Theory of
Hybrid Systems

h Yb r d Informatik 2

RWTH

BACHELOR OF SCIENCE THESIS

ON GROBNER BASES IN
SMT-COMPLIANT
DECISION PROCEDURES

Sebastian Junges

Supervisors:

Prof. Dr. Erika Abraham
Prof. Dr. Jiirgen Giesl
Aduvisor:

Dipl. Inform. Ulrich Loup

February 26, 2013

Abstract

Modern satisfiability solvers are able to determine satisfiability of a
given propositional logic formula very efficiently. Satisfiability modulo
theories (SMT) is an approach to use solvers to determine the satisfiability
of formulae from the first order logic over some theories.

This thesis aims at the development of methods for deciding consis-
tency of sets of polynomial constraints over the real numbers, which have
a decent performance when embedded into an SMT solver. Grobner bases
and the Weak Nullstellensatz allow deciding consistency over the complex
numbers. Since Grébner basis are frequently used and are subject to a lot
of active research, the existing algorithms are highly optimised. In this
thesis a well-known algorithm is implemented and extended to make the
method SMT-compliant.

To decide the unsatisfiability over the real numbers, an application of
the Real Nullstellensatz is implemented, in which existing methods for
semidefinite programming are combined with Grobner bases to find sums
of squares, which are potential witnesses for unsatisfiability.

The experimental results show some promising applications, which
could be further improved by the implementation of the ideas from the
thesis’ comprehensive overview over both theoretical and technical en-
hancements.

v

Erklarung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbststéndig verfasst und
noch nicht anderweitig zu Priifungszwecken vorgelegt habe. Alle benutzten
Quellen und Hilfsmittel sind angegeben, wortliche und sinngeméfe Zitate wur-
den als solche gekennzeichnet.

Sebastian Junges
Aachen, den 22. August 2012

Acknowledgements

There are numerous people who supported me during my work on my bachelor
thesis. First of all, I owe my thanks to my supervisor Prof. Dr. Erika Abraham.
She has supported me for the last couple of years and gave me the great oppor-
tunity to be part of her research team. Moreover, she provided very detailed
comments on the thesis, far more than I could have expected. I am deeply
grateful to my advisor Ulrich Loup, who was available at day- and nighttime
to answer all kind of questions and give some valuable feedback. The topic of
this thesis is originated in some fruitful discussions we had. I would also like to
thank Florian Corzilius for all the work he put into SMT-RAT in order to make
it easier for me to develop my SMT-RAT module. The dialogues brought me a
deeper understanding of SMT and SMT-RAT. To all in the Theory of Hybrid
Systems group, I want to say "Thank You!" for all the help, fun, and meals.

vi

Contents

2 SM'T solving and real algebral

2.1 SAT solving|
22 SMT solvingl

13 Consistency for polynomials|

3.1 Consistency as an algebraic notion|

4.2 Improving the Buchberger algorithm|
[A3 " State-of-the-art: Signature-based and saturation algorithms| . . .

Applying the Real Nullstellensatz
5.1 inding witnesses by sums of squares|.

6 Experimental results|

13
13
14
16
17

21
21
25
32
34

37
37
41
48
48

53
53
59

61

65
65
66
67

69

viii Contents

Chapter 1

Introduction

The satisfiability problem (SAT) poses the question whether a propositional
logic formula is satisfiable, i.e., whether there is an assignment to the variables
such that the formula evaluates to true. Many problems from industry can be
modelled as a satisfiability problem and therefore, a lot of active research aims
at the development of efficient solvers for instances of this problem.

Often, a more expressive modelling language is desired, extending the propo-
sitional logic with theories from first-order logic. The combination of theory
solvers with SAT solvers is called Satisfiability Modulo Theories (SMT) solving.
Theory solvers used in SMT should meet some requirements in order to make
the interaction with the SAT solver work efficiently.

We focus on a specific theory, the existential fragment of the theory of the
real ordered field (real algebra). This is an expressive, but still decidable the-
ory [Tar51]. Some well-known decision procedures are the cylindrical algebraic
decomposition method and the virtual substitution method. Application areas
include the verification of safety-critical programs or models thereof.

From results in automatic theorem proving by [PPdM12] inspired, it seems
important to compose a theory solver using several different approaches, as each
of the methods may be advantageous for a specific fragment of the theory. Our
main focus is on equations. Given a set of polynomials in several variables and
of arbitrary degree, we are interested in the common zeroes, i.e., the assignments
to the variables such that all polynomials evaluate to 0. More specifically, we
are interested in the question if the set of common zeroes is empty over the real
numbers.

Over the complex numbers, the famous Hilbert’s Nullstellensatz gives criteria
for emptiness. Evaluation of these criteria can be done using the Grébner basis
of a given set of polynomials. The Grobner basis consists of a set of polynomials,
which have the same set of common zeroes as the original polynomials, but it
has some properties which simplify checking properties of the set, e.g., whether
the set of common zeroes is empty over the complex numbers.

To decide whether the set of common real zeroes of a Grobner basis is empty,
one can apply the Real Nullstellensatz by Stengle [Ste74]. However, to apply
this theorem efficiently, we have to search for a witness. An approach by Platzer
et al. in [PQROY] yields feasible experimental results, which might lead to an
efficient SMT procedure.

10 Chapter 1. Introduction

Contribution

In this thesis we take two heavily used procedures and fit them into an SMT
framework in order to gain a speed-up on the detection of conflicts in the set of
equalities.

We start by a thorough introduction into the algebraic notions as a theoreti-
cal foundation. Based on these we are able to apply results from computational
algebra to develop the two new methods which we have adapted, implemented
and integrated into the SMT framework.

The first method, based on computing Grébner bases, determines inconsis-
tencies of equalities over the complexr numbers. There is a lot of research related
to Grobner basis algorithms, but as far as we know, none of the existing algo-
rithms is SMT-compliant. Another issue is that related research focuses more on
algebraically hard problems, which have a structure different than the problems
we know from SMT.

We implemented a well-known variant of the Buchberger algorithm as well
as all dedicated data structures the algorithm uses. The data structures are
designed with the structure of typical SMT problems in mind. We extended
the algorithm to be SMT-compliant and wrapped it in a Grébner basis module
which contains the SMT-compliant method as well as the interaction with the
other modules. We discussed and integrated two methods to factor inequalities
into the computation. Moreover, we provide a deeper understanding of the
theoretical and technical enhancements that can be made to such calculations.

The second method uses the computed Groébner basis and is able to deter-
mine inconsistency of equalities over the real numbers. It is an application of
the Real Nullstellensatz in which we search for sums of squares as witnesses
for unsatisfiability. The approach is based on the ideas from Platzer et al. in
[PQRO9]. We discuss the original approach and provide a preliminary imple-
mentation which uses a numerical library for semidefinite programming. The
resulting algorithm is integrated into our Grébner basis module.

The algebraic components of our module are implemented in GiNaCRA[]
GiNaCRA is an open-source C++ library for real algebra. The module itself,
as well as the major part of our second method, is integrated in SMT—RATH
SMT-RAT is a modular C++ framework for the development of real algebra
solvers within SMT. Our implementations will be part of the next release, and
are available upon requestﬂ

Our implemented methods significantly reduce the computation time on sev-
eral input instances, as we may conclude based on numerous benchmarks, whose
results are shown in the section on experimental results.

Related work

Several open computer algebra systems include Grébner basis algorithms, e.g.,
Macaulay [GS], Reduce/Redlog [DS97a] and Singular [DGPS12]. Some of the
algorithms used in these systems are described in [Bril0], [GGV10], [EP11]. An
extensive treatment of technical improvements for Gréobner bases computations
is given in |[RS]. Using Grobner bases as a simplification step in quantifier

1 Available from http://ginacra.sourceforge.net/
2 Available from http://smtrat.sourceforge.net/
3mail to 'sebastian. junges@rwth-aachen.de.

http://ginacra.sourceforge.net/
http://smtrat.sourceforge.net/
sebastian.junges@rwth-aachen.de

11

elimination is mentioned in [DS97b]. All these contributions are superior in
terms of both theoretical as technical optimisation, but none regards the needs
of an SMT-compliant algorithm and the different structure of problems handled
in SMT.

The Real Nullstellensatz is successfully applied in [PQR09]. Applications of
the more general Positivstellensatz are given in [Par03], [Tiw05], and [Har(07].
Although these approaches handle inequations directly, they require more effort
to be applied because three different witnesses have to be found. Furthermore,
these approaches do not require a Grébner basis as input for the computation.

Besides SMT-RAT, we are only aware of one other SMT solver which can
handle highly non-linear instances, that is Z3 [dMBO0S|. Z3 has implemented
saturation algorithms for Grébner bases, which aims at large, largely linear input
sets [PAMJI0], but the work on SMT-compliance in [dMP09] is preliminary and
has a more theoretical nature. There seems to be no efficient integration of
Grobner bases computations for input sets with higher degrees. Other existing
SMT solvers capable of non-linear real algebra are iSAT [FHTT07| and CVC3
[BTO7], but these are not complete and are more focused on the mainly linear
fragments.

Structure of the thesis

The remaining part of the thesis is structured as follows: In Chapter [2] we dis-
cuss SMT solving and requirements for the embedded theory solvers. We then
shortly present the framework SMT-RAT. In Chapter [3| we give the foundations
of our theory in algebraic terms and introduce Grobner bases. In Chapter []
we then develop an SMT-compliant Grébner basis module and discuss several
enhancements. In Chapter [§] we show a possible way to apply the Real Null-
stellensatz. In Chapter [6] some experimental results are given. In Chapter [7] we
conclude the thesis and give our view on future work.

12

Chapter 1.

Introduction

Chapter 2

SMT solving and real algebra

In this chapter, we describe how the Satisfiability Modulo Theories (SMT) solv-
ing approach works, and give some desirable features for the SMT components
we develop. Finally, we describe the SMT-RAT framework in which we embed-
ded our methods.

2.1 SAT solving

Satisfiability (SAT) checking is a well-known problem in computer science.
Given a propositional logic formula ¢, the SAT problem is to decide whether
there exists an assignment of truth values to the variables of ¢ such that ¢
evaluates to true. If such an assignment exists, we call a formula satisfiable
(sat), otherwise unsatisfiable (unsat).

Example 2.1.1. We give two propositional logic formulae:
e p=(-xzVy A(xzV-yVz)issat. (x =false, y = false, z = true).
o = (-xzVy) A(zVy)A-y is unsat.

Although SAT checking is computationally hard, modern solvers are capable
to solve very large problem instances efficiently. We regard the family of DPLL
SAT solvers. These solvers increase a partial assignment until it is either a full
satisfying assignment or they find a conflict. A DPLL solver makes decisions
about the value of a variable and then propagates the implications of this de-
cision. Then, if no conflict is detected, a new decision is made. If all variables
already have an assignment, the problem is satisfiable. If a conflict is found, the
solvers undo those decisions which caused this conflict and ’learn’ a new clause
describing the conflict’s reason. If no new decisions can be made, the problem
is unsatisfiable.

Note that DPLL solvers need their input formula to be in conjunctive nor-
mal form (CNF). However, any Boolean formula can be transformed into an
equisatisfiable CNF in linear time and space by Tseitin’s encoding [Tse83)].

A detailed description of DPLL solvers and their enhancements can be found
in e.g. [KSO8| and [BHYMWO09]. The actual implementation we use is based on
the SAT solver MiniSat [ES04].

14 Chapter 2. SMT solving and real algebra

2.2 SMT solving

Often, propositional logic does not suffice to describe a problem. One would like
to have a more expressive logic, for instance some fragment of the first-order logic
over some theory. In this fragment, the interpretation of symbols should be fixed.
For example, when someone is interested in equality of integers, the symbol "=’
should have the standard interpretation. Adding axioms is not always possibleﬂ
and the performance of this solution makes these solvers inapplicable. A better
solution is to use dedicated methods tailored to the specific theory.

However, when developing dedicated methods, it is an asset if we can use the
highly evolved SAT solvers for the Boolean structure. This approach is called
Satisfiability Modulo Theories (SMT) solving. We can distinguish between two
types of SMT solving. The eager approach converts input formulae into equi-
satisfiable propositional formulae. The lazy approach uses an inference system
specialised on the theory. We use the last one, as it gives us the possibility to
use results from the theory, in our case the real arithmetic.

2.2.1 Lazy SMT solving

The method we use for lazy SMT solving is based on the DPLL(T) framework,
which is a combination of a DPLIL-based SAT solver with a dedicated theory
solver. Our short introduction follows [ACLS10|. We start with explaining the
basic scheme as depicted in Figure [2.1] Definitions are postponed to Section
[2:3] where we define the chief terms with respect to a concrete theory.

Boolean skeleton

SAT solver

Set of constraints Return inconsistent set

\ Theory solver

Figure 2.1: Scheme for lazy SMT solving.

For a given Boolean combination ¢ of constraints, the SAT solver makes an
abstraction replacing all the theory constraints by fresh Boolean variables. This
yields the Boolean skeleton of ¢. The SAT solver then looks for a satisfying
solution, and if it does not succeed, immediately returns unsat. Otherwise, the
theory solver gets the constraints matching the satisfying assignment and it is
called for a consistency check. The theory solver checks if the received set of
constraints is consistent within the theory. If so, the theory solver returns to
the SAT solver, which returns sat. If the set of constraints is not consistent
within the theory, the theory solver returns a set of inconsistent constraints to
the SAT solver, which adds the corresponding Boolean variables in a conflict
clause and proceeds then, as if it would have found a Boolean conflict.

1 For the theory of the reals, we would need an infinite set of formulae from the first-order
theory.

2.2. SMT solving 15

This scheme is enhanced in less lazy solving such that theory calls can also
happen for partial (Boolean) assignments. In this case, whenever the theory
solver returns sat, the SAT solver has to extend the assignment, if the assign-
ment is partial, or return sat, if the assignment is already a full assignment.

Example 2.2.1. Given the input formula
p=(@-1=0A(@y=0)A((x+y=0)V(2y=0)),
the SAT solver first generates the Boolean skeleton and a mapping:

vp=aAbA(cVd)

a — (x—1=0)
b — (xy=0)
c = (x+y=0)
d — (2y=0).

Let us assume that the SAT solver directly assigns a and b to true, and then
decides to make a theory call. The theory solver would return true as {x —1 =
0, zy = 0} is consistent. The call was on a partial assignment, so the SAT
solver extends the assignment. Assume that the SAT solver decides to add c to
the assignment. The theory solver receives the new constraint, and now returns
the set as conflict. The SAT solver extends the Boolean skeleton with the learned
clause:
pp=aAbA(cVd)A(—aV bV —c),

leading to the assignment a = b = d = true, ¢ = false. As constraint seﬂ we
get {r —1=0,zy = 0,2y = 0}, which is consistent. Since the assignment yields
true in the Boolean skeleton, the SAT solver can return sat.

In order to make this scheme efficient, it is important to provide an efficient
interaction between the SAT solver and the theory solver. Three requirements
for efficient interaction are:

e Incrementality: The theory solver should use the result from a previous
check whenever the input constraint set is extended.

e Backtrackability: The theory solver should be able to restore a previous
state whenever the input set is decreased.

e Small conflict-set generation: The theory solver should be able to return
inconsistent sets of constraints which are as small as possible.

Definition 2.2.1 (SMT-compliant). We call a theory solver SMT-compliant if
it supports incrementality, bactrackability and the generation of small conflict
sets.

Notice that there are a couple of other properties which make a theory
solver work even more efficient. These are not in the scope of our definition.
We mention two additional features which further improve the interaction.

IThe input formula is in negation normal form (NNF), i.e., negation only occurs in front of
Boolean variables. If the input is in NNF, then only constraints whose corresponding variable
is assigned to true must be passed on to the theory solver.

16 Chapter 2. SMT solving and real algebra

e Informing: The theory solver should have knowledge about constraints
which might be added in future theory calls.

o Theory deduction: The theory solver should have the ability to tell the
SAT solver a pair of a set of constraints C' and a constraint ¢, such that if
all constraints in C' evaluate to true, then c evaluates to true.

2.3 Theory of the reals

In this thesis, we consider decision procedures for real arithmetic (RA). An RA
formula ¢ is an arbitrary Boolean combination of constraints c. Constraints
compare multivariate polynomials p over a set V of variables with zero. Mul-
tivariate polynomials are variables and constants, arbitrarily combined by ad-
dition, subtraction and multiplication. We define them by a grammar with
zeV:

p u= L | =z | (p+p) | (p—p) | (p-p)
¢c == p=0]p<0| p>0
o = c | (=) | (pAy) | (Bzyp)

The semantics for such formulae is as usual. Several Boolean operators can be
added as syntactic sugar, moreover, we can also define the relations <, >, in
constraints.

A special case of RA is non-linear real arithmetic (NRA). In NRA, there
exist constraints which are not linear, i.e., whose degree is larger than one (see
Definition . If, in contrast, all constraints are linear, i.e., the degree of all
constraints is less than two, we call the fragment of RA linear real arithmetic
(LRA). For LRA highly efficient methods are available. In this thesis, we focus
on constraints which are non-linear.

Next we fix some notions. A more formal treatment of the theory is given
in Chapter [3]

Definition 2.3.1 (Variable assignment). A (real valued) variable assignment
a:V — R is a map from the set of variables V' to the value domain R.

Definition 2.3.2 (Satisfying assignment). A set C' of constraints is consistent
if it has a satisfying assignment, i.e., if there exists a variable assignment such
that all constraints ¢ € C' evaluate to true. A set C of constraints is a conflict
set, also called inconsistent, if there exists no satisfying assignment for C.

Definition 2.3.3 (Theory call). A theory call returns for a given set C' of
constraints either a conflict set C' C C' or the empty set in case C is consistent.

2.3.1 Common approaches

We hereafter shortly introduce the two major procedures which are mostly used
for non-linear problems in the context of SMT solving.

Virtual substitution Virtual substitution (VS) is a method originally de-
veloped by Weispfenning in [Wei93|]. It is a quantifier elimination procedure
based on a finite abstraction of the state space, substituting variables by a finite

2.4. SMT-RAT 17

set of test candidates. Instead of a real substitution, for an input formula ¢
it produces a set of formulae ¥ such that ¢ is unsatisfiable if and only if all
1) € U are unsatisfiable. Since this substitution only works for polynomials of
bounded degree, it is incomplete, but it turned out to be very efficient on many
problems. An SMT-compliant version is given in [CATI].

Cylindrical algebraic decomposition Cylindrical algebraic decomposition
(CAD) is a method originally developed by Collins in [Col75]. Instead of trans-
forming the input formula, the CAD partitions the solution space into regions
over which all input polynomials are sign invariant. This is done in two phases:
projection and lifting. The projection is done by successive elimination of vari-
ables. When there is only one variable left, the univariate solutions can be
easily calculated. In the lifting phase, we retrieve sample points for all cells
from the partitioned solution space. Since the representation of points in the
solution space is far from trivial, the CAD generally performs better when it gets
(strict) inequalities. Despite this, the CAD is a complete decision procedure.

2.3.2 Applications

Nowadays, more and more digital systems interact with their physical environ-
ment. Often, these systems are safety-critical, e.g., control systems in trans-
portation. The behaviour of such systems can be modelled by means of hybrid
automata. Hybrid automata can be verified to fulfil certain properties. One ap-
proach to do this is bounded model checking [Arm03|. During bounded model
checking, real arithmetic formulae with a Boolean structure have to be checked
for satisfiability. Therefore, there is a great interest in SMT solving within this
community (see e.g. [CMT12]).

Other applications for SMT solving are verification of programs involving
floats and the verification of formulae involving special functions [AP10].

24 SMT-RAT

We integrated our modules in SMT-RAT |[CLJA12|. SMT-RAT is a modular
C++ framework to support the implementation of SMT solvers for non-linear
real arithmetic. Different methods and approaches to solve or simplify sets of
constraints can be implemented as modules. At compile-time, these modules
can be composed into a hierarchy together with a strategy which, during run-
time, decides which module should handle the input. In the version 0.3, there
are modules for CAD, Virtual Substitution as well as some preprocessing and
simplification modules.

The framework was slightly redesigned recently, therefore, we describe the
most important parts of the interface here. A more detailed description can be
found in the user’s manual |CLJA].

2.4.1 General overview

The general idea of the framework can be seen in Figure The modules,
depicted as boxes contain different methods and/or different heuristics for these
methods. The links between the modules model the strategy. The approach to

18 Chapter 2. SMT solving and real algebra

solve a problem instance is that a module might work on a fragment of the input
and then pass a modified part of the formula to another module, which might
contain a more efficient method to solve this new, equisatisfiable formula. The
order of these calls and the specific modules which are called is described by
the strategy. We call a module B, which is called after another module A, the
backend module of A. The interaction between two successive modules is realised

Boolean skeleton

/ SAT solver

Set of constraints Return inconsistent set

Module Module Module

Figure 2.2: Modules and strategy in SMT-RAT.

by sharing a common set of constraintsﬂ Every module has a received formula
and a passed formula. The passed formula is the same as the received formula
of its direct successors. In Figure 23] the Module A has a received formula ¢4
and a passed formula ps. Module B has 9 as its received formula.

Module Module
A B

Figure 2.3: Two modules with their in- and output.

Modules should never change their received formula, as there might be other
modules also working on this formula. Moreover (see Figure whenever a
backend module returns a conflict set with respect to the passed formula, it is
important to translate this to a conflict set with respect to the received formula
such that the SAT solver finally gets a conflict set with respect to its passed
constraints. In this manner, the SAT solver is able to understand the conflict
and learn its conflict clause. In Figure[2.4 Module C finds a conflict. It returns a
subset of its received constraints. Module B and all other predecessors translate
this subset back.

11n fact, they share a common formula, but for the theory solvers we use, this is always a
conjunction of constraints.

2.4. SMT-RAT 19

Cl C 2 03 é

SAT solver e Mod.B

{.}cx {.}ce {.}CCs

Figure 2.4: Learning a conflict.

Definition 2.4.1 (Reason set). Given two sets Cy, Csy of constraints, the reason
set of a constraint ¢ € Cs is a set R C C such that /\TERT — c.

The module has an interface which keeps a mapping storing the reason sets
for all constraints in the passed formula. This mapping is used for restoring the
conflict sets, but besides that, the mapping is also used to update the backends
whenever backtracking occurs, such that the backtracking is applied to the
passed formula (and thus the backend modules).

2.4.2 Implementing an own module

To implement an own module in SMT-RAT, one has to inherit the functionality
from a generic Module class. The own class should overload at least the three
core methods, which define the behaviour of the module. In order to keep data
structures correct, calls to the method in the superclass should be made.

assertSubformula(constraint): From now on, theory calls to the
module should consider the constraint in the received formula.

isConsistent (): This method asks the module for consistency of the as-
serted constraints in the received formula. Besides true and false, the check
can also return unknown. In order to have the ability to add backends for this
module, a call to runBackends should be added at a suitable place after the
calculation.

removeSubformula(constraint): Thismethod is basically the inverse
of assertSubformula. It informs the module that it should no longer take
the constraint into account.

2.4.3 Theory solver and strategy

A theory solver built from SMT-RAT modules can be best regarded as a set
of rules which define the strategy. Each formula has a set of properties, which
are calculated on-demand. There are two major categories of properties. First,
those properties describing the formula, e.g., whether or not all constraints are
equalities. Second, those which describe whether another module was already
called on the formula. Now to define a strategy, we define a set of rules. Each
rule consists of a priority, a function which maps properties of a formula to
a Boolean value, and a module. The rules are evaluated according to their
priority order, and as soon as the function evaluates to true, the corresponding
module is attached as used backend, and the constraints which have been added

20 Chapter 2. SMT solving and real algebra

but not yet asserted in this module will be passed as arguments in the calls to
assertSubformula.

Chapter 3

Consistency for polynomials

In this chapter, we formalise our problem from the previous chapter in terms of
real algebra. We regard polynomials as algebraic objects. This enables us to use
well-understood theory about polynomials and we can define what consistency
means in algebraic terms. We then move on to Grébner bases, which are an
important tool for simplifying the representation of polynomial sets. In the last
part, we consider criteria for consistency and shortly show how to apply some
of the results to inequalities.

3.1 Consistency as an algebraic notion

We start with some basic algebraic definitions which can be found in, e.g.,
[BWK93| and [CLO97].

3.1.1 Rings and fields

For our treatment of polynomials, two algebraic structures are elementary.

Definition 3.1.1 (Commutative Ring with 1). Given a set R and two binary
operations, + and -, for which the following holds:

~

a+ (b+c)=(a+b)+c foralla,b,ce R (associative addition).

2. a+b=>b+a foralla,b € R (commutative addition).

3. There is a 0 € R such that a4+ 0 = a for all a € R (existence of a zero).
4. For all a € R there exists a b € R such that a+b =0 (inverse element).
5.a-(b-c)=(a-b)-c forall a,b,c € R (associative multiplication).

6. a-b=">-a (commutative multiplication,).

7. There is a1 € R such that a-1 = a for all a € R (existence of a one).

Then (R, +,") is a commutative ring with 1. Since we only regard commutative
rings with a 1, we will simply refer to them as rings.

If the binary operators are clear from the context, we simply omit them.

22 Chapter 3. Consistency for polynomials

Definition 3.1.2 (Field). Given a set K and two binary operation, + and -,
for which the following holds:

1. (K,+,") is a ring.

2. For alla € K,a # 0 there exists a b € K such that a-b =1 (multiplicative
inverse element).

Then (K, +,-) is a field.

Example 3.1.1. A well-known example for a ring is the set of integers, 7Z.
Well known examples for fields are the sets Q, R and C of rational numbers,
real numbers, and complex numbers respectively.

3.1.2 Polynomials

We now formally define polynomials as algebraic objects. Let in the following
Z={x1,...,2,} with n > 1, be a set of variables.

Definition 3.1.3 (Monomial). A monomial over Z is a product z& = x{* - - - 2o
for some exponent vector o = (o, ...,a,) € N*. The set of monomials over
Z is denoted Mz. The total degree of a monomial T, denoted by tdeg(z?),
is defined as Y ., ;. If the total degree of a monomial equals zero, it is the
constant monomial 1. We say that a variable v; € T occurs in a monomial

T € Mz if a; > 0 and use x; € T as notation.

Definition 3.1.4 (Operations on monomials). For my; = % and mo = 7P we
define:

1. multiplication: my - mg = Z¥ with v; = a; + B; for all 1 < i < |Z|.
2. divides: my | mg if and only if a; < B; for all 1 <i < |Z|.
3. division: If my | mg then % =Y with v; = B; — ay for all 1 < i < |z|.

Polynomials are obtained by addition of monomials multiplied by some co-
efficients.

Definition 3.1.5 (Polynomial). Let K be a field. A polynomial f over Z,
f=ami+...+aymy, is a finite sum of pairwise different monomials m; € Mz
with coefficents, a; € K for all 1 < i < [. The total degree, tdeg(f), of a
polynomial f is max'_, {tdeg(m;) : a; # 0}. If |z| = 1 we call the polynomial
univariate, otherwise it is called multivariate. Polynomials with tdeg(f) = 0
are called constant. Polynomials with tdeg(f) =1 are called linear.

Example 3.1.2. The polynomial f = 2z1z2 + x1 s a multivariate polynomial
with a total degree of 2. The polynomial g = 3x3+2x1 is a univariate polynomial
with a total degree of 3.

Definition 3.1.6 (Polynomial ring). [BWK93, Chapter 2] The set of all poly-
nomials over a given set of variables T with coefficients in K is denoted as
K|[z]. Together with the addition and multiplication of polynomials, K[Z] is a
ring, which we call the polynomial ring over K.

Polynomials in the context of SMT solving are regarded as functions. The
following defines this notion formally.

3.1. Consistency as an algebraic notion 23

Definition 3.1.7 (Polynomial evaluation function). Given a polynomial ring
K[z], a field N such that K C N, and a polynomial f = Z;nzl a;T% €
K[z]. Then we can define the following map: f : N — N, f(c1,...,cn) =
Z;.":l ajci“ oo™ We call f(cy,...,cn) the evaluation of f under c.

It follows immediately from the definition that the evaluation can also be
applied to single monomials and that the evaluation of a polynomial equals the
weighted sum of the evaluations of its monomials.

Definition 3.1.8 (Zero of f). Let K C N be fields, and c¢1,...,¢, € N. For
any polynomial f € Klx1,...,xy,], the tuple (c1,...,cn) is called a zero of f if
f(cla"'acn) =0.

Example 3.1.3. The function f = 2x129 + x1 has an evaluation under (3,2)
which equals f(3,2) =2-3-2+3 =15.

3.1.3 Ideals and varieties

In the previous chapter, we discussed that we want to check the consistency of
constraints. We now define consistency for polynomials. Notice that we only
regard equalities for now.

Definition 3.1.9 (Affine variety). Let K C N be fields, and let fi,..., fs
be polynomials in Klxy,...,x,]. The set of the common zeroes of fi,..., fs,
defined as

Vn(fis. ooy fs) ={(c1y..yen) €N filer,...,cn) =0 for all 1 < i < s}

is called the affine variety of f1,...,fs over N. We sometimes omit the N if it
is clear from the context.

Consistency of polynomial equations thus reduces to checking if the affine
variety of some given polynomials is empty. In order to efficiently work with
these varieties, we first make an observation. Given a system of polynomials
fi,-.+, fs € K[Z] such that for an arbitrary ¢ € N™ it holds that

fi(e) =
f2(0) =

fs(e) =0

then, for this ¢ it also holds that for arbitrary hi,...,hs € KJ[z] the linear
combination (>°7_, h;fi)(¢) = 0.

We now introduce ideals as an algebraic object which turns out to be suitable
for describing common zeroes.

Definition 3.1.10 (Ideal). Let R be a ring and I C R. I is an ideal of R if
1. 0el.
2.a+bel forallabel.

S.r-a€l forallael andr € R.

24 Chapter 3. Consistency for polynomials

Lemma 3.1.1 (Generated ideal). [CLO9%, p.31] If f1,...,fs € K[Z]. Then
the set

(fioofs)y =D _hifi - hi € K[z] for all 1 <i < s}
i=1
is an ideal of K[x] and we call it the ideal generated by f1,...,fs. The polyno-
mials fi1,...,fs are called the generators of (f1,...,fs).

Theorem 3.1.2 (Hilbert basis theorem). [CLOY7, p. 74] Every ideal I of K|[Z]
is generated by a finite number of polynomials, i.e, I = (f1,...,fs) for some
fi,-- o fs € K[z

As a next step, we consider the correspondence between affine varieties and
ideals.

Proposition 3.1.3. If (f1,...,fs) = I C K[z] and {¢1,...,9:) = J C K|T]
with I = J, then V(f1,...,fs) =V(g1,...,6¢).

An idea for the proof is based on the observation that every generator of J
is a linear combination of generators of I. Therefore for every g;, ¢;(¢) = 0 for
all ce V(f1,..., fs). Thus, V(I) is well-defined. Moreover, from the definition
we directly get:

Corollary 3.1.4. If for a given ideal I it holds that 1 € I then V(I) = 0.

Definition 3.1.11. Let V C N™ be an affine variety. We define (V) = {f €
K[z : f(€) =0 for allc e V}.

The set I(V) is an ideal. However, the ideal-variety correspondence is not
as close as we might have hoped for.

Proposition 3.1.5. If fi1,...,fs € K[z]. Then it holds that {f1,...,fs) C
I(V(f1,..., fs)). However, we do not have equality in the general case.

The proof can be found in [CLO97, p. 33]. A counterexample for the converse
is given here.

Example 3.1.4. At first we notice that v € (x?,y?), since x has a total degree
of one, and all polynomials in (x?,y?) are of the form hix? + hoy? and thus are
either zero or have a total degree of at least 2. It follows directly that (x,y) is
strictly larger than (x2,y%). Now we regard I(V(z2,y?)). Since 2? = y?> = 0
implies x = y = 0, we get that V(2?,4y?) = {(0,0)}. The only thing which is still
to be shown is I({(0,0)}) = (z,y). Every polynomial of the form hy-x + ha -y
trivially vanishes at (0,0). Moreover, if a polynomial vanishes at (0,0), the
constant monomial should have a zero coefficient (and thus be zero, and be in
the ideal). All other monomials are multiples of at least x ory, and therefore
are in the ideal.

Before proceeding, we notice that, even in the complex case, it does not hold
that V(I) =V (J) = I=J.

Example 3.1.5. V((z)) = {0} = V((z?)).

We conclude this section with another positive result on the correspondence
between varieties and ideals.

3.2. Grobner bases 25

Proposition 3.1.6. [CLO9J7, p.32] Let V,W be affine varieties in K[Z]. Then
V C W if and only if I(V) D I(W).

Intuitively, this proposition states that adding a polynomial constraint may
reduce, but never increases the set of common zeroes.

3.2 Grobner bases

The last section gives rise to two problems.

Question 1 (Reduced basis problem). How can we simplify the generators of
a given ideal?

This yields a more compact representation of the ideal and thereby a more
compact representation for the variety.

Question 2 (Membership problem). How can we decide whether a polynomial
s in a given ideal I?

Checking whether 1 € I would allow us to check whether V(I) is empty
(Lemma . In later chapters, we also want to check other polynomials for
membership.

For linear polynomials we can use Gaussian elimination in order to answer
both questions. Gaussian elimination is suitable for the linear case due to the
fact that different monomials cannot divide each other, which however is possible
in the non-linear case.

For univariate polynomials we would use the greatest common divisor (ged)
to obtain a single generator for the given ideal, whereas in the multivariate
case, it is in general impossible to find such a single generator [BWK93| p. 86].
Membership checking in the univariate case is possible with polynomial long
division (Example or [CLO97, Section 1.5]) and then checking whether
the remainder is zero.

For the general case, we thus have to generalise both procedures. An ex-
tended treatment of the univariate and linear case and a comparison to the
general case can be found in [AL94].

3.2.1 Polynomial reduction

In both Gaussian elimination and the Euclidean computation of the gcd, a
reduction of polynomials is the core of the algorithm. An important, although
seldomly stressed property of these reductions is the order of the monomials,
which is important for both correctness and termination. Therefore, we define
such monomial orders for the general case.

Definition 3.2.1 (Variable order). A variable order is a linear order on the set
of variables T.

Linear orders are orders which are transitive, antisymmetric, and total. We
will not explicitly describe or refer to the variable orderings. As a convention we
order according to the indices (e.g. x1 > x3) or according to the lexicographic
order (z > y).

26 Chapter 3. Consistency for polynomials

Definition 3.2.2 (Monomial order). For any T and a given variable order <z
on T , a linear order < on Mz is a monomial order if it satisfies

1. 1<m VYme M;\ {1}
2. mp < mg = mmq < mmsg Ym,mi,mo € M.

There are several possible monomial orders, we define the four which are
most commonly used in both literature and implementations.

Definition 3.2.3. Let my = 8 -+ 22" and my = ' - aPn .

e lexicographic order: my 2oy Mo <=

dk1<k<nAapr>PpAVil<i<k — a; =0;

e graded lexicographic order: my > grieg Mo <=

tdeg(my) > tdeg(ms) V (tdeg(my) = tdeg(ma) A my >jer mo2)

o graded reverse lexicographic order: mi > grrevier M2 <=

tdeg(mq) > tdeg(mz) V
(tdeg(my) = tdeg(msz) A
F1<k<nAa <BpAVik<i<n = o;=p)

The graded orders are called degree-based orders.

Example 3.2.1.

2,2 1,3 2,2 1,3 2,2 1,3
7y Zlex X Yy -y Zgrlez 'y -y Zgrrevle:z; -y

3,1 1,4 3,1 1,4 3,,1 1,4
-y Zlew Ty -y zgrlem 'y -y zgrv‘evlem -y

2 2 2 2 2 2
-z Zlez Tz -z zgrlex zrz Tz Zgrrevlex zrz

In general, lexicographic orders tend to yield a basis with some 'nice’ prop-
erties, however, calculating them is more expensive. In the remainder we will
not explicitly refer to the monomial order, and we will use the graded lexico-
graphic order in examples. The next definition makes it easier to reason about
polynomials when discussing reduction.

Definition 3.2.4 (Leading monomial and leading coefficient). Assume a mono-
mial order < and a polynomial f =Y _1" | c;m; € K[z] with ¢; # 0 and m; < m;
foralll <i<j<m.

1. The leading monomial of f, Im(f), equals m;.
2. The leading coefficient of f, lc(f), equals c;.
3. The leading monomial with coefficient of f, Imc(f), equals Ic(f) - Im(f).

Lemma 3.2.1. [BWK93, p.195] If f,g € K[Z] with f #0, g #0 and f, g both
ordered with the same order <. Then the following hold:

1. Im(f - g) = Im(f) - Im(g)

3.2. Grobner bases 27

2. le(f - g) = le(f) - Ic(g)
3. Im(f +g) <max{Im(f),Im(g)}.

Notice that we do not have equality, as the leading terms may cancel each
other.

We will now generalise the polynomial long divisiorﬂ from the univariate case
to the multivariate case. We start by giving a little example for the univariate
case.

Example 3.2.2. Dividing f = 423 + 22 +2 by g = 2z + 1 we start with r = f
and then we get

1. Imc(r) = 423 is dividable by Imc(g) = 2x with factor 2x%. After the first
step we have r = 42® + 2% +2 — 22222 + 1) = —2% + 2.

2. Imc(r) = —a? is dividable by Imc(g) = 2z with factor —3x. The remainder

now iST:—xz—l—?—(—%x)(%f—&-l) = %x+2

3. Imc(r) = S is dividable by Imc(g) = 2z with factor ;. The remainder
nowisr=ir+2-12z+1)=1

4. Imc(r) = % is not dividable by Imc(g) = 2x.

So as result we get f = (2z* — tx+ Lyg+ 1.

We are mostly interested in the remainder. We therefore call such a proce-
dure reduction. If the result of a reduction of f is f/, we say that f reduces to
f’. For the multivariate case, we start considering a single reduction step.

Example 3.2.3. We want to reduce f = x?y +y? by g = 2y — 1, w.r.t. the
lexicographic order and x > y. The reduction step is possible, since Imc(g)
divides Imc(f). Thus f reduces to f' = 2?y+y* —z - (vy — 1) = y*> + z.
Definition 3.2.5 (Top reduction). Let f, f’, g be polynomials in K[Z] with
f#0,g#0. Then f top-reduces to f' modulo g if Im(g) | Im(f) and

ime(/)

P2 el

We write f 25, f' for such a step.

In contrast to the univariate case, it is possible that although the leading
monomial is not dividable, another monomial in the polynomial is.

Example 3.2.4. We want to reduce f = 2> +xy by g = zy — 1 w.r.t. the
lexicographic order and x > y. Top-reduction is not possible, since Imc(g) does
not divide Imc(f). But Imc(g) divides xy. Thus x? + xy reduces to x2 + xy —
(xy —1) =22+ 1.

Definition 3.2.6 (Reduction). Let f, f', g be polynomials in K[z] with f # 0,
g#0and f =aymy+...+aymy, with a; € K,m; € Mz for all1 <1i <. Then
f reduces to f' modulo g if there exists an i, 0 < j <1 s.t. Im(g) | m; and

;- _ a;m;)

r=7 Imc(g) g

We write f L5 ' for such a step. The polynomial g is called the reductor.

IThe polynomial long division in its basic form is explained in [CLO97, p. 38].

28 Chapter 3. Consistency for polynomials

Since we cannot combine the several generators of an ideal into a single
one in the multivariate case [BWK93| p. 86|, we have to extend the notion of
reduction such that it is able to cope with a set of reductors F.

Definition 3.2.7. Let f, f' be polynomials in K[_] with f # 0 and F C K[Z].
Then f reduces to f modulo F | written f RN 1!, if there exists a g € F s.t.
I3 . We write f -—) I for multzple reduction steps.

In Algorithm [T we show the pseudo code for the reduction modulo a set of
polynomials, which closely resembles [CLO97, p. 62|. Note that the existence

Input: f, G =g,. 7957 2

Output: 7 s.t. f—>7“WTtZ
r=0;p=1r[;
while (p#0) {
if (34 Imc(g;) | Ime(p)) {
)

p = p — Imc(p)/Imc(g:) * gi;

Algorithm 1: Polynomial reduction.

of a reductor can be easily checked with a while loop, but for an efficient imple-
mentation other strategies are better, and the correctness does not depend on
the way we check for and select our reductor. The proof for correctness is similar
to [CLO97, p. 62]. We only sketch the main ingredients here. The following
lemma shows that the term ’reduction’ is suitable and is the main ingredient
for showing termination.

Lemma 3.2.2. [BWK93, p. 198] Given f, f', g € K[z]. If f S0 f then
Im(f) > Im(f").

The correctness follows from the fact that we apply the definition of reduction
whenever we can find a suitable g;, and, with the lemma above, it can be shown
that monomials in r are added in a strict descending monomial order.

Definition 3.2.8 (Normal form). Given f,f’ € K[| with f # 0 and F C K[Z].

Then f' = f¥ is the normal form modulo F if f EiN f" and f’ cannot be reduced
modulo F.

Proposition 3.2.3. Let f, f’ € K[| with f 20 and F = {f1,...,fs} C K[Z].
If f EiN f', then there exist hy, ... hs € K[Z] such that f = fih1+. ..+ fshs+f'.

This follows directly from the definition, which can be constructively shown
by the division variant of Algorithm [1}in [CLO97, Theorem 3].

3.2. Grobner bases 29

3.2.2 1deal reduction

If we want to know whether f € (f1,...fs) = I, we can use the reduction
algorithm. If the remainder equals zero, then f € I. However, for the other
direction we have a counterexample.

Example 3.2.5. Given F' = {(x+1,2) and f =2z +2. f zH, 0, so there exist
hi=2,hy =0¢€ K[Z] s.t. hy-(x+1)+ha-(x) = f. However, if we first choose
x as reductor, we get f = 2, which cannot be further reduced.

One solution might be to reduce the generators w.r.t. the other generators.
Asz+1 51,1 €I and we can substitute + 1 with 1 in the set of generators.
We then could reduce f = 2 5 0. An algorithm for reducing generator sets is
given in Algorithm [2]

Input: F={f,.. fs}
OUtPUt: G= {gla"'agt} s.t. <f13 s afs> - <gl7 ce 7gt>
and for all ¢ =1,...,t, g; cannot be reduced modulo G \ {g;} .

G = F;

while (exists g€ G with g# g@\eh) {
G = G\{g};
h = gG\el.
if (h#0) G = GU{h};

}

Algorithm 2: Ideal reduction.

Simple inter-reducing does not suffice for deciding ideal membership though.

Example 3.2.6. Let I = (xy+1,y*>—1) C K|[x1,22]. Notice that the generators
of I are already reduced. The polynomial f = xy?> —x = x(y?> — 1) is clearly
contained in I, but the reduction algorithm may yield the following calculation:
f=ylzy+1) — x —y and then the remainder is —x — y.

Here, we could change the order of the polynomials to overcome this. How-
ever, we follow another, more general approach, in which we regard the input
polynomials as generators for an ideal. If we are able to generate another set
of generators for this ideal which have the properties of a unique remainder, we
are done.

3.2.3 Foundations of Grobner bases

We now define Grobner bases. These bases are sets of generators and allow
i.a. easily answering the membership problem. Obviously, in order to have nice
properties for the membership-question, the basis has to regard the leading
terms of the generators.

Definition 3.2.9. Let I C K[z]\ {0}. Then Imc(I) = {Imc(f): f € I}.

We can find such generators.

30 Chapter 3. Consistency for polynomials

Lemma 3.2.4. [CLO9%, p. 73] Let I C K[z]\{0}. Then there exist ¢1,...,9: €
I s.t. (Ime(D)) = {g1,.-.,9t)-

These generators build a Grébner basis.

Definition 3.2.10 (Grébner basis). For a given monomial order, a finite set
G ={g1,...,9t} C I C K|[Z] is a Grobner basis for I if

<|mC(I)> = <gla cee 7gt>-

The existence of a Grobner basis for an arbitrary ideal can be shown by
combining Lemma[3.2.4)and Theorem [3.1.2] The Grobner basis is also a suitable
set of generators for the ideal.

Corollary 3.2.5. [CLO97, p. 75] If G C I is a Grobner basis, then (G) = I.

There are a lot of different characterisations for Grébner bases. However,
the following suffices for our needs. An extended list can be found in [BWKO93,
p. 206].

Lemma 3.2.6. [AL94, p. 32] Let I be a non-zero ideal of K[Z]. Let G C I.
Then the following statements are equivalent:

1. G is a Grébner basis.
2. f§—>*0 if and only if f € 1.
3. Forall f €I, f#0, there exists a g € G s.t. Im(g) | Im(f).

Thus, checking ideal membership is a simple reduction, if we have a Grobner
basis for our ideal.

Definition 3.2.11 (Reduced form). Let f, f" be polynomials in K[z| and I a
non-zero ideal of K[z]. If G C I is a Grobner basis and f' = f€, then f' is the
reduced form of f, written as redg(f).

3.2.4 Constructing a Grobner basis

The very first algorithm which computed a Grébner basis was the Buchberger
algorithm, proposed by and named after Bruno Buchberger in his PhD. thesis
[Buc65]. Most modern algorithms resemble (parts of) this algorithm. In order
to understand the correctness of this algorithm, we review the characterisation
from Lemma [3:2.6] The important point of a Grébner basis is that we can
guarantee that every leading term of a polynomial in the ideal can be divided
by the leading term of a generator. How is that different from arbitrary sets of
generators?

Example 3.2.7. Consider the ideal I = (zy + 1, y*> — 1) (compare Ezample

. Then the polynomial f = y-(zy+1)—x-(y?>—1) = 2y’ +y—ay’*+2 = +Y
is in the ideal. However x + y cannot be reduced by the generators of I.

Here, we see that the leading terms of the two polynomials cancel each other
by multiplying each with a suitable monomial. So, if we want to find a Grébner
basis, we have to eliminate the possibility of leading-term cancellation.

We can describe such cancellations with S-polynomials, which we define next.

10

12

13

14

3.2. Grobner bases 31

Definition 3.2.12 (Least common multiple). For two monomials s,;t € Mz, and
their exponent vectors o = (aq ...,ap) and B = (B1,...,0n), let the exponent
vector v = (V1,...,vn) be defined by v; = max(ay, 5;) for all 1 < i < n. The
least common multiple of s and t is then defined as lcm(s,t) = z7.

Definition 3.2.13 (S-polynomial). Assume f,g € K[Z]\{0}. The S-polynomial
of f and g is defined as

_ lem(Im(f),Im(g)) lem(Im(f),Im(g))
S(f.9) = ime(f) f = imc(g) g

The S-polynomial is not only the easiest way to produce cancellation, it
is even sufficient to provide all cancellations [CLO9T, p.81]. Therefore, our
main ingredient for constructing a Grobner basis is finding cancellation by S-
polynomials, and if all S-polynomials are already in the ideal, then we have
found a basis.

Theorem 3.2.7 (Buchberger criterion). [CLO9%, p. 83] Let G = {¢1,...,9:} C
K[z] \ {0} be a set of generators and I = (G) its ideal. Then G is a Grobner

basis if and only if S(g:,9;) S0 foralll <i<j<t.

This immediately gives rise to the Buchberger algorithm (Algorithm|3)). The

InplIt: F:{fl7"'7f7‘}a2;
Output: G Grobnerbasis w.r.t. > st. (F) = (G);
G = F;
S =A(fi.f;):1<i<j<rh
while (S # 0) {
select (f1,f2) € S;
S = S\{(f1.f2)};

q = S(fi,f2);
q = Reduce(q, G, >);
if(¢#0) {
S = SU{(fi,s): fi € G};
G = GU{q};

}
}

Algorithm 3: Buchberger algorithm.

reduce-procedure does a (full) reduction (Algorithm|[L)). The correctness proof is
based on Theorem [3.2.7]and the fact that the algorithm checks for cancellations
between all elements in the basis. Whenever a new element is added, all new
pairs are also scheduled. A termination proof would show that if we would
keep on adding elements, we eventually have to add the 1, and afterwards, no
new elements could be added since the reduction would always reduce to zero
[BWKO93, p. 213].

Example 3.2.8. We give an example calculation. We calculate the Gréobner
basis w.r.t. the graded-lexicographic order for the ideal I = (f1,f2) with f1 =
zy + 1 and fy = y?> — 1 from Ezample . We initialize and set G = {f1, f2}
and S = {(f1,/f2)}-

32 Chapter 3. Consistency for polynomials

1. We select (f1,f2) € S. ¢ = S(f1,f2) = %.(gjy+1)_%(y2_l) — x4y
x +y cannot be reduced by the elements in G. Thus, G = {f1, fo, f3} and
S= {(flaf3)7 (f27f3)} with f3 =r+y.

2. We select (fi,fs) € S. q=S(f1, f3) = 32 (ay+1) =2 - (z+y) = —y*+1.
q£>0.

2 2
3. We select (f2.f3) € S- q=S(f2, f3) = 5 (y*~1) =" (a+y) = —y’ —z.
q ﬁ) —Tr—y f—3> 0.
We are done. The Grébner basis is {xy + 1, —y*> + 1, =+ y}.

There are several improvements to this Buchberger algorithm. We discuss
them in Chapter 4. We now return to the remaining problem of finding a small
generating set.

3.2.5 Reduced Grobner basis calculation

Grobner bases give us a nice set of generators, but they’re neither minimal nor
unique. Minimality is obviously important to us, as we might want to pass the
Grobner basis during our SMT procedure. Uniqueness is useful for comparison.
Luckily, we get uniqueness for free if we minimize and reduce our Grobner basis.

Definition 3.2.14 (Reduced Grébner basis). Let G be a Grobner basis for an
ideal I such that for all polynomials f € G:

1. le(f) =1.

2. For all monomials m which appear in f with a non-zero coefficient, the
monomial m does not lie in (Im(G\ {f})).

Then G is a reduced Grobner basis.

The straightforward algorithm for this is given in Algorithm[]and taken from
[BWK93, p 216]. If we sort F, then we only have to check against elements of
H.

Example 3.2.9. Consider the Grébner basis G = {xy + 1, y*> — 1, x + y}
from Ezample [3.2.8. Then the reduced Grobner basis is obtained by removing
xy + 1, because Im(x + y) | Im(axy + 1). No further steps have to be taken,
because neither of the monomials in the remaining polynomials can be reduced
by a leading monomial of the other polynomials.

Lemma 3.2.8. [CLOY%, p. 90] For any ideal I # {0}, and some given variable
orders and monomial orders, I has a unique Grobner basis.

We will use reduced Grébner bases as generators for ideals.

3.3 The Nullstellensatz

We are now able to calculate a ’nice’ set of generators, and can easily decide
ideal membership. But we are more interested in the corresponding varieties. In
Section [3:1.3] we showed the strong correspondence. In this section, we consider
three further questions.

83.8. The Nullstellensatz 33

Input : G Grébner basis;
Output : Hreduced Grébner basis s.t. (G) = (H) ;
H = 0;
F = sort(G); // ascending, by G’s monomial order
i=1;
while (i <= size(F)) {

j = 1; div = false;

while (j <= size(H)) {

if (Im(h;) | Im(f;)) div = true;

}
if (1div) H = HU{f;/lc(f)};

}
H = Reduction (H);

Algorithm 4: Reduced Grébner basis.

Question 3. How can we decide if for a given ideal I it holds that Vc(I) =07

This question is answered by the Weak Nullstellensatz, which is discussed in

Section B.3.11

Question 4. How can we decide if for a given ideal I with Vc(I) # 0 it holds
that Ve(I) =07

Notice that Vg () = 0 implies Vg(I) =). The question is answered by the
Real Nullstellensatz, which is discussed in Section [3.3.2]

Since we are only interested in applying the theory to real algebra, we con-
sider the field R, the algebraically closed extension C and the countable subset
Q. First we formalise some of their properties.

Proposition 3.3.1. [BWK93, p. 306] The complex numbers are algebraically
closed, i.e., each non-constant polynomial in C[Z] has a zero.

The reals are not algebraically closed, for instance 2 + 1 has no real zero.

Definition 3.3.1 (Sum of squares). Assume polynomials p1,...,p, € K[Z].
Then Y i, p? is a trivial sum of squares (TSQ). If a polynomial p can be
rewritten as a trivial sum of squares q, p = q, then p is a sum of squares.

Definition 3.3.2 (Real field). A field K is real if and only if —1 € K is not a
sum of squares.

Proposition 3.3.2. The rational numbers and the real numbers are both real
fields. The complex numbers are not a real field.

3.3.1 Weak Nullstellensatz

From Corollary we know that 1 € I = V/(I) = (). However, the other
direction also holds.

Theorem 3.3.3 (Weak Nullstellensatz). [CLO97, p. 168] Let I C C[z] be an
ideal. Then Vi (I) =0 implies 1 € I.

34 Chapter 3. Consistency for polynomials

This is a direct consequence from a famous result by Hilbert -the Hilbert
Nullstellensatz.
From this theorem and Corollary [3.1.4 we get the following result:

Corollary 3.3.4. Let I C C[Z] be an ideal and G the reduced Grobner basis of
I. Then Ve(I) =0 if and only if G = {1}.

Thus by calculating the Grobner basis for a given set of polynomials, we can
easily decide if these polynomials have common zeroes.
3.3.2 Real Nullstellensatz

In this part, we consider input sets which are consistent over the complex num-
bers. We first characterise real fields and use this observation to state a very
intuitive but strong theorem.

Definition 3.3.3. Given a polynomial p over a real field R, then p is:
e positive definit if p(a) > 0 for all a € R™.
e positive semidefinite if p(a) > 0 for all a € R™.

When considering the reals, we know that any square is positive. The fol-
lowing are some results from a formal treatment in [BPR06, Chapter 2].

Proposition 3.3.5. Given a real field R, the following statements hold:
1. {ara:a€R}C{a:a>0} and {a®>:a € R} ={a:a >0}.
2. Given a polynomial p € R[Z], p? is positive semidefinite.
3. Sums of squares are positive semidefinite.

Note that not all positive semidefinite polynomials are sums of squares, fa-
mous examples can be found in [Mot67].

Next we consider the Real Nullstellensatz, which is due to Stengle [SteT4].
A more general form including also inequalities is called the Positivstellensatz.
Here we give the version of the Real Nullstellensatz from [Har07].

Theorem 3.3.6 (Real Nullstellensatz). Let R be a real field. Given polynomials
Pl,---pn € R[E] with I = (p1,...,pn) and Ve(I) # 0, then Vx(I) = 0 if and
only if there exists a polynomial q, which is a TSQ such that 14+ q € I.

3.4 Handling inequalities

In Chapter [2] we considered systems of equalities and inequalities. We now show
two ways to handle them. For a complete decision procedure, we will transform
the inequalities into equivalent equalities. For simplification, we show that we
can indeed reduce inequalities by a Grébner basis.

Proposition 3.4.1. [PQR0Y, Proposition 1] The following equivalences hold:
1.p>0 < Jyp—y>=0.

2.p#0 < Jypy—1=0.

3.4. Handling inequalities 35

3. p>0 < Jypy?—1=0.

The proof uses two properties, namely squares are exactly the positive num-
bers in R and only the zero has no multiplicative inverse element.

This transformation comes at the cost of introducing several new variables.
Therefore, we are also interested in just reducing inequalities.

Proposition 3.4.2. [DS97, Proposition 4.1] Given a formula @ with relations
~eE {>,>,<, <, #} of the following form:

s t
@Z/\pz‘ZO/\/\qz‘NO-
=1

i=1

Then for the Grobner basis G = {g1,...,9m} of I = (p1,...,ps) the following
holds:

m t
p = /\gizo/\/\redg(qi)wo.

i=1 i=1

Proof. That the substitution of the equalities by a Groébner basis is equisatisfi-
able follows from, e.g., Corollary [3.2.5] We only need to show that g; = 0 for all
¢ implies ¢; ~ 0 if and only if redg(g;) ~ 0. For each g; there exist suitable h;
with 1 <j < msuch that ¢; = h1g1+...+hmgm+reda(g;) by definition. Thus,
qi(@) = h191(@) + ...+ hmgm(a) + redg(g;)(a). By our precondition -all g; eval-
uate to 0- we only need to consider the set S = {a € R" : g;(a@) =0, 1 <i <m}.
On S, all terms h;g; thus evaluate to zero. Hence ¢;(a) = redg(g;)(a) for all
acs. O

36

Chapter 3. Consistency for polynomials

Chapter 4

The SMT-RAT Grobner basis
module

In this chapter, we first show how we wrap a Grébner basis calculation into
a module in the SMT-RAT framework and how we make this module SMT-
compliant. Afterwards we optimize the standard Buchberger algorithm by intro-
ducing improved algorithms and data structures for calculating Grébner bases.

4.1 An SMT module based on Grobner basis cal-
culation

We start the description with a general overview of the behaviour of a mini-
mal implementation of a module, which uses Grobner basis computations for
simplification.

Whenever a constraint is added, the module checks whether the received
constraint is an equality. If it is an inequality, the module adds the inequality
to the passed formula, such that backend modules handle it. If it is an equality,
it is added to a set of generators for an ideal I.

As soon as the module’s consistency check is called, the Grobner basis of I is
calculated. If the Grobner basis equals {1}, then unsat is returned. Otherwise
the Grobmner basis is passed to the backend modules, and then the backend
modules are called. Notice that if a new Grobner basis is passed, the module
removes the old Grobner basis from the passed formula. As reason set for the
passed polynomials from the Grébner basis, the set of generators is used.

The remainder of this section gives more details on the behaviour and some
of the improvements made to the module.

4.1.1 Incrementality and backtracking

Changing the Buchberger algorithm to support incremental calls is rather natu-
ral. First, we notice that for a given set I = {p1,...,pn}, its Grobner basis G =
{q1,--.,9m} and a polynomial ¢, we have equality of ideals (IU{q}) = (GU{q}).
Second, if we want to calculate the Grébner basis of (G U {¢}), we only have
to calculate the S-polynomials for the pairs (g;,q). All other pairs reduce to

38 Chapter 4. The SMT-RAT Grobner basis module

zero because G is a Grobner basis. We formalise the incremental Buchberger
algorithm in the next section (Algorithm [5)).

Grobner bases in the module are represented by objects, which save the
already calculated Grobner basis as well as a list of additional polynomials
which have been added to the object since the last consistency check, but are
not yet part of the Grébner basis, as the consistency check has not been called
after adding these polynomials (see Figure [4.1)).

new: GB: new: GB: new: GB:
{y Az y+2z} {y} Az, y+2} {} A=y 2}

(a) Before: the GB is (b) The constraint y = (¢) After the consis-
{z, y+ z}. 0 is asserted. tency check, we have a
new GB.

Figure 4.1: The Groébner basis object while adding the equality y = 0.

Removing generators from the ideal is more involved, because calculating this
directly entails the computation of an intersection, resulting in a Grébner basis
calculation with additional variables [BWK93| Section 6.2]. Instead of this, we
propose an approach inspired by the chronological backtracking in DPLL (the
latter is explained in e.g. [KS08§]|).

We implement the chronological backtracking by introducing a stack with
Grobner basis calculation objects. After a Grobner basis calculation, the top-
most element of the stack is updated, such that the additional polynomials are
considered in the newly calculated Grébner basis. After removing an equality,
the elements are popped from the stack until we are before the point where the
now removed equality was added. In the next step, all equalities which were
added afterwards are added again (see Figure |4.2)).

This approach might lead to an almost new Grdébner basis calculation, but
as the currently used SAT solver mostly uses chronological backtracking, the
chance of frequently removing equalities which were added early during the
incremental theory calls seems small.

{y A{zwz)
{r f{=zy} {z} {«}
{r =} {r =} {r {=}

(a) Before: the equali- (b) Everything calcu- (¢) The equality z = 0 is
tiesx=0,y=0,2=0 lated after y = 0 was scheduled as new input
were added. added is removed. again.

Figure 4.2: The Grobner basis object stack while removing the equality y = 0.

4.1.2 Generating smaller conflict subsets

If the Grobner basis equals {1}, the set of all equalities is inconsistent. However,
in most of these infeasible cases a subset of the equalities would already yield
{1} as its Grobner basis.

4.1. An SMT module based on Grébner basis calculation 39

To determine such a subset, de Moura and Passmore [dMP09| introduced
certificates for inconsistency. It was also shown that minimality of these certifi-
cates is a problem which is as hard as calculating the Grobner basis.

These certificates are basically tuples of polynomials (hq,...,h,) such that
for an ideal I = (f1,...,f») and a polynomial p € I we have Y ., h;f; = p for
suitable h; € K[Z]. In the case of inconsistency, we have p = 1.

Calculating these certificates requires the reductions within the Grébner
basis calculation to be extended to ordinary divisions, which is certainly less
efficient. In SMT-RAT, we pass the Grobner basis to other modules, and we
have to provide reason sets. Smaller reason sets yield smaller conflict sets if
a conflict is found in a successor module. The calculation of small reason sets
requires the computation of certificates for each element in the Grébner basis.

We try to provide small conflict and reason sets in a more naive way. During
the Grébner basis calculation, we attach a bitvector to the polynomials. For
an input ideal I = (f1,...,fn) and an arbitrary polynomial p which appears
during the calculation, the bitvector b(p) = (b1,...,b,) has the semantics that
b; = 1 if and only if p; was used somewhere to construct p. This way, after the
computation of the Grobner basis for I, we can extract an over-approximation
of the reason set for each element in the Grébner basis, and thus, if 1 € I, a
smaller conflict set.

Example 4.1.1. We calculate the reduced Grébner basis for the ideal I =
(f1, f2, f3), with fi = x, fo = y*> + 2z and f3 = y. The S-polynomial from
fa, f3 yields after a reduction with f3 the polynomial fy = z. The reduced Grdb-
ner basis is then {f1, f3, fa}. The bitvectors for fi,fa,fs are clear: b(f1) =
100, b(f2) = 010, b(f3) = 001. The bitvector of fy is the bitwise-or of b(f2) and
b(f3), which yields b(f4) = 011. This means that z = 0 follows from y?> + 2 =0
and y = 0, which is true.

We formalise this approach by the next theorem.

Definition 4.1.1 (Reason vector). For a given ideal I = (f1,...,fn) the reason
vector b(p) = (b1, ...,bn) of p € I is recursively defined as follows:

1. If p= f; for some 1 <i <n, then b;(p) =1 and bj(p) =0 for all j # i.
2. If p=S(q1,q2) then bi(p) =1 < bi(q1) =1V bi(q2) =1 for q1,q2 € I.
8 Ifp Lp then bi(p) =1 <= bi(q) =1V bi(p') =1 forp/,q el
Theorem 4.1.1. If b is a reason vector for p during the computation of the
Grobner basis for I = (f1,...,fn) then b is well-defined and p can be written as
iy bihi fi with suitable h; € K[z
Proof. The vector b is well-defined, as the Buchberger algorithm only consists
of a chain of the operations mentioned above. We prove the correctness by

induction, and distinct the following three cases:

1. p=fiforsome 1 <i<nthenp=1-1-f;.

40 Chapter 4. The SMT-RAT Grobner basis module

2. p=5(q1,q2) for some q1,q2 € I then
p = miq1 + maq2

= mlzb (J1 “hy; - fz mZZb C]2 “ha; - fz)

i=1 i=1

Z) - maihy; + bi(g2) - maha;) - fi

Notice that the multiplication with b;(p) does not cancel non-zero terms,
because if a term is non-zero, then either b;(¢q1) = 1 or b;(¢g2) = 1, and
then b;(p) =

3. p' L p for some p/, g, then

p=7p +mgq
Zb)by~ fi) +(m Zbi(Q)'hQi'fi)
i=1 i=1
Z) - hii +bi(q) - mha;) - fi

with the same argument as applied in case 2.

O

Instead of using all equalities as reason/conflict set, the module extracts
the set from the Grobner basis elements. We extended the calculations of the
S-polynomial and the calculation according to the Definition 4.1.T

4.1.3 Handling inequalities

To handle inequalities, the module offers the possibilities described in Section
[3:4] The transformation approach is a direct implementation of the equivalences
from Proposition [3.4.1] For each inequality in the set of received constraints,
we generate a fresh variable. Then, we handle the transformed constraint as we
handled equalities before.

Instead of transforming the inequalities into equalities, in the simplification
approach we just reduce the inequalities with respect to our Grébner basis, as
in Proposition [3.4:2] To make this SMT-compliant, we introduce an inequalities
table. In this table, each received inequality corresponds to a row. The row
has the memory location of the original (received) inequality as index. Each
cell has a number (the backtrack number) which identifies with which Grobner
basis the equality was reduced, and a polynomial which represents the reduced
polynomial.

Newly added inequalities are only reduced w.r.t. the latest Grobner basis. If
an inequality c is removed, then the corresponding row is erased. If an equality
is removed, all cells with a backtrack number greater then b are removed, where
b is the number of equalities which were added before c.

4.2. Improving the Buchberger algorithm 41

Example 4.1.2. For the following constraints with their memory addresses
Ozl:2=0,022:24+y>0,023:y+22>0,024:y=0,0z5:2=0 and
026 : = 4+ z which were successively added to our module, we get the following
stack with Grébner bases:

O:{} 1:{a}; 2:{zyk 3:{z,y,2})
The inequalities table then looks like this:

02| (0)x+y (1)y (2)0
023 | (0)y+2z (2)z (3)0
06 | (0)x+z (3)0

We regard the first row, as the argumentation for the other rows is analogous.
The memory address gives a reference to the constraint. The first cell is the
original polynomial, which is always stored. During the theory call, the inequality
is reduced to y. The number of equalities which were added to the Grobner
basis is 1, so the backtrack number is 1. After another equality has been added,
with the next theory call, we can reduce the polynomial further. This yields
the polynomial 0, and 2 as backtrack number. Notice that there is no cell with
backtrack number 3, as the polynomial 0 cannot be reduced further w.r.t. the
third Grébner basis.

With the reduction of inequalities, we may reduce inequalities to zero or to
constants, which can be replaced by one of the Boolean values. If an inequality
p ~ 0 reduces to ¢ ~ 0, we have to distinct some cases, displayed in Figure [£.3]

| v=< ~=> =< ~=> =
c=0| true true false false false
c>0 | false true false true true
c< 0| true false true false true

Figure 4.3: Different cases after reducing a polynomial to a constant.

Reduction to false yields a conflict, and the module either returns directly
from its consistency check, or continues and looks for more conflicts with in-
equalities, such that it might return a bunch of conflict sets at once.

Reduction to true makes the constraint superfluous, which follows directly
from the fact that our set of constraints is a conjunction, so there is no reason
to pass it to the backend modules. Moreover, this information can