually easy to measure and to compare. The
quality of the results is rather fuzzy and depends heavily on how the results are used
afterwards. We give a metric to assess it.

The first observation is, that an exact root is better than an interval root in most cases,
as an interval root in general requires more basic computations for a single operation on
the root. However, operations on an interval root that uses inexact bounds might still
be faster than the same operations on an exact root represented by an exact number
with a large internal representation.

Finding an exact root also provides the opportunity to reduce the polynomial by elim-
inating the root through polynomial division. Given a root ν of a polynomial p, we

11



3 Isolating Real Roots

know that px ´ νq is a factor of p. Hence there is a polynomial p˚pxq “ ppxq
x´ν and for

the set of roots it holds that rootsppqztνu Ď rootspp˚q Ď rootsppq, that means that all
other roots of p are also roots of p˚. Note that ν may still be a root of p˚, if it was a
multiple root of p.

Polynomial division can be performed quickly, as we only divide by linear factors of
the form x´ν. At the same time it speeds up all further operations on the polynomial,
like evaluating it at some point, which is required in most high-level operations on a
polynomial.

Interval roots should have small intervals. During the CAD method, all interval roots
must stay disjoint, otherwise they must be refined. Smaller intervals are more likely to
stay disjoint during arbitrary operations and thus are less likely to trigger a refinement
process.

Since most operations need super-linear time in the size of the representation of the
interval root, the size of the representation of an interval root is crucial. Hence, we
must try to keep this size small.

3.2.1 Preprocessing

To avoid unnecessary work, we try to reduce a polynomial by eliminating all multi-
ple roots from this polynomial. Multiple roots not only bloat our polynomial, they
may also introduce problems with iterative algorithms: Most such algorithms converge
significantly slower towards a multiple root and may be numerically instable.

However, we can eliminate multiple roots easily. If ν is a multiple root of a polynomial p,
the derivative p1 of p shares this root with the multiplicity decreased by one. Therefore,
the greatest common divisor of p and p1 contains all redundant linear factors and hence

p˚pxq “
ppxq

gcdpp, p1qpxq

produces a polynomial with the same real roots as p but without any multiple roots.
From now on we only consider univariate polynomials without multiple roots.

3.3 Algorithms to Find Real Roots

There is a large number of algorithms dealing with the problem of root finding. In
most scenarios, the goal is to get a good approximation of the roots, not finding exact
roots. However, many of those algorithms also provide adjustable error bounds, such
that they might be applicable in our context.

Next we give a rough overview of a few important root finding algorithms. Our assump-
tion is, that we do not have any knowledge about the roots, especially no approximate
values or knowledge about their distribution over some interval. However, we can com-
pute bounds on the absolute values of all roots and the overall number of distinct real
roots with little effort.

12



3.3 Algorithms to Find Real Roots

3.3.1 Newton iteration

Already discovered more than 300 years ago, the Newton iteration is probably the best-
known algorithm to find real roots of arbitrary differentiable functions. It consists of
a simple fixed-point iteration:

zk`1 “ zk ´
fpzkq

f 1pzkq
.

Given an initial approximation z0, this iteration converges to a real root of the function
f . The speed of convergence is quadratic, meaning that the number of correct decimals
doubles in every step, if the initial approximation is “close enough” to the actual root.
If the initial approximation is bad, this algorithm may converge slowly or even diverge.

However, due to our problem setting, we cannot provide any initial approximation.
The usual approach is sampling: Initial approximations are chosen at random until
the iterations converge to some root.

Unfortunately, divergence is not only a theoretical issue but may occur also on simple
functions. Example 3.1 presents a case where the iteration gets stuck in an infinite
loop between two values. The only solution here is to stop after a fixed number of
iterations and continue with another initial approximation.

Example 3.1. Let ppxq “ x3 ´ 2 ¨ x` 2 and hence p1pxq “ 3 ¨ x2 ´ 2. We try to find a
real root of p using Newton iterations. We do not have any prior knowledge about the
real roots of this polynomial, hence we decide to start with the initial approximation
z0 “ 0.

The first iteration produces z1 “ 0 ´ 2
´2 “ 1. However, iterating a second time gives

us z2 “ 1´ 1
1 “ 0, that means we get our initial approximation again after the second

iteration. This process is illustrated in Figure 3.1.

´2 ´1 1 2

´1

1

2

3
x3 ´ 2 ¨ x` 2

x

ppxq

Figure 3.1: Example for a diverging Newton iteration
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3 Isolating Real Roots

We can see that the Newton iterations may get stuck in an infinite loop already for
simple polynomials using seemingly reasonable initial approximations.

Theoretical analysis has shown that each root has a set of numbers called basin of
attraction [Den97]. The iteration converges against the root, if and only if the initial
approximation is contained in its basin of attraction. Those sets can be arbitrarily
small, hence finding all roots for a given polynomial can be very expensive.

There are several modifications of the original Newton iteration that reduce the com-
putational effort, for example the regula falsi method, or provide faster convergence
using further derivatives like Halley’s method leading to the class of Householder’s
methods [Hou70]. Although these modifications may reduce the probability of diver-
gence and accelerate the convergence, we give no further details here, as there are
conceptually better methods available.

3.3.2 Aberth Method

The Aberth method [Abe73] is a way to find multiple roots at once and is similar
to multiple Newton iterations performed in parallel. As an advantage to multiple
independent Newton iterations, Aberth modifies the iteration for an approximation
such that two approximations are unlikely to converge against the same root.

While Aberth is intended for complex arithmetic, we show that it can also be used on
real numbers by selecting real initial approximations. We now start with an outline of
the Aberth method on complex numbers.

The basic idea of an Aberth iteration is the following: We assume that the complex
approximations z1, ..., zn for the roots are good and therefore

ppxq « px´ z1q ¨ ¨ ¨ px´ znq.

Then we can divide p by the linear factors and thus get a linear polynomial that is
almost identical to the linear factor of a single root.

px´ z1q «
ppxq

px´ z2q ¨ ¨ ¨ px´ znq
.

If we use this function instead of p for a Newton step, we make sure that this step does
not converge towards a root that is already approximated by another zk. The general
form for a function used to approximate zi is as follows:

Fipxq “
ppxq

śn
j“1,j‰ipx´ zjq

.

An Aberth step consists of a Newton iteration for each approximation zi. We can
transform this to obtain a single formula for an Aberth iteration for a root zi:
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3.3 Algorithms to Find Real Roots

zk`1i “ zki ´
Fipz

k
i q

F 1i pz
k
i q

“ zki ´

ˆ

F 1i pz
k
i q

Fipzki q

˙´1 ˇ

ˇ

ˇ

ˇ

d

dx
ln |fpxq| “

f 1pxq

fpxq

“ zki ´

ˆ

d

dzki
ln |Fipz

k
i q|

˙´1

“ zki ´

˜

d

dzki

˜

ln |ppzki q| ´
n
ÿ

j“1,j‰i

ln |zki ´ z
k
j |

¸¸´1

“ zki ´

˜

p1pzki q

ppzki q
´

n
ÿ

j“1,j‰i

1

zki ´ z
k
j

¸´1

“ zki ´
1

p1pzki q

ppzki q
´
řn
j“1,j‰i

1
zki ´z

k
j

“ zki ´

ppzki q

p1pzki q

1´
ppzki q

p1pzki q
¨
řn
j“1,j‰i

1
zki ´z

k
j

.

Given reasonably good initial approximations, this method usually converges to the
n complex roots of the polynomial p. The method terminates when the change of all
approximations falls below a certain limit.

However, we are only interested in real roots. We can either apply this method on
complex numbers and then use those results that are “almost real” as an approximation
for real roots. These could be refined again by standard Newton iterations.

Another approach is to use only initial approximations from the real numbers. Note
that the algorithm never produces any complex numbers in this case, hence we can
perform all operations on real numbers. If we ensure that we only have as many
approximations as the polynomial has real roots – we see in Section 3.4.2 how this is
possible – the Aberth method approximates all real roots.

We assume for now that we have n approximations for a polynomial with n real roots.
Then our initial modification to the polynomial changes to

px´ z1q ¨ p̂pxq «
ppxq

px´ z2q ¨ ¨ ¨ px´ znq
,

where p̂pxq is some polynomial without any real roots. While this modification may
slow down convergence, the Newton iteration on the polynomial px ´ z1q ¨ p̂pxq still
converges as it has only a single real root.
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3 Isolating Real Roots

Note that this method suffers from the same problems as the Newton method in general,
even though they are unlikely to occur in practice. The intervals for approximations
leading to infinite loops are relatively small compared to the sections that lead to a
successful iteration. Since the polynomial itself changes a lot in the first few iterations,
it is unlikely that an approximation ends up in such an infinite loop once the other
approximations are good.

Additionally such a bad approximation alters the polynomial for all other approxima-
tions heavily, all approximations change significantly as long as some other approxima-
tion is stuck in an infinite loop. This further reduces the probability that this happens
at all.

There are several ways to generate initial approximations based on some upper bound
on the absolute values of the roots. The approximations are usually distributed within
the interval given by such an upper bound according to a heuristic like described
in [TS02].

3.3.3 Other Iterative Methods

We now give a short overview over other iterative methods and their applications.

The Durand-Kerner method [Ker66], like the Aberth method, is also designed for com-
plex roots and relies on the possibility to decompose a polynomial into linear factors.
Given a polynomial p and approximations z1, ..., zn, we obtain the decomposition

ppxq “ px´ z1q ¨ ¨ ¨ px´ znq.

A Durand-Kerner iteration is the following fixed-point iteration:

zk`1i “ zki ´
ppzki q

śn
j“1,j‰ipz

k
i ´ z

k
j q
.

Like the Aberth method, Durand-Kerner performs steps consisting of an iteration for
each approximation zki .

However, there is no obvious way to perform this on real numbers. Using only approx-
imations of real roots, oftentimes less than the degree of the polynomial, completely
breaks the algorithm. Using the correct number of approximations from the real num-
bers does not work either, as an approximation cannot converge to a complex root, as
it cannot leave the real numbers and it is also pushed away from the real roots similar
to the Aberth method. Hence, the complete iteration process cannot converge.

Performing the algorithm on complex numbers is significantly slower, as every operation
on a complex number decomposes into multiple basic operations. Additionally, we have
to decide which of the resulting approximated complex roots are real roots.

Finally, Durand-Kerner also requires additional parameters like a lower bound for the
errors to handle termination and some way to obtain initial approximations.

A very popular algorithm is the Jenkins-Traub algorithm. It has the nice property that
it always converges, but it may fail to find all roots. As it is quite complex, in terms of
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3.3 Algorithms to Find Real Roots

mathematical background and in the computational effort to obtain a result, we have
not further investigated whether this algorithm may be of use for our application.

There are several further variants and optimizations for each of these iterative methods,
which we do not use in this work.

3.3.4 Companion Matrix Method

A common problem in mathematics and many physical applications is the calculation
of the eigenvalues of a matrix. We show how an approach to obtain the eigenvalues of
a matrix can be reversed and thereby used to calculate the real roots of a polynomial.

Definition 3.2. Let A P Rnˆn be a square matrix. The eigenvalues of A are λk P C
and the eigenvectors are vectors vk P Cn such that A ¨ vk “ λk ¨ vk for every k. There
are n eigenvalues and eigenvectors for every matrix A P Rnˆn, hence k “ 1, ..., n.

The characteristic polynomial of an nˆ n square matrix A is defined as

pApxq “ detpx ¨ I ´Aq,

where I is the identity matrix. For the real roots of pA it holds that rootsppAq “ tλk |
k “ 1, ..., nu.

This approach can be reversed: We construct a companion matrix for a given polyno-
mial which is a matrix such that the characteristic polynomial of this matrix is identical
to the original polynomial. This process is illustrated in Figure 3.2.

Matrix A

eigenvaluespAq

ppxq

rootsppq

characteristic polynomial

“

companion matrix

Figure 3.2: Relation between eigenvalues and real roots

Definition 3.3. Let ppxq “ an ¨x
n`¨ ¨ ¨`a0 be a univariate polynomial. A companion

matrix of p is a matrix A P Rnˆn such that pApxq “ ppxq.

There are infinitely many possibilities to create such a matrix, one possible construction
for a companion matrix from a polynomial p is as follows:

¨

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 ´a0{an
1 0 ¨ ¨ ¨ 0 ´a1{an
0 1 ¨ ¨ ¨ 0 ´a2{an
...

...
. . .

...
0 0 ¨ ¨ ¨ 1 ´an´1{an

˛

‹

‹

‹

‹

‹

‚
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3 Isolating Real Roots

We can now apply different methods to calculate the eigenvalues of the companion
matrix. These methods do neither require initial approximations nor error bounds to
handle termination and therefore seem to be well-suited for our application. However,
these algorithms may be numerically unstable and hence not reliable. Nevertheless,
we can use such methods to obtain good initial approximations without the hassle of
possible nontermination or divergence.

Another advantage of this method is a practical one: Calculating the eigenvalues of
a matrix is a frequent and well-understood problem. Therefore, routines to calculate
eigenvalues are part of the BLAS [Don02] standard and as such are part of several very
stable and efficient libraries. Using well-established implementations is much easier
and most probably much more efficient than implementing it on our own.

However, the eigenvalues may as well be complex, hence we must guess which of them
correspond to our real roots. This makes it difficult to use this method to find real
roots directly, but we can obtain approximations for the real roots. In this application
we may return more guesses than real roots exist and thus use the real part of every
eigenvalue as a guess.

3.4 Isolation by Bisection

Bisection is a completely different approach to isolating real roots. The basic idea is
to start with an interval containing all real roots and split it recursively until each
real root is contained in a different interval. While bisection usually means splitting
an interval into exactly two new intervals, we use the term bisection to describe an
arbitrary partitioning of an interval into multiple disjoint new intervals. We formalize
this in Algorithm 1.

Input: Polynomial p
QÐ tContainingIntervalppqu
RÐ tu

while DI P Q do
QÐ QztIu
if rootspIq “ 1 then
RÐ RY tIu

else if rootspIq ą 1 then
QÐ QY tI0, ..., Iku such that

Ť

¨
k
i“0 Ii “ I

end if
end while
return Isolated roots R

Algorithm 1: Pseudocode for bisection

Although this might look like a very natural way to isolate real roots in a recursive
fashion, it poses a few problems. To start with bisection, we must calculate an interval
that is guaranteed to contain all real roots and, to manage the recursion, we must be
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3.4 Isolation by Bisection

able to calculate the number of roots within an interval. Furthermore, we must ensure
an exact bisection such that there are no regions contained in several intervals or not
contained in any interval at all.

3.4.1 Upper Bounds for Real Roots

There are several possibilities to obtain an interval containing all real roots of a given
polynomial. Most methods give an upper bound α on the absolute value |ν| of any
real root and thereby yield an initial interval.
Note that such a bound only gives a closed interval r´α, αs, but as we see in Sec-
tion 3.4.2, we may run into trouble if α is a root. To be on the safe side, we check ´α
and α separately and reduce the polynomial as described in Section 3.2 if possible.
Common bounds are the Cauchy Bound [Cau28]

|ν| ď max

"

1`

ˇ

ˇ

ˇ

ˇ

a0
an

ˇ

ˇ

ˇ

ˇ

, ..., 1`

ˇ

ˇ

ˇ

ˇ

an´1
an

ˇ

ˇ

ˇ

ˇ

*

“ 1`
max t|a0|, ..., |an´1|u

|an|
,

the Hirst and Macey Bound [HM97]

|ν| ď max

#

1,
n´1
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ai
an

ˇ

ˇ

ˇ

ˇ

+

,

or the Fujiwara Bound [Fuj16]

|ν| ď 2 ¨max

#

ˇ

ˇ

ˇ

ˇ

an´1
an

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

an´2
an

ˇ

ˇ

ˇ

ˇ

1
2

, ...,

ˇ

ˇ

ˇ

ˇ

a1
an

ˇ

ˇ

ˇ

ˇ

1
n´1

,

ˇ

ˇ

ˇ

ˇ

a0
2 ¨ an

ˇ

ˇ

ˇ

ˇ

1
n

+

.

All these roots are fairly easy to compute, hence we can even calculate multiple bounds
and choose the smaller one for the initial interval.

3.4.2 Counting Roots within an Interval

The most important and computationally intensive task is counting the number of real
roots within a given interval. To perform bisection, we do not need to know the exact
number of roots within an interval. We only need to distinguish between zero, exactly
one and at least two roots. We have a closer look at two possibilities to solve this
problem. Both methods analyze sign changes of sequences of numbers.

Definition 3.4. Let px0, ..., xkq P Rk`1, k P N, be a sequence of numbers. The number
of sign changes σpx0, ..., xkq over this sequence is defined recursively as

σpx0q “ 0

σpx0, x1q “

#

1 if x0 ă 0 ă x1 or x1 ă 0 ă x0

0 otherwise

σpx0, ..., xkq “

#

σpx0, x2, ..., xkq if x1 “ 0

σpx0, x1q ` σpx1, ..., xkq otherwise.

Note that zero is considered neutral with respect to the sign change.
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3 Isolating Real Roots

Sturm sequences A Sturm sequence of a polynomial p is a sequence of polynomials
p0, ..., pk with decreasing degree and p0 “ p which fulfills the following properties:

• If ppvq “ 0, then signpp1pvqq “ signpp1pvqq for all v P R.

• If pipvq “ 0, then signppi´1pvqq “ ´signppi`1pvqq for all 0 ă i ă k and v P R.

• pk has no sign changes, that means pkpvq ě 0 for all v P R or pkpvq ď 0 for all
v P R.

The number of distinct real roots of p within the half-open interval pa, bs is then equal
to σpp0paq, ..., pkpaqq ´ σpp0pbq, ..., pkpbqq. We restrict ourselves to open intervals pa, bq
and make sure that a and b are no real roots of p. In case they are, we can reduce p
by polynomial division as described in Section 3.2.

A Sturm sequence can be computed using Euclid’s algorithm on p and its derivative
p1. Starting with p0pvq “ ppvq and p1pvq “ p1pvq, we continue with

pipvq :“ ´remppi´2, pi´1q “ pi´1pvq ¨ qi´2pvq ´ pi´2pvq

where remppi´2, pi´1q is the remainder of the polynomial division of pi´2 and pi´1 and
qi´2 its quotient.

Each iteration can be performed in at most Opn2q using the Euclidean algorithm.
As the degree of p decreases with each iteration, the overall complexity is at most
Oppn` 1q2q.

To obtain the number of real roots for a single interval pa, bq, we need to calculate
pipaq and pipbq for each i “ 0, ..., k with k P Opnq. Evaluating a polynomial needs
Opnq operations, hence we need Opn2q operations overall. Counting the sign changes
is linear and thus can be omitted. Note that the time needed for a single operation
is by no means constant if we make use of exact representations for numbers. Hence,
these considerations are only useful to compare methods using approximately the same
basic operations.

Descartes’ rule of signs There is another method that is, probably wrongly, at-
tributed to Descartes to calculate an upper bound varppq on the number of positive
real roots of a univariate polynomial p. Note that this rule gives an upper bound on
the number of root including multiple roots, but as we always remove multiple roots as
described in Section 3.2.1 we can use it as an upper bound on the number of distinct
roots.

Descartes’ rule of signs states that for varppq “ σpa0, ..., anq, where a0, ..., an are the
coefficients of p, it holds that varppq ě rootsp0,8q and varppq “ rootsp0,8q pmod 2q.

In order to apply this method for our purpose, we need to transform our polynomial
p into a new polynomial p˚ such that #roots

p0,8qpp
˚q “ #roots

pa,bq ppq for a given interval
I “ pa, bq. To construct such a p˚, we use a continuous bijection ϕ : p0,8q Ñ pa, bq
on p such that ppϕpxqq is a function that behaves on p0,8q like p on pa, bq and in
particular possesses the same number of roots.
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Though ppϕpxqq is not necessarily a polynomial, we are able to fix this with an addi-
tional factor fpnq. This factor does neither change the number, nor the position of the
roots within p0,8q and hence p˚pxq :“ fpnq ¨ ppϕpxqq fulfills #roots

p0,8qpp
˚q “ #roots

pa,bq ppq.

A well-known possibility to construct such a ϕ are Möbius transformations. Their
general form is

ψpxq “
α ¨ x` β

γ ¨ x` δ
.

We fix ϕp0q “ a and limxÑ8 ϕpxq “ b and hence get β
δ “ a and α

γ “ b immediately.
We now set γ “ δ “ 1 and get

ϕpxq “
b ¨ x` a

x` 1
.

Applying ppϕpxqq produces a factor of 1
px`1qi

for each monomial ai ¨xi. We remove the
occurrences of x in the denominators by multiplying the result with fpnq “ px` 1qn.

This polynomial p˚pxq “ px ` 1qn ¨ pp b¨x`ax`1 q with degpp˚q “ degppq “ n can be con-
structed efficiently in time Opn2q as described in [Sag12]. To get the upper bound
on νp0,8qpp

˚q, we must only compute the number of sign changes σpa0, ..., anq of the
coefficients of p˚.

Once again, like for the complexity of Sturm sequences, the basic operations may not
have constant running time if exact number representations are used. We chose to do
this simplified analysis as we only want to compare these two methods. Since they use
similar basic operations, this analysis is sufficient for a meaningful comparison.

There is still one problem left to solve: Descartes’ rule of signs only gives an upper
bound, hence it may always return two while there is no real root in the given interval
resulting in nontermination of the bisection. However, there exist bounds on the min-
imum distance between two roots of a polynomial. If an interval is smaller than this
bound, we know that the number of roots within this interval is either zero or one. We
can decide which one, as Descartes’ rule of signs returns a result which is exact modulo
two.

Although such a bound is important to guarantee termination, it turns out that these
bounds are only necessary in rare cases. In fact, we did not encounter such a case
during our tests. Nevertheless, we present a few bounds here taken from [Col01].

Let p be a polynomial of degree degppq “ n and ā “ maxni“0 ai the maximal coefficient
of p. A lower bound for the minimal separation distance sepppq of two roots due to
Collins and Horrowitz is

sepppq ą
1

2
¨ e

´n
2 ¨ n

´3n
2 ¨ ā´n

and later Mignotte proved

sepppq ą
?

6 ¨ n
´n´1

2 ¨ ā´n`1.
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3 Isolating Real Roots

Collins conjectures, supported by extensive empirical analysis, that another bound
might be

sepppq ą n
´n
4 ¨ ā

´n
2 .

All these bounds are quite unsatisfactory: They are in the order of n´n ¨ ā´n. It may
be an alternative to use some other artificial bound, for example a size of one, and
determine the number of roots with Sturm sequences for smaller intervals.

3.4.3 Partitioning Strategies

The last part of the bisection algorithm is the partitioning of an interval if it con-
tains at least two roots. There is a wide range of possibilities to do this, so we dis-
cuss a few heuristics implemented in our application. We define a heuristic by its
pivot points. Given pivots P “ tp1, ..., pku, the partitioning of an interval pa, bq is
tpa, p1q, rp1s, pp1, p2q, rp2s, ..., ppk, bqu as illustrated in Figure 3.3.

a

p

b

q

rv1s

qp

rv2s

qp

rv3s

qp

rv4s

qp

Figure 3.3: Partitioning by pivots P “ tv1, v2, v3, v4u

The most obvious way, oftentimes implied by the name “bisection”, selects a single
pivot point being the midpoint of the interval, that is P “ ta`b2 u. However, one might
argue that we could use information about the polynomial to use better values to split.
Also, we might want to stick to integer bounds as long as possible, as this reduces the
size of the internal representation and speeds up later computations.

Attempting to stay within the integers yields the following procedure we call the
rounded midpoint :

P “

$

’

&

’

%

tra`b2 su if ra`b2 s P pa, bq

tta`b2 uu if ta`b2 u P pa, bq

ta`b2 u otherwise.

It turns out that many problems actually induce polynomials having nice roots –
meaning integers or fractions with small denominators – such that this actually hits
an exact root significantly more often than the previous heuristic.

To exploit knowledge about our polynomial, we also try to use some of the previously
presented algorithms for root finding. Using the Newton iteration, we perform one
Newton step from the midpoint:

P “

#

a` b

2
´
ppa`b2 q

p1pa`b2 q

+

.

Note that the Newton step may yield a value outside of pa, bq. In this case, we choose
the midpoint instead.
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3.4 Isolation by Bisection

For the first partitioning, when we just started with the upper bound for all roots, it
also makes sense to use a method that approximates all real roots, for example the
companion matrix method or the Aberth method. Both yield approximations for all
roots and we are able to create a set of intervals that might immediately isolate most
roots. Given approximations ν˚1 , ..., ν˚k for the roots, we create

P “ t2 ¨ ν˚1 ´ ν
˚
2 ,
ν˚1 ` ν

˚
2

2
,
ν˚2 ` ν

˚
3

2
, ...,

ν˚k´1 ` ν
˚
k

2
, 2 ¨ ν˚k ´ ν

˚
k´1u.

As an initial approximation ν˚i might as well already be an exact root, we check whether
ppν˚i q “ 0 and add ν˚i to P in this case.

These pivot points result in intervals around the approximation being as small as the
approximations are close to each other. There are two additional intervals that range
from the outer roots to the bounds of the initial interval. If the real roots are very
close compared to the size of the initial interval, these two intervals fill most of the
space but are likely to contain no real roots.

Example 3.2. We assume a polynomial with three real roots ν1 “ 5, ν2 “ 7.2 and
ν3 “ 10.2. We use the companion matrix method (or the Aberth method) to get approx-
imations for these roots and get ν˚1 “ 5, ν˚2 “ 8 and ν˚3 “ 9. Our partitioning is like
shown in Figure 3.4.

a

p

b

q

rν˚
1 s

qν1p

ν˚
2

ν2

ν˚
3

ν3

rv1s

qp

rv2s

qp

rv3s

qp

rv4s

qp

Figure 3.4: Partitioning with approximations for the real roots

The pivot points generated from ν˚1 “ 5, ν˚2 “ 8 and ν˚3 “ 9 are P “ tv1 “ 3.5, v2 “
6.5, v3 “ 8.5, v4 “ 9.5u.

This partitioning directly isolates all roots, it even determines the first root exactly.
This is not always the case, but is more likely if the polynomial is of smaller degree and
the roots are not too close to each other.

3.4.4 Incrementality

We call a method incremental or lazy, if it tries to avoid unnecessary work and only
performs certain tasks when there is no other alternative left. This usually means, that
the result can be split into multiple partial results which are calculated one after the
other, hoping that a few partial results are sufficient to solve the overall problem. If
not all partial results are needed, we can save computation time.

In many applications, this is impossible because there is no such thing as a partial
result or no partial result can be computed without computing the complete result.
In other applications, this approach involves a certain overhead, oftentimes because
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3 Isolating Real Roots

computing all partial results is more expensive than computing the complete result
once.

However, bisection can be performed incrementally in a very natural way. Starting
from Algorithm 1, we only need to return an isolated root as an intermediate result
instead of adding it to the result set R.

Such an approach can be particularly useful in the context of satisfiability checking,
because the whole problem is solved as soon as a single satisfying solution is found.
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4 Adaptable Intervals

In our applications we need operations performed on intervals, either because our algo-
rithms work on intervals or because we represent real numbers by intervals. Therefore,
the overall performance depends heavily on the speed of operations on intervals.

Intervals are often used with exact bounds, that are bounds represented by exact
numbers. While this ensures easy handling of the intervals, it also implies a major
performance hit. Therefore, we examine how inexact numbers can serve as interval
bounds. The main idea is to detect insufficient precision during the inexact operations
and then dynamically fall back to exact computations.

4.1 Operations on Intervals

Among the fundamental interval operations, notably access to the bounds and checks
for inclusion, for the CAD method only a few operations are used frequently and there-
fore have to be particularly efficient. For the lift operation, multivariate polynomials
are evaluated at a sample point, hence fast additions and multiplications are needed.

As a real root in interval representation must never contain more than one real root or
overlap with another root in interval representation, they have to be refined regularly.

We relax the common definition of interval addition and multiplication such that the
resulting intervals can be larger than the exact result. We call such operations over-
approximating in the sense that they approximate the exact operation. Whenever an
interval becomes too large, we can use the refinement routine to reduce it. This gives
us some freedom for the actual implementation of these operations.

Definition 4.1. Let I, J Ď R be intervals. We define

I ` J Ě tv P R | Di P I, j P J : i` j “ vu

I ¨ J Ě tv P R | Di P I, j P J : i ¨ j “ vu.

If we represent the interval bounds with exact numbers, we can implement these op-
erations exactly, but as these operations are the basic operations within the CAD
method, we have to consider their performance. Addition of intervals is easily reduced
to addition of the bounds pa, bq ` pc, dq “ pa` c, b` dq, which conforms to the above
definition.

Interval multiplication is a bit more complex:

pa, bq ¨ pc, dq “ pminX,maxXq with X “ ta ¨ c, a ¨ d, b ¨ c, b ¨ du.
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4 Adaptable Intervals

Thus, we can reduce addition and multiplication of intervals to addition and multi-
plication of exact numbers. If we represent exact numbers as fractions, addition and
multiplication are not atomic operations but rather correspond to the following oper-
ations, where u and v are exact numbers, u1, u2, v1 and v2 are integers of arbitrary
size and cancel is the standard cancellation method to reduce fractions.

u` v “
u1
u2
`
v1
v2
“ cancel

ˆ

u1 ¨ v2 ` u2 ¨ v1
u2 ¨ v2

˙

u ¨ v “
u1
u2
¨
v1
v2
“ cancel

ˆ

u1 ¨ v1
u2 ¨ v2

˙

Addition of two integers is linear in the size of the numbers. As for multiplica-
tion, there exist several algorithms. Well known are the Karatsuba algorithm with
complexity Opnlog2p3qq and the Schönhage–Strassen algorithm [SS71] with complexity
Opn ¨ logpnq ¨ logplogpnqqq, while the theoretical lower bound for large integer multipli-
cation is believed to be Ωpn ¨ logpnqq [Für09].

Anyhow, addition and multiplication on exact numbers require multiple integer ad-
ditions or multiplications of (super-)linear complexity and we still need to cancel the
fraction efficiently, even if we do not have to do this every time.

These considerations reveal a significant drawback of exact numbers: Already basic
operations like addition and multiplication have a super-linear complexity in the size
of the internal representation. And even if we are able to represent the integers with
native integer types and hence can perform integer operations in constant time, we
cannot compete with native processor operations.

4.2 Using Inexact Computations
As we have seen, interval operations making use of exact numbers exhibit an inherent
performance hit. Therefore, it seems natural to investigate, if we can utilize of native
floating point data types being computationally less expensive.

Today’s processors, with the exception of microprocessors that are outside of our target
group, usually support floating point numbers complying to the IEEE 754 standard
[IEE08]. We use the 64 bit variant of this standard which is usually called double.

Consisting of eleven bits for the exponent, 52 bits for the mantissa and an additional
bit for the sign, a double can represent numbers with absolute values ranging from
2.2251¨10´308 up to 1.798¨10308 with about 15 significant decimal places. The standard
additionally provides reserved bit patterns to represent 8, ´8 and different kinds of
arithmetical errors and defines several rounding modes.

These values show that most calculations seeming realistic in our setting are possible
with double numbers so that we could simply use double numbers as interval bounds.
However, we must ensure we maintain correctness with respect to our defined addition
and multiplication operations.

The default rounding mode is to round to the nearest representable number, but modes
to round up or round down are available. Using these modes properly, we are able to
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build an interval where the upper bound is a always rounded up and lower bound is
always rounded down. However, we see in Section 5.3 that this is not trivial in practice.

4.3 Automatic Fallback

Nonetheless, in some rare cases, double might not be sufficient. We may need numbers
exceeding the range of numbers that a double can represent. We may also face numbers
that are so close to each other that the double type cannot distinguish them. As for
numbers in the range of 1020, the distance between to numbers that are representable
by as double is already about 105.

If we are outside the bounds of double, the result of most operations is usually ˘8
or not a number (NaN) in some cases. Once this occurs, we must change to exact
numbers, as further calculations cannot yield any meaningful result. One might want
to investigate the reason for the ˘8 or NaN and might try to tweak the intervals to
prevent this error. However, a problem instance that produces such a problem probably
produces more of them, hence it seems reasonable to surrender at this point.

What we do instead is to fall back to exact computations. Whatever operation we
wanted to perform, we convert the input intervals such that they use exact bounds
and then perform the same operation again on these exact intervals. The conversion
can always be done, as the set of representable exact numbers is a superset of the
representable double numbers.

It may be possible to try converting exact intervals back to double intervals when
the bounds have returned to representable values, but we do not investigate this any
further here.

4.4 Using Interval Coefficients

There is another use case for double intervals in our application. Whenever we perform
calculations on a polynomial, especially when we evaluate it at some point, we need to
compute a significant number of operations: As we discussed in Section 2.3, we need
n multiplications and n additions for an evaluation.

Although we only talked about exact coefficients, there is no reason why double intervals
cannot be used to represent polynomial coefficients. Note that there is no inherent
need for intervals, as the coefficients are given as finite representations and as such are
representable by exact numbers.

We decided to allow for both. Operations on any univariate polynomial can either use
exact coefficients or double interval coefficients. As only a few operations change the
coefficients of a polynomial, we ensure that a polynomial always has exact and double
interval coefficients and hence can always perform exact and inexact operations.
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5 Implementation Details

Most of the presented ideas and algorithms have been implemented within GiNaCRA
[LA11], an extension to GiNaC used within SMT-RAT [CLJA12]. As SMT-RAT strives
to provide fast theory solvers for nonlinear real arithmetic, all this is implemented in
C++ and special effort has been spent to produce a careful implementation. The func-
tionalities described here have been implemented within the new rootfinder namespace
in GiNaCRA.

5.1 Root Finding

The main goals for our C++ implementation are simplicity, modularity and perfor-
mance. We decided to minimize the interface as much as possible to avoid any ambi-
guity on how to use it.

We introduced a new class called IncrementalRootFinder that is designed to isolate the
roots of a given polynomial in an incremental fashion. It maintains a queue of intervals
and a result set of isolated roots.

The constructor of this class accepts a polynomial and configuration options. It starts
with transforming the polynomial into a reduced polynomial as described in Section 2.3.
The polynomial is then checked for a root at zero, as this is a frequent root and needs
only constant running time. If the polynomial has a small degree such that it can be
solved using a closed formula, we do this and add the roots to the result set. Otherwise,
a bound on the real roots is calculated and the resulting interval is added to the queue.

Once an instance of this class is created, calling next() checks the result set and returns
a new root if there is any. As long as there is no new root found, it pops an interval
from the queue and applies bisection to it, depending on additional information stored
alongside the interval within the queue. We discuss the bisection functions in the
next section. If the queue is empty, next() returns null and thereby indicates that the
isolation process has finished.

As for the interval queue, we identified changing the order of the intervals in the
queue as a possible optimization for the root isolation process. The order in which
the intervals are processed is irrelevant for the correctness, hence we want to work on
good intervals first, leaving bad ones for later, hoping find real roots as fast as possible.
We decided to leave the decision how good an interval is to a heuristic which favors
inexact intervals over exact intervals – operations on the former ones should be quicker
– and secondly prefers smaller intervals hoping that they are more likely to produce
an isolated root soon.
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If we want to access the roots of a polynomial again, we can use the rootCache()
method, which returns the list of all roots that have already been found. As soon as
next() returns null, rootCache() returns a complete root isolation.

5.1.1 Bisection Functions

Our bisection routine works as described in Algorithm 1 always using Descartes’ rule of
signs to count real roots. The initial intervals are constructed from the Cauchy bound.

We implemented the bisection heuristics described in Section 3.4.3 as functors that can
be used by the IncrementalRootFinder class. They all take the interval to bisect and an
IncrementalRootFinder instance as input parameters and add intervals to the queue or
isolated roots to the result sets through additional helper methods.

As for the companion matrix method, we make use of the C++ numeric library IT++

[ITP]. IT++ is a library containing matrix and vector operations mainly intended for
simulations and communication systems. It implements the method eig() that takes a
matrix and returns a vector containing the eigenvalues of the given matrix.

The eig() method uses the LAPACK [ABB`99] routine DGEEV that is provided by
any library that implements the LAPACK interface, for example ATLAS [WPD01] or
Intel MKL [Int]. Therefore, we can safely assume that these eigenvalues are as exact
as possible and their computation optimized.

5.2 Representation of Numbers

A tempting way to represent numbers that may be either exact or inexact is to create a
class that either holds a double or an exact number. This class might overload necessary
operators, like addition or multiplication, adapted to the given representation.

This way, only the class itself and its operators need to be aware of the different
number representations that are contained in the number class. Furthermore, the
fallback to an exact number whenever precision of the inexact number is insufficient
could be performed within the methods implementing the operators. The actual type
of a number would be transparent for all methods that use these numbers, in particular
to the interval class.

However, there are some problems that must solved for such a number representation.

There are cases, for example if a real root has been found, where we need a number
representation that guarantees exactness. Hence, we would force an adaptable number
to store the number exactly and disallow representing it by a double. Since most of the
CAD method operates either on exact numbers or on intervals, there is no advantage
of such a class over adaptable intervals, that support exact and inexact bounds.

When we perform an operation on two inexact number representations, the result is
rounded to a representable value that is close to the exact result. If such an operation is
part of an interval root operation that needs to guarantee that it is overapproximating,
we need to round either up or down, depending on the exact calculation that is done.
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Hence, we have the provide the possibility to pass additional information to the basic
number operations.

Finally, the performance of calculations on such a class representing an inexact num-
ber would be significantly worse compared to calculations on native inexact numbers.
While an operation on double numbers is a native CPU instruction, the presented ab-
straction class exhibits a minimum of overhead that is significant if the operation itself
lasts only a few processor cycles.

Because of these reasons, we decided not to implement such an abstract number type
and use exact numbers from GiNaC or double numbers separately, although this means
that many functions must be implemented for exact numbers and double numbers
individually.

5.3 Intervals

We already touched on how to build adaptable intervals that stick to our definition
of overapproximating operations. The basic idea is to take advantage of the different
rounding modes available for double operations, which we discuss now in more detail.

5.3.1 Class Interface

As we want an adaptable interface to be an interface that can have either exact or
inexact bounds, the class has to provide methods for both cases. That means that
routines operating on these intervals may need to call different methods to exploit the
advantages of inexact operations.

To ease the migration to these new intervals, each method checks the type of the interval
internally. If the type of the interval does not match the type of the arguments or the
desired return type, the interval performs the type conversions internally. Although
these permanent conversion are a serious performance hit, it gives us the possibility to
perform a continuous migration to the new intervals.

Most methods can be implemented in a way such that they can infer whether to
calculate exactly or inexactly from their parameters. However, there are functions
that only return a number, for example a bound on the real roots as described in
Section 3.4.1, we want to provide them both for exact and inexact calculations.

These methods conceptually differ only in their result type and therefore must be dis-
tinguished by their method names, because C++ does not allow methods with identical
names and identical parameter types. Note that this is not an arbitrary restriction
from C++ but a consequence of the way modern object-oriented languages like C++ or
Java implement classes.

Hence we end up with an interface where many methods are defined twice, once for
exact and once for inexact computation. This is the penalty for handling exact and
inexact computations within the interval class and not doing this within a number class
as described in Section 5.2. But these methods also represent the internal structure
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of the interval class, as most functionality is implemented separately for exact and
inexact bounds anyway.

5.3.2 double Operations

We now analyze how to use double numbers in our context. Though their operations
are inexact, we must make sure that the interval operations are overapproximating. As
we want the intervals to remain small, we achieve this through appropriate rounding.

While some floating-point units, called FPUs, support different rounding modes for
single operations, most of them only implement operations to switch the mode that is
valid for all operations to come. This usually results in flushing the FPU pipeline for
every change of the rounding mode, thereby severely decreasing the overall performance
of the double operations. Hence, we need a strategy to minimize the overall number of
rounding mode switches.

As for the addition of pa, bq and pc, dq, we would naively compute ta`cu and rb`ds. We
can replace the latter one by ´tp´bq` p´dqu and thereby, as the negation of a number
involves no rounding, use only a single rounding mode instead of two. However, we
should restore the original rounding mode as soon as we return the control flow to
some other library, that might also perform double operations.

Some FPUs actually perform their calculations on registers larger than a double as
an attempt to increase precision. The actual result is then the rounded value of the
larger internal result value. Depending on the exact calculation, the above equality
rb ` ds “ ´t´b ´ du might not hold anymore. Therefore, we either have to drop this
idea and continue to switch rounding modes more frequently or we have to force the
FPU to calculate only on double precision, as that would maintain the above equality.

As such optimizations require a lot of knowledge about different FPUs and their specific
mechanisms, we decided to use an existing library already handling all this. The boost
C++ library contains a component called boost::interval that we employ due to its
availability, documentation and reputation.

boost::interval implements an interval class with a templated bound type. However it
is clearly intended to be used with double. A large number of operations is defined on
this interval class, not only addition, subtraction, multiplication and division, but also
for example the square root, sine, cosine and logarithm. There are policies to specify
how rounding should be done. The default policy implements an overapproximating
interval and therefore complies to our definition of addition and multiplication.

5.3.3 Error Handling

There are two possibilities how boost::interval signals an error or exceptional behavior,
that are comparisons where the result is unclear or operations which result in an infinite
value, possibly due to insufficient precision, or the double error value NaN.
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The first possibility we are using in our implementation is throwing an exception. We
attempt to catch these exceptions wherever they may be thrown and then change to
exact arithmetic as described.

The second possibility returns a so-called tribool instead of a Boolean result, for example
for comparison functions. A tribool can hold the values true, false and indeterminate.
Whenever an operation cannot be performed correctly, indeterminate is returned.

A tribool result is checked using the C++ idiom described in Algorithm 2. Using tribool
return values can result in cleaner code and a faster program, as exceptions always
come with a significant overhead when thrown.

tribool x = method ();
i f (x) {

/* x is true */
} e l se i f (!x) {

/* x is false */
} e l se {

/* x is indeterminate */
}

Algorithm 2: Correct handling of tribool values.

However, there are cases where exceptions are more convenient. Imagine having a larger
operation which is implemented twice, once for exact and once for inexact arithmetic,
to include special optimizations. If the inexact operations fail at some point, the
whole operation has to be canceled and restarted with exact arithmetic. When using
exceptions, the operation method does not have to care about any exceptional cases:
if they happen, the exception is caught by the calling function which can perform the
conversion and call the operator again with the exact values.

Therefore, we decided to use exceptions. Since the mode can be switched also for
single functions or modules, we plan to port certain parts of the code to tribool results,
especially where exceptions are thrown very frequently.

5.3.4 Changing the Interval Type

There are two possible type conversions that may be used: From inexact to exact
and from exact to inexact. The former one is used whenever we run into an error as
described above, while the latter one is needed to initially convert an exact interval to
an inexact interval. This is needed when our algorithm receives parameters from the
rest of program which does not use inexact numbers yet.

Converting double values to exact values is straightforward. A double can always be
exactly represented by a fraction and there are methods that return this fraction. As
for GiNaC and CLN, there is GiNaC::rationalize().

The other way is a bit more involved, as we may have to drop some precision. One
solution is to obtain some rounded double value and increase or decrease this value,
until it is larger or smaller than the exact value.
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GiNaC offers the method to_double() for exact values. We then increase, if it is the
upper bound of the interval, or decrease, if it is the lower bound, this result using
std::nextafter(), until the new inexact interval contains the old exact interval.

The std::nextafter() routine is given a floating point value v and a direction d which is
also a floating point value. It returns a value r such that |r´d| ă |v´d|, that means r
is closer to d than v, and there is no representable value between v and r. This method
allows us to efficiently iterate over the representable values in a safe way.

5.3.5 Integration in the CAD Method

The implementation of the CAD method in GiNaCRA uses a special class to represent
a real root that may either hold an exact root or an interval root. Both provide a
common interface such that most of the CAD method can operate on this interface
and does not need to care about the type of a particular root.

The basic idea is to replace the interval used for the interval root by our new adaptable
intervals and make the CAD method aware of this change. As an interval with adapt-
able bounds has to be treated differently than an interval having only exact bounds,
this change implies a careful refactoring of all routines operating directly on an interval.

The interval roots were changed to use the new intervals, however the porting is not
finished yet. While all operations on interval roots work with adaptable intervals, some
of them are not aware of the possibility that the underlying bounds are inexact but
used by methods for exact bounds. In such a case, these methods convert the bounds
on every call and hence produce a significant overhead.

Some methods even rely on an exact bound type such that the interval must be con-
verted before such a method may be called. This of course interferes with our goal to
perform as many inexact operations as possible. Hence, to take full advantage of the
possibility to calculate inexactly, most of the code used for the CAD method must be
adapted.

5.3.6 Polynomials

We have seen that a frequent task is to evaluate a polynomial at a given point. All
the effort to make inexact computations is futile though, if the polynomials can only
operate exactly. Hence we need a polynomial class that can perform exact and inexact
operations, similar to the adaptable polynomials.

Although in general the CAD method operates on multivariate polynomials, we started
with a class for univariate polynomials. This class stores coefficients exactly and inex-
actly and hence provides exact and inexact operations.

The CAD method in SMT-RAT still uses a polynomial representation based on sym-
bolic expressions from GiNaC, hence even a specialized class for multivariate polyno-
mials working on exact coefficients only should be an improvement. Such polynomials
are under development, but not used in the CAD method yet.
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So far, we discussed the theoretical background and some general ideas of the imple-
mentation. Now, we show some experimental results of the new implementation for
different scenarios.

6.1 Isolating Real Roots

For a start, we compare the new implementation using the techniques described in this
thesis with the implementation previously used in GiNaCRA. We compared the results
with Wolfram Mathematica 8 to verify the correctness of our algorithm, but did not
include Mathematica in our benchmarks as it was not available on our target platform.
The tests were run on an AMD Opteron 6172 @ 2.1GHz using Debian Linux.

The previous algorithm consists of a recursive bisection algorithm and uses Sturm
sequences to count real roots. As for the splitting, a heuristic similar to our rounded
midpoint heuristic and multiple variants of the Newton heuristic are available.

Our scenario consists of n “ 1000 random polynomials of a common desired degree that
we generate as follows: For each polynomial, we choose a minimal degree between zero
and the desired degree uniformly at random. This minimal degree shall be the minimal
amount of real roots of this polynomial. We select real roots from r´1000, 1000s with
a granularity of 1

100 uniformly at random and use them to build a polynomial of the
selected minimal degree with the chosen real roots.

As for the difference between the desired degree and the minimal degree, we create a
polynomial with random coefficients from a normal distribution with mean µ “ 0 and
a standard deviation of σ “ 25. However, we make sure that no coefficient is zero. We
multiply these two polynomials and get a polynomial of the desired degree.

Note that these polynomials have almost no roots at zero while polynomials from real
world examples often have such roots. However, all our bisection algorithms check
for zero at the very beginning, as a root at zero is particularly easy to detect and
to eliminate. Therefore such a root only increases the degree of a polynomial without
adding any complexity for the isolation algorithm, hence we chose not to produce roots
at zero intentionally.

Of course, this is only an artificial choice, but we think that this choice resembles the
polynomials one encounters in real life examples. We create such a list of polynomials
for every desired degree deg P t3, ..., 15u.
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To get meaningful comparisons, we chose the new algorithm with different heuristics
as well as the algorithm that was previously used in GiNaCRA to run on the same set
of polynomials.

6.1.1 Speed of Isolation

The running times for all polynomials are estimated from the clock cycles used and
measured with std::clock(). The results of this test are shown in Figure 6.1 on a
logarithmic scale.
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Figure 6.1: Comparison of running times for root isolation

While all algorithms show the expected exponential behavior, we can see a significant
difference between the previous algorithm and our new algorithm. The previous algo-
rithm is faster for polynomials of small degree but exhibits a faster growth. Starting
with degree 8, the new algorithm using the companion matrix heuristic is the fastest
out of all tested heuristics.

Note that due to the logarithmic scale, small differences in this graph already represent
large differences in the actual running time. As for degree 12, the previous algorithm
needs over 50% more time than the new algorithm with the companion matrix heuristic.
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6.1.2 Number of Exact Roots

We have already discussed in Section 3.2 that an isolation is not only correct but has a
certain quality for our application. One goal is to find as many exact roots as possible.
As we chose the roots of the polynomials at random, most heuristics are unable to find
such exact roots regularly. Figure 6.2 shows the average number of exact roots found
for a polynomial.
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Figure 6.2: Comparison of probability to find exact roots

We see that the companion matrix heuristic is the only heuristic that is able to find
exact roots systematically. Starting at 0.35 for degree three, the ratio of roots that are
found exactly decreases to 0.10 for degree 15.

All other algorithms are significantly worse and constant for all degrees. The previ-
ous algorithm achieves at most 0.02, the midpoint heuristic finds almost no roots and
the other heuristics are somewhere in between. Altogether, using the companion ma-
trix heuristic might be an advantage within the CAD method, although the absolute
number of exact roots still is very small.
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6.1.3 Size of Isolations

Another goal for good isolations is the size of the isolating intervals. If the intervals of
an isolation are smaller, the probability that the intervals need to be refined as they
overlap after some operations during the CAD method is also smaller.

While one may argue about different metrics, we decided to use a logarithmic scale
for Figure 6.3. For each polynomial, we calculated the average logarithmic size of all
interval roots. Note that this produces negative numbers if the intervals are smaller
than one.
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Figure 6.3: Comparison of size of real root isolations

While the data seems fairly arbitrary, we can see that our new algorithm produces
significantly smaller isolations than the previous algorithm. As for the companion
matrix heuristic, the average size seems to be almost constant, the other heuristics and
the previous algorithms produce smaller isolations for polynomials of higher degree.
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6.1.4 Separation of Intervals

While the size of the intervals gives an idea on how much the intervals grow during an
operation, the distance between two intervals determines how much an interval may
grow before it overlaps with another interval and has to be refined.

We call this distance between two intervals their separation. For each polynomial,
we calculated the average separation between two consecutive roots, both exact and
interval roots. The average separations is shown in Figure 6.4.
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Figure 6.4: Comparison of separation of real roots

Since a small separation bears the risk of refinements in the CAD method, the goal
is to maximize this separation. However, due to the way the roots are distributed,
the separation is bounded by the two outermost roots and related considerably to the
average size of the isolations.

Therefore, the separation exhibits a behavior alike to the isolation sizes. While the
companion matrix heuristic yields results with an almost constant separation, the
separation of all other heuristics and the previous algorithm grows with the degree
of the polynomials.
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6.2 The CAD Method

Although the results we have shown give an impression of the performance of the new
algorithm, the ultimate question is how the application performs. Hence we checked
the performance of the CAD method using the new algorithm with the companion
matrix heuristic and using the previous algorithm. We decided for the companion
matrix method because it performs similarly to the other heuristics but manages to
find an outstanding number of roots exactly.

We built two solvers using the above root solving methods from the current state of the
SMT-RAT project. We call them new solver and old solver. Both were configured to
call only the CADmethod. To test their performance, we used two standard benchmark
sets for SMT solvers: meti-tarski and keymaera that are also used in [JdM12].

Since the integration of the double intervals into parts of the CAD method is not yet
stable, we decided to remove all instances from our statistics where a solver crashes.
These are however only 33 instances of 8276 instances in total for meti-tarski while
there occurred no errors in keymaera.

To restrict the time needed for these benchmarks, we defined a time limit of 60 seconds.
If a solver hits this time limit, it is stopped. The results of these tests are shown in
Figure 6.5. The number of successfully solved instances is given in column sat / unsat,
the time in seconds needed to solve them in time. Timeouts gives the number of
instances where a timeout occurred.

old solver new solver
benchmark set sat / unsat time timeouts sat / unsat time timeouts
meti-tarski 6806 5777 1434 5309 4856 2931
keymaera 303 324 118 290 346 131

Figure 6.5: Overview over running times

We can see that the new solver is slower and has significantly more timeouts. The
average time for the successfully solved instances is smaller for the new solver on the
meti-tarski set, however instances which take the old solver a long time will produce
a timeout on the new solver. Hence, the solved instances of the new solver comprise
easier instances on average than these of the old solver.

To get a visual impression of how the solvers perform on individual instances, we
included Figure 6.6 and Figure 6.7. They show a comparison of the running times
of the two solvers on both benchmark sets. Each point represents an instance of the
benchmark set, its x coordinate represents the running time of the old solver and the
y coordinate the running time of the new solver. Hence, the new solver is faster on all
instances that reside below the diagonal line.

In comparison to the above table, we remove some more instances from these plots.
Instances where both solvers produce a timeout would only result in a single point in
the top right corner, therefore we do not include them here. Furthermore, instances
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where both solvers are fast create an opaque cloud close to the origin. Hence, we also
removed all instances where the sum of the running times of both solvers do not exceed
one second.
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Figure 6.6: Comparison of running times on meti-tarski benchmark

Once again, we can see in both plots that the new solver is significantly slower in
general. We now analyze this and explain a few reasons for this.

We can observe a large amount of instances in the meti-tarski set that are solved very
quickly with the old solver but produce a timeout on the new solver. This pattern
suggests the existence of a particular routine that is only called for specific instances
and is poorly implemented in the new solver. This routine might either be much slower
or lead to nontermination in specific situations.

We have seen that the root isolation algorithm itself is faster than its predecessor, hence
the poor performance of the new solver must have other reasons. Either our sample
polynomials did not match the polynomials that occur in practice or the integration
of the new algorithm in the CAD method is bad. As we have already discussed a few
problems in Section 5.3.5 we suspect that the integration must be optimized.

41



6 Experimental Results

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

running time with previous algorithm [s]

ru
nn

in
g

ti
me

wi
th

co
mp

an
io

n
ma

tr
ix

he
ur

is
ti

c
[s

]

Figure 6.7: Comparison of running times on keymaera benchmark

We still use exceptions to detect errors during interval operations. Exceptions are rela-
tively time-consuming in C++, hence they may also contribute to the bad performance
of the new solver.

There are several issues that are conceptually simple but time-consuming and hence
are not finished yet. We now give a short overview of these issues. We have also some
ideas for further optimizations that are presented in Section 7.2.

The CAD method was refactored to use the new adaptable intervals, but most opera-
tions still use exact operations, even if inexact operations are available. Hence it not
only fails to take advantage of faster inexact operations, it also produces additional
overhead as the interval has to convert the inexact bounds to exact numbers every
time. Once a routine within the CAD method is aware of the existence of inexact
intervals, it can avoid this overhead and profit from inexact calculations.

We already mentioned that the CAD method uses polynomials built upon symbolical
expressions provided by GiNaC. This has certain advantages, as GiNaC provides many
algebraic operations on these expressions used within the CAD. Representing a poly-

42



6.2 The CAD Method

nomial by its coefficients however allows for faster operations and less memory usage,
hence we implemented such polynomials for the univariate case.

A different representation implies however, that the representation of a polynomial
needs to be converted whenever we search for its real roots. Although this overhead is
relatively small, it may be relevant if it is invoked often. A new library for multivariate
polynomials is being developed and will be used in SMT-RAT in the near future. This
should provide a general speed-up for the CAD method but especially also reduce the
overhead for our new algorithm.
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7 Conclusion

The goal of this thesis was to improve existing methods to find real roots of univari-
ate polynomials and to provide the possibility to operate efficiently on these roots
afterwards in the context of SMT solving.

7.1 Summary

We started with guidelines on what we consider good isolations and looked at different
approaches to find real roots. After discussing a few approximative methods we focused
on bisection and presented several possibilities for upper bounds on the roots to get
initial intervals, heuristics to split intervals and methods to count the number of real
roots within an interval.

We continued with the representation of roots using intervals. Based on the operations
that are required to use this representation within the CAD method, we analyzed
how we can use double intervals while maintaining correctness of our computations.
Furthermore, we presented ideas how to deal with cases where these double numbers
cannot perform the desired operations and how we can apply the same ideas for faster
polynomial evaluations.

As the presented algorithms were implemented within GiNaCRA we gave some details
about their implementation. We showed how we made use of different libraries and
how we detect errors during operations on inexact intervals.

Finally, we presented some experimental results for these algorithms. While there is
clearly room for improvement, this new approach is already significantly faster for
polynomials of degrees of nine or more and provides better results with respect to the
number of exact roots at the same time.

7.2 Future Work

This thesis contains some topics that are only dealt with in the univariate case yet
and still have potential for improvement. Some ideas that arised during the work on
the presented topics could not be addressed at all. The implementation also offers a
number of places for optimization.

7.2.1 Usage of double Intervals

In Section 4.4, we discussed the possibility to have polynomials with coefficients that are
represented by double intervals. This is implemented for univariate polynomials used
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during the root finding, but multivariate polynomials used within the CAD method
lack this functionality.

double intervals are already used in the generic number representation used in the CAD
method and are therefore also available for all sample points. However, the polynomials
need to support operations on double intervals to exploit this.

There is a new polynomial library under development within the SMT-RAT project
supporting all this, but work on this library is not finished yet. As soon as it is available
for use, the CAD method will be ported to the new library and should be modified
such that inexact computations can be performed throughout the CAD method.

The overall process still suffers from several type conversions, especially between differ-
ent polynomial types. The new library will provide polynomials whose representation
is almost identical to those used within the presented algorithms, hence there will
probably be less overhead at the interface between the CAD method and the root
finding.

7.2.2 Find More Exact Roots

We can avoid interval operations altogether, if we find real roots exactly. We already
argued that we cannot do this in general, however we may want to spend more effort
for heuristics to guess exact roots.

As the results show, the current heuristics rarely find roots that are not equal to
zero. The rounded midpoint finds all integer roots exactly, if the bisection process is
continued sufficiently long. Hence, simply continuing the bisection process until the
interval has at most size one may already be a promising heuristic.

7.2.3 Use of Iterative Algorithms

Although we have seen that the iterative algorithms known from numerical research
cannot be applied directly, it may be possible to identify certain classes of polynomials
where these algorithms work particularly well. These may be polynomials with a
small degree or polynomials with roots that are well separated. We can identify such
polynomials using bounds on the minimal distance between two real roots as described
in [Col01].

Another possibility, as shown in Figure 3.4, is to use iterative algorithms to obtain
initial approximations. We may want to use other algorithms that give worse results
but are faster than the companion matrix method or the Aberth method.

7.2.4 Splitting Heuristics

While one may always try new ideas for splitting heuristics, there are also some pos-
sible optimizations for the existing ones. We look at a possible optimization for the
partitioning based on approximations as described in Section 3.4.3.

If the approximations are particularly good, we might want to create smaller intervals
around the approximations. This could look like shown in Figure 7.1.

46



7.3 Conclusion

a

p

b

qν˚
1 ν˚

2 ν˚
3

rv1s

qp

rv2s

qp

rv3s

qp

rv4s

qp

rv5s

qp

rv6s

qp

Figure 7.1: Better partitioning with approximations for all real roots

If the approximations are good and the exact roots lie within the small intervals around
these approximations, this still yields an isolation directly and produces a much smaller
isolation than before. However, the size of these small intervals around the approxima-
tions must be determined by some heuristic. This size may be constant or some fixed
fraction of the distance between two neighboring approximations.

7.2.5 Algebraic Numbers

The fundamental reason to use interval arithmetic is the fact, that we cannot repre-
sent all polynomial roots with fractions. However, there are solutions how algebraic
numbers, that are all numbers being a root of a polynomial with rational coefficients,
can be represented.

While it might still be impossible to find these roots for polynomials with larger degree,
we are able to obtain the roots in their algebraic form for degrees up to four using closed
formulas.

7.3 Conclusion

Although finding the real roots of a polynomial seems to be an old problem for which
many solutions exist, it turns out that there are still open questions for the application
of satisfiability checking in an SMT solving framework. Most of the research had the
goal to provide a result as precise as possible, however we require a result that is just
guaranteed to be correct.

Using inexact computations is rather counterintuitive at first sight when correctness
is required. Furthermore, using this in an actual implementation has several unex-
pected and delicate details. However the effort is probably worth it, as theoretical
considerations and experimental results show.
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