
Bachelor of Science Thesis

SMT Solving for Linear

Integer Arithmetic

Dustin Hütter

Supervisors:

Prof. Dr. Erika Ábrahám
Prof. Dr. Jürgen Giesl

Advisor:

Dipl.-Inf. Florian Corzilius
28.08.2014

ii

Erklärung

Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und
noch nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten
Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäÿe Zitate wur-
den als solche gekennzeichnet.

Dustin Hütter
Aachen, den 28. August 2014

iii

iv

Abstract

Deciding the satis�ability of systems of linear inequalities over inte-

gers is a crucial problem in several domains e.g. formal veri�cation and

scheduling problems. Multiple existing approaches in linear integer arith-

metic each provide di�erent advantages and disadvantages. In this thesis

we address three simplex-based algorithms namely branch and bound, Go-

mory cuts and cuts from proofs just as possible optimizations leading to

an e�cient implementation of those into the SMT solver SMT-RAT. Fur-

thermore, they are combined such that the resulting global strategy solves

a wide range of benchmarks in an appropriate amount of time and mem-

ory usage. The experimental results show that the chosen global strategy

can keep up with state-of-the-art SMT solvers.

v

vi

Contents

1 Introduction 9

1.1 Historical Context . 9
1.2 Problem De�nition . 9
1.3 Related Work . 10

2 Preliminaries 12

2.1 Terminology . 12
2.2 QFLIA Formulas . 12
2.3 Polytopes and Relaxation . 13
2.4 Satis�ability Modulo Theories . 14
2.5 SMT-RAT . 15
2.6 Simplex . 16
2.7 Tableau . 21

3 Algorithms 23

3.1 Branch and Bound . 23
3.2 Gomory Cuts . 28
3.3 Cuts from Proofs . 33

4 Global Strategy 39

5 Experimental Results 40

5.1 Branching Strategies . 40
5.2 Global Strategy . 41
5.3 Runtime Analysis . 42
5.4 Cuts from Proofs . 44

6 Conclusion 45

6.1 Summary . 45
6.2 Future Work . 45
6.3 Conclusion . 46

Bibliography 47

viii

Chapter 1

Introduction

1.1 Historical Context

George Dantzig [CJW07] published in 1947, employed at the U.S. Air Force
after declining an o�er of the University of California, Berkeley, an article in-
troducing the simplex algorithm. After the second world war raised the necessity
to allocate the available resources more e�ciently, his employer used his �ndings
to solve those optimization problems including the production of war commodi-
ties and the coordination of operations. In the following several other disciplines
made use of Dantzig's simplex method in order to optimize e.g. vehicle routes
and commodity �ows. The solutions obtained by applying the simplex algorithm
are real-valued but more and more problems occurred making it necessary to
ensure that at least some of the involved variables are integer-valued e.g. in
scheduling and transporting problems, compiler construction as well as in for-
mal veri�cation. Therefore Ralph Gomory, a pioneer in the �eld of linear integer
arithmetic, introduced a cutting-planes method in the 1950s whose functionality
we will see later. Linear integer arithmetic is still an open �eld of research as
for example the third algorithm that we consider, called cuts from proofs, has
been recently developed.

1.2 Problem De�nition

The satis�ability problem in linear integer arithmetic (LIA) is de�ned as follows:

Input:

A ∈ Qm×n, b ∈ Qm and an n-dimensional vector ~x of variables with domain D.

Output: {
SAT, if ∃~x ∈ D : A~x ≤ b
UNSAT, otherwise

.

The native case in LIA is that D = Zn, meaning that all components of ~x have
an integer domain. Often in real-world problems the more general case occurs
involving that some of the solution components have a real and some have an
integer domain, formally: D = Rs × Zt with s + t = n. Instances with such a

setting belong to the �eld of mixed LIA. The formalisms and algorithms in this
thesis consider the mixed LIA case. From now on we will therefore not distin-
guish between pure LIA problems and their generalization. The satis�ability
problem that we address is NP-complete and therefore probably not solvable by
a polynomial time algorithm. The proof for the NP-completeness can be found
in [Sch98].

As already mentioned, problems, which make it necessary to ensure that
at least some of the involved variables are integer-valued, occur in several do-
mains. While one can apply the simplex method in linear real arithmetic (LRA),
~x ∈ Rn, which performs very well in practice, developing and extending LIA
algorithms is still part of current research. This thesis focuses on branch and
bound (BB), Gomory cuts and cuts from proofs (CFP). I have implemented
these methods in the SMT solver SMT-RAT as an extension of an implemen-
tation of the simplex method.

1.3 Related Work

Besides the presented simplex-based techniques there are two main approaches
trying to tackle LIA problems from another perspective.

1.3.1 Omega Test

One of those is the Omega test presented in [Pug91]. It is an extension of the
Fourier-Motzkin elimination [DE73] to solve linear real arithmetic problems.
Fourier-Motzkin elimination basically eliminates one real-valued variable per it-
eration from the considered system of linear inequalities such that the newly
obtained system with one dimension less is solvable if and only if the previous
system is solvable. This elimination is repeated until all variables are elimi-
nated. We eliminate one variable, say x, by combining all its lower bounds
l1 ≤ x, ..., lr ≤ x with all its upper bounds u1 ≥ x, ..., us ≥ x and obtain the
formula

∧
1≤i≤r
1≤j≤s

li ≤ uj . In the context of the Omega test, the Fourier-Motzkin

elimination is applied to the real relaxation of a mixed LIA problem in the
real shadow. If the real shadow of the given system has no real solutions we
can deduce that this also true for the original system over integers and return
UNSAT . The converse argument is not true. Therefore the Omega test in-
troduces a so-called dark shadow for which a su�cient condition guarantees an
integer solution. If an integer point is detected in the dark shadow we can re-
turn SAT, elsewise the algorithm completes its proceeding with searching for
a solution in the set theoretic di�erence R \ D of the real shadow R and the
dark shadow D, called grey shadow G in the terminology of this algorithm. If G
contains an integer point the algorithm returns SAT otherwise UNSAT . The
author of [Pug91] points out that the Omega test is bene�cial especially in data
dependency analysis. However, although it is complete, it is not used in current
SMT solvers as it scales worse than the other approaches with a growing number
of variables.

10

1.3.2 Automata-theoretic Approach

Another approach presented in [Min] makes use of automata theory. Given a
formula φ(x1,...,xn) being a conjunction of linear inequalities over (x1,...,xn)T ∈
Zn, the aim is to construct an automaton Aφ accepting (x1,...,xn)T ∈ Zn if
and only if (x1,...,xn)T |= φ, i.e., if (x1,...,xn)T is a solution of φ. Hence the
problem of determining satis�ability for a system of linear inequalities is reduced
on checking whether Aφ has an accepting path. Although this approach is
complete, as stated in [DDA09] it can not compete against any of the other
techniques.

11

Chapter 2

Preliminaries

This section brie�y introduces some important notations and formalisms that
are used throughout this thesis.

2.1 Terminology

α(x) : current assignment of variable x

lx, ux ; lower/upper bound of variable x

dom(x) : domain of variable x

Φ, Ψ : set of formulas

φ, ψ : single formulas

SAT, UNSAT, UNKNOWN : return values of decision procedures for
"satis�able", "unsatis�able" and "unknown"

2.2 QFLIA Formulas

In order to have a formal fundament for the LIA expressions that we consider,
we introduce quanti�er-free mixed linear integer arithmetic (QFLIA) formulas.
In the sense of the following abstract grammar, QFLIA formulas φ are Boolean
combinations of constraints comparing linear expressions (multivariate linear
polynomials) to 0 with respect to ≤ and ≥.

De�nition 2.2.1 (QFLIA formulas).

A QFLIA formula φ is of the following form:

φ ::= c | (φ ∧ φ) | ¬φ
c ::= p ≤ 0 | p ≥ 0

p ::= z | z · x | p+ p

, where z ∈ Z is an integer constant and x is a real- or integer-valued variable.
In an expression z · x we call z a coe�cient and x a monomial. Terms p
are called polynomials and c are called constraints. The semantics of QFLIA
formulas is de�ned in the common way.

Note that we can represent φ ∨ φ by ¬(¬φ ∧ ¬φ). Furthermore, p ◦ 0, with
p being a multivariate linear polynomial, for ◦ ∈ {< , > , 6= , =}, is con-
structible with the given grammar by p < 0 ≡ ¬(p ≥ 0), p > 0 ≡ ¬(p ≤ 0),
p 6= 0 ≡ p < 0 ∨ p < 0) and p = 0 ≡ ¬(p 6= 0). We also omit the multiplication
sign when its clear from the context and we sometimes use for clari�cation more
brackets than are required by the grammar. In addition to that, we also write
p1 ∼ p2 for p1 + p′2 ∼ 0 with ∼ ∈ {< , ≤ , = , 6= , > , ≥} and p′2 results
from p2 by multiplying each coe�cient with −1.

Example 2.2.1.

The following formula φ is a QFLIA formula with dom(x1) = R, dom(x2) =
dom(x3) = Z:

φ := (x1 − 3x2 + 4x3 + 1 ≤ 0 ∧ x1 ≥ 0)

We denote the left-hand-side of a constraint c by pc and implicitly assume that
the domain requirements are inherent to the formula.

2.3 Polytopes and Relaxation

De�nition 2.3.1 (Convex Polytope). A convex polytope is a set P ⊆ Rn such
that there are A ∈ Zm×n and b ∈ Zm such that P is the solution set for the
real-valued variables ~x = (x1, ..., xn)T in A~x ≤ b.

De�nition 2.3.2 (Relaxation). Given a system of linear inequalities A~x ≤ b
with constants A ∈ Qm×n, b ∈ Qm and variables ~x ∈ Rs × Zt with s + t = n,
the system's relaxation is the extension of the integer domains to dom(xi) = R
for i ∈ {s+ 1,...,n}.

In the following we will denote the relaxation of a system given by a QFLIA
formula φ by Rel(φ). Furthermore we will often use this concept by considering
the relaxation of a given LIA problem and then adding appropriate constraints
leading to a solution not violating any domain requirements.

13

Figure 2.1 illustrates the introduced terms in a graphical representation:

x2

x1

1

1

Figure 2.1: Convex polytope with integer solutions

In Figure 2.1, we see a two-dimensional convex polytope de�ned by four
inequalities. The green area represents the set of all real points satisfying all
of these inequalities including the borders and is therefore the convex polytope
of this system. If we restrict this system such that all variables have to be
integer-valued the set of solutions is represented by the red integer points inside
the polytope. Conversely the real polytope is the relaxation of the pure integer
system.

2.4 Satis�ability Modulo Theories

SMT solving is the process of checking the satis�ability of Boolean combinations
of constraints belonging to some theory e.g. linear real arithmetic by combining
a SAT solver with a solver for the theory underlying the input formula. After
the Boolean skeleton of the input formula has been generated, meaning that
all constraints are substituted by fresh Boolean variables, the SAT solver ei-
ther determines the unsatis�ability of this Boolean skeleton and hence for the
input formula or �nds a satisfying assignment for it. In the latter case, the
respective theory solver checks whether this assignment is consistent with the
underlying theory. If so the theory solver returns SAT for the input formula,
otherwise UNSAT for the current assignment and communicates this result to
the SAT solver. If the theory solver determines the unsatis�ability of its input
constraints, it detects at least one infeasible subset of these constraints. The
SAT solver negates the combination of the corresponding literals and adds a
clause containing them negated to its considered Boolean formula.

14

Figure 2.2 exempli�es this process:

Quanti�er-free �rst-order logic formula over a certain theory

SAT Solver

Theory Solver

UNSAT

SAT

Boolean skeleton
C
o
n
s
tr
a
in
t
s
e
t

U
N
S
A
T

Figure 2.2: SMT solving

2.5 SMT-RAT

SMT-RAT is the C++ framework in which I have implemented the later pre-
sented algorithms. It generalizes the classical SMT procedure. The architecture
of SMT-RAT consists of modules, a strategy and a manager.

Modules o�er functionality to check the satis�ability of an SMT formula φ.
A module has a set of input formulas Φ = {φ1, ..., φn}, in our case QFLIA
formulas, which stands for the formula

∧n
i=1 φi. In order to execute the sat-

is�ability check, which the module M provides, we call checkM (Φ). Since the
approaches o�ered by the modules are not always complete, SAT and UNSAT
are not the only possible return values but also UNKNOWN . Modules can
add and remove SMT formulas to/from the set of input formulas via addM (φ)
respectively removeM (φ)). If a module determines unsatis�ability for its set of
input formulas, it returns besides UNSAT at least one infeasible subset. This
can be used to accelerate the solving process. In addition to that a module can
create lemmas, which are, in our case, QFLIA tautologies. The latter exhibit

15

information which is deduced from a modules' internal state and are communi-
cated to the other modules.

SMT-RAT exhibits the opportunity of modules interacting with each other
by calling the method runBackendsM (Ψ) submitted by a module M asking
certain other modules to check the satis�ability of the set of QFLIA formulas.
Themanager administrates such calls according to a strategy which is basically a
tree-structure coding under which circumstances the method runBackendsM (Ψ)
leads to a call checkM ′(Ψ) of a module M ′ that can handle Ψ.

In our setup, the CNFerModule receives an arbitrary QFLIA formula, say φ
and translates it into an equisatis�able formula, say φCNF, in conjunctive nor-
mal form (CNF). After the SAT module has obtained φCNF and determined
a satisfying assignment for the Boolean skeleton of it, the LRA module checks
whether this assignment is consistent. The LRA module provides an imple-
mentation of the simplex method which is presented later. Since the simplex
method generates rational solutions, lemmas are added here in order to preserve
the domain requirements. After lemmas were learned in the LRA module, it
returns UNKNOWN such that these are involved in the solving process by the
SAT solver by adding them as clauses to φCNF .

Note that the generalization of the SMT-RAT practice compared to classical
SMT solving is constituted by allowing the classical SMT interaction between
any modules and, therefore, also theory modules can collaborate.

Figure 2.3 is a graphical representation of a SMT-RAT setup taken from
[CLJÁ12]:

Figure 2.3: A possible SMT-RAT setup

For further information about SMT-RAT the reader may consult [JLCÁ13]
or [CLJÁ12].

2.6 Simplex

The simplex algorithm is originally used in linear optimization over R. More
precisely, the simplex algorithm maximizes cT · ~x for a given vector of bene�t
c ∈ Rn and a possible solution vector ~x ∈ Rn such that the inequalities given by
A~x ≤ ~b with A ∈ Qm×n and b ∈ Qm are satis�ed. Since this thesis addresses the
satis�ability problem, this method is not directly suitable for our purposes. We
will therefore introduce a slightly modi�ed version of the latter called general
simplex which e�ciently decides the satis�ability problem over R. We also want
to guarantee that (some of) the components of ~x are integer-valued. As we will

16

see later, the general simplex method is still applied in LIA by combining it with
sophisticated techniques establishing the integer requirements. The following
variant of the general simplex algorithm bases on the one presented in [KS08].

2.6.1 Preprocessing

Given m linear inequalities of the form
n∑
i=1

aixi ◦ bj with ◦ ∈ {= , ≤ , ≥},

the �rst step of the general simplex method transforms these into the so called
general form. This is done by replacing

n∑
i=1

aixi ◦ bj

with
n∑
i=1

aixi − sj = 0 (2.1)

sj ◦ bj (2.2)

for all j ∈ {1, ..., m}. The sj are called slack variables. The transformed original
system in general form is equisatis�able to the original system. Them equations
that we receive can be rewritten as a matrix A′ of dimension m × (n + m) of
the form:

A′ =

x1 . . . xn s1 . . . sm

a11 . . . a1n −1 . . . 0
...

. . .
...

...
. . .

...
am1 . . . amn 0 . . . −1

For clarity every column is captioned with the variable that corresponds to

the coe�cients in this column.

General simplex works with a so called tableau which we receive from A′ by
reformulating every row i ∈ {1, ..., m} as an equation depending on the slack
variable si. We obtain

x1 . . . xn

s1 a11 . . . a1n
...

...
. . .

...
sm am1 . . . amn

.

We call the variables representing columns non-basic variables, denoted by
N , and the variables representing rows basic variables, denoted by B. At �rst
the slack variables represent the basic variables and the original variables of
the given system represent the non-basic variables and all occurring variables
x1, ..., xn, s1, ..., sm are assigned to zero, which satis�es the equation system
(2.1) being one invariant of the simplex algorithm. The second condition (2.2)
requires that all non-basic variables have to satisfy their bounds.

17

2.6.2 Algorithm

After we have transformed the input system into tableau form and assigned the
variables their initial value 0, the actual algorithm can be executed. If all vari-
ables, basic and non-basic variables, satisfy their bounds then we return SAT .
Otherwise there exists a basic variable χ, say in row i, not satisfying its bounds
which either means that α(χ) < lχ or α(χ) > uχ. Without loss of generality
we consider the �rst case. The second case is completely analogous. Let χ be

represented by
n∑
k=1

aikxk.

We need to �nd an xj ∈ N such that:

(aij > 0 ∧ α(xj) < uxj) ∨ (aij < 0 ∧ α(xj) > lxj)

Informally spoken this means that we can �x the invalid assignment of χ
either by increasing the assignment of a non-basic variable occurring in the row
of χ with a positive coe�cient such that the current assignment of this variable
is smaller than its upper bound or by decreasing the assignment of a non-basic
variable occurring in the row of χ with a negative coe�cient such that the cur-
rent assignment of this variable is greater than its lower bound.

If such a non-basic variable does not exist then we can not �x the assignment
of the variable χ without violating the bounds. In this case we return UNSAT .
Otherwise we call xj suitable and execute the following pivoting step:

� Rewrite

χ =
n∑
k=1

aikxk

as

xj = χ
aij
−

∑
k∈{1,...,n}\{j}

aik
aij
xk .

� Swap χ and xj and adapt the coe�cients in the row that is from now on
represented by xj . Also update the coe�cients in the remaining rows.

� Update the assignment of xj in the following way:

α(xj) = α(xj) +
lχ−α(χ)
aij

and set α(χ) to lχ.

� Update the assignments of the basic variables x ∈ B \ {xj} such that the
equations they represent hold.

This pivotization is repeated until either all basic variables satisfy their
bounds and SAT is returned or we do not �nd a suitable non-basic variable
and return UNSAT . The completeness of the algorithm bases on a �xed vari-
able order.

18

Example 2.6.1.

Given the inequation system

2x1 + x2 ≥ 3

−3x1 + x2 ≥ 0

x2 ≥ −1 ,

its transformation to general form results in

2x1 + x2 − s1 = 0

−3x1 + x2 − s2 = 0

x2 − s3 = 0

s1 ≥ 3

s2 ≥ 0

s3 ≥ −1 .

Deduce the initial tableau from the general form:

s1

s2

s3

x1 x2

2 1
−3 1
0 1

with the bound requirements s1 ≥ 3, s2 ≥ 0, s3 ≥ −1, variable order x1 <
x2 < s1 < s2 < s3 and initial assignments: α(s1) = α(s2) = α(s3) = α(x1) =
α(x2) = 0. Hence s1 violates its lower bound and we pivot with the suitable
non-basic variable x1 (suitable because ux1

=∞):

s1 = 2x1 + x2 ⇔ x1 = 1
2s1 − 1

2x2

Substitute 1
2s1 − 1

2x2 for x1 in the remaining rows:

s2 = −3(1
2s1 − 1

2x2) + x2 ⇔ s2 = − 3
2s1 + 5

2x2

s3 = 0(1
2s1 − 1

2x2) + x2 ⇔ s3 = x2

From that we obtain the new tableau:

x1

s2

s3

s1 x2
1
2 − 1

2
− 3

2
5
2

0 1

19

Adapt the assignments:

α(x1) = 0 + 3−0
2 = 3

2 , α(x2) = 0 α(s1) = 3, α(s2) = − 9
2 , α(s3) = 0

After the �rst pivoting step s2 violates its lower bound. Hence we pivot again
with the suitable non-basic variable x2:

s2 = − 3
2s1 + 5

2x2 ⇔ x2 = 3
5s1 + 2

5s2

Substitute 3
5s1 + 2

5s2 for x2 in the remaining rows:

x1 = 1
2s1 − 1

2 (3
5s1 + 2

5s2)⇔ x1 = 1
5s1 − 1

5s2

s3 = 3
5s1 + 2

5s2

From that we obtain the new tableau:

x1

x2

s3

s1 s2
1
5 − 1

5

3
5

2
5

3
5

2
5

Adapt the assignments:

α(x2) = 0 +
0−(− 9

2)
5
2

= 9
5 α(s2) = 0 α(x1) = 3

5 α(s3) = 9
5

Since all constraints are satis�ed we can deduce the satis�ability of the initial
system.

20

Figure 2.4 shows the obtained feasible solution of the given system.

x2

x1

2

1

Figure 2.4: Feasible solution of the polytope from Example 2.6.1.

The simplex method is correct and complete which is shown e.g. in [DDM06].
The completeness bases on

2.7 Tableau

In order to understand the adjustments that were necessary to embed the al-
gorithms into SMT-RAT we will brie�y have a look at the most important
data structure of the LRA module, namely the so called tableau. It stores the
coe�cients of the given system of linear inequalities in a matrix-like structure
including rows and columns. Each column j exhibits the coe�cients of a mul-
tivariate linear polynomial pj which is given by pj =

∑
∀k:akj 6=0

akjp
′
k. Each row

contains all coe�cients such that the resulting polynomial p′i, also multivariate
and linear, is analogously given by p′i =

∑
∀k:aik 6=0

aikpk. Furthermore, each row

and column contains the assignment and the bounds of the variable representing
the polynomial of the corresponding row respectively column. Since the prob-
lems occurring in LIA are typically sparsed, it would not be e�cient to store
the zero values. Therefore every coe�cient aij 6= 0 has links to its neighbors in
all cardinal directions skipping the zero coe�cients. Note that, for performance
issues, the tableau which is used for the computations contains only integer coef-
�cients. Therefore the rows of input instances containing coe�cients aij ∈ Q\Z
are normalized such that the corresponding rows contain only integers.

21

Figure 2.5 illustrates the tableau:

p′i

pj
ai′j

... ↑ ...
aij′ ← aij → aij′′ α(yi); [li,ui]

... ↓ ...
ai′′j
α(xj)
[lj ,uj]

Figure 2.5: SMT-RAT tableau

22

Chapter 3

Algorithms

3.1 Branch and Bound

The �rst basic LIA technique that we consider is branch and bound, abbreviated
by BB, which is widely used in today's LIA solvers.

3.1.1 Algorithm

Branch and bound starts with checking via the general simplex method whether
a solution for the relaxation Rel(φ) of the given system of linear inequalities,
represented by φ, exists. If that is not the case, this naturally implies that φ
also does not have a valid solution, for the original domains of the variables.
Otherwise it can be checked whether all components of the current solution
satisfy the domain requirements. Since the implementation of the general sim-
plex method provides rational assignments, this basically means that one has
to check whether the integer variables are assigned to an integer. If that is the
case, φ has a valid solution. Otherwise there exists a variable, say xi, such that
dom(xi) = Z ∧ α(xi) 6∈ Z. In order to �x this, one can recursively search for
valid solutions on the one hand in the branch φ ∧ (xi ≤ bα(xi)c) and on the
other hand in the branch φ∧ (xi ≥ dα(xi)e), respectively φ∧ (xi−bα(xi)c ≤ 0)
and φ ∧ (xi − dα(xi)e ≥ 0) if we stick to our de�nition of QFLIA formulas.

A graphical representation of a BB run can be found below where x1 and x2

are integer-valued variables.

The yellow x1-x2 point (2.5,3) represents the solution that the general sim-
plex method has found for the relaxation of the given problem. Since the x1

component of the solution is not an integer a branch can be conducted.

x2

x1

1

1

The previous solution is excluded from the polytope without limiting the set
of integer solutions. According to BB, the two branches are analyzed recursively
for integer solutions.

x2

x1

1

1

The left branch contains an integer solution which is found by the simplex
algorithm. Hence we return SAT .

x2

x1

1

1

24

3.1.2 Implementation

My embedding of the BB method into SMT-RAT is straightforward. If the
implementation of the general simplex algorithm, called generalSimplex(), de-
termines unsatis�ability, we return UNSAT . For the case that the simplex
method �nds a feasible solution, we can access it. Otherwise we check whether
there exists at least one variable whose assignment violates its domain such that
we would learn the corresponding BB constraint as a lemma and return UN-
KNOWN. Hence the SAT solver involves this constraint in the solving process
and moves on with the computation. Otherwise there is no domain violation
meaning that we can return SAT .

Algorithm 1 checkBBLRAModule(φ)

Input: A QFLIA formula φ
Output: SAT, UNSAT or UNKNOWN
if ¬(generalSimplex()) then
return UNSAT

end if

if ∃ 1 ≤ i ≤ n : dom(xi) = Z ∧ α(xi) 6∈ Z then

Learn lemma: (xi − bα(xi)c ≤ 0) ∨ (xi − dα(xi)e ≥ 0)
return UNKNOWN

end if

return SAT

3.1.3 Example

Example 3.1.1. The following example shows the application of BB in SMT-
RAT on a benchmark instance belonging to a set of benchmarks later being
used to measure the performance of the implemented algorithms. All original
variables x1,...,x10 in this instance have an integer domain. Assume we are
given a tableau of the following form:

p1

p2

p3

p4

p5

x4 x2 x0 x8 p6 p7 x1

1 1 1 0 0 0 0 0; [−∞,0]
0 1 0 1 0 0 0 0; [0,∞]
−2 0 0 0 1 2 0 2

3 ; [−∞,∞]
1 0 0 0 1 −1 0 − 1

3 ; [−∞,∞]
1 0 3 3 1 −1 3 − 1

3 ; [−∞,0]
0 0 0 0 0 1 0

[−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,0] [1,∞] [−∞,∞]

Let p1 = x0 + x2 + x4, p2 = x2 + x8, p3 = 3x3, p4 = 3x7, p5 = 3x0 + 3x1 +

3x7 + 3x8, p6 = x3 + 2x7 and p7 = x3 + x4 − x7. The factor (3) e.g. of the
original variable x3 is due to the normalization that was explained in the tableau
section.

25

We see that e.g. we have α(x3) 6∈ Z for the original variable x3. After adding
the branching constraint (x3 ≤ 0)∨ (x3−1 ≥ 0) to the original formula the SAT
solver re-assigns the Boolean skeleton of the latter and calls the LRA module
which pivots on x3 such that:

p1

p2

p6
p4
3
p5
3

x4 x2 x0 x8 x3 p2 x1

1 1 1 0 0 0 0 0; [−∞,0]
0 1 0 1 0 0 0 0; [0,∞]
2 0 0 0 3 −2 0 −2; [−∞,0]
1 0 0 0 1 −1 0 −1; [−∞,∞]
1 0 1 1 1 −1 1 −1; [−∞,0]
0 0 0 0 0 1 0

[−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞] [−∞,0] [1,∞] [−∞,∞]

Since a valid solution was found in the "left" branch we return SAT .

3.1.4 Termination behavior

Termination of BB can be guaranteed when all variables xi with i ∈ {1, ..., n}
and dom(xi) = Z satisfy lxi 6= −∞ and uxi 6= ∞. Otherwise there exists a
variable with unbounded real solutions such that the assignments which are
found by the general simplex algorithm increase respectively decrease without
ever satisfying the domain requirements. Consider e.g. the QFLIA formula
φ := (5x1 − 5x2 − 3 ≥ 0) ∧ (5x1 − 5x2 − 4 ≤ 0) where dom(x1) = dom(x2) = Z.

Figure 3.1 shows an extract of the relaxed polytope of φ after the applica-
tion of one BB step showing that the assignments of the simplex method can
arbitrarily escape the branch constraints.

x2

x1

1

1

Figure 3.1: First assignment: (2.5,1.9), second assignment: (1.5,0.9)

26

3.1.5 Premises

A possible idea to reduce the vast number of branches that have to be considered
is to add some information to the lemmas we learn and are later considered by
the SAT solver. Assume we call checkSATModule(φ∧((x1 ≤ 0)∨(x1−1 ≥ 0))). In
this case c := ((x1 ≤ 0)∨ (x1−1 ≥ 0)) is always considered but especially in the
case of applying BB it is desirable to consider only those branching constraints
that are relevant for the current state of calculation and therefore one can call
checkSATModule(φ ∧ (p → c)) for an appropriate premise p such that c is only
considered when the premise p is true. My idea for such a p is to take the
conjunction of those constraints whose slack variable's assignment is at one of
the variable's bounds, formally p =

∧
ψ∈Ψ:pψ(~α)=0

ψ where Ψ is the set of received

constraints and ~α the vector containing the variable's assignments. This idea is
depicted in Figure 3.2 .

x2

x1

1

1

Figure 3.2: Premise construction

The yellow point, (2.5,3), denotes the current assignment which is excluded
by BB and the red lines represent the constraints whose conjunction is taken as
premise.

3.1.6 Branching Strategies

As a matter of fact the order in which the variables are branched on can have a
signi�cant impact on the algorithms' runtime and therefore most modern LIA
solvers make use of heuristics that determine a preferably bene�cial branching
order. My implementation exhibits the following heuristics choosing the next
variable to branch on. In the following let XFix denote the set of variables with
an integer domain and a non-integer assignment:

XFix := {xi : 1 ≤ i ≤ n ∧ dom(xi) = Z ∧ α(xi) 6∈ Z}

In addition to that we denote for each xi ∈ XFix the distance between α(xi)
and the closest integer by

nxi := min(dα(xi)e − α(xi), α(xi)− bα(xi)c).

27

Most Infeasible Branching

Most infeasible branching chooses the variable xi ∈ Xfix to branch with nxi
maximal and therefore "most infeasible". In other words we branch on the
variable xi ∈ Xfix if

nxi = max({ny | y ∈ XFix}).

Most Feasible Branching

In contrary, most feasible branching chooses the variable xi ∈ Xfix to branch
with nxi minimal and therefore "most feasible". In other words we branch on
the variable xi ∈ Xfix if

nxi = min({ny | y ∈ XFix}).

Minimize Pivoting E�ort

This heuristic aims to minimize the e�ort for the pivoting step that is necessary
in order to satisfy the constraint which is added by BB. It therefore branches
on a variable with a low number of entries respectively coe�cients in its row.

We will analyze the advantages and disadvantages of these heuristics in the
experimental results section.

3.2 Gomory Cuts

In the last chapter we have seen how to determine the satis�ability of a QFLIA
formula φ by adding appropriate constraints excluding solutions from the poly-
tope of the problem that do not satisfy the domain requirements for some vari-
ables but do not limit the set of valid solutions. Below we will consider another
technique of this type working well on a lot of instances in practice. The tech-
nique is called Gomory cuts.

3.2.1 Derivation

The subsequent variant of Gomory cuts and its construction bases on [DDM06].
In order to deduce a Gomory cut from a given tableau the following needs to
be satis�ed:

∃xi ∈ B : α(xi) 6∈ Z ∧ dom(xi) = Z ∧
∀xj ∈ N : aij 6= 0→ (α(xj) = lxj ∨ α(xj) = uxj)

According to this we need to �nd a basic variable xi that is assigned to a value
not included in its domain such that all non-basic variables occurring in row i are
either assigned to their lower or their upper bound. De�ne f0 := α(xi)−bα(xi)c.
Because α(xi) 6∈ Z we have 0 < f0 < 1. We split the column indices of the non-
basic variables occurring in row i into those that are assigned to their lower and
those that are assigned to their upper bound:

J = {j | α(xj) = lxj ∧ aij 6= 0}
K = {j | α(xj) = uxj ∧ aij 6= 0}

28

Since the simplex algorithm guarantees the consistence of all occurring equa-
tions,

α(xi) =
∑
xj∈N

aijα(xj) (i)

is valid for
xi =

∑
xj∈N

aijxj (ii).

Subtracting (i) from (ii) results in:

xi − α(xi) =
∑
xj∈N

aijxj −
∑
xj∈N

aijα(xj)

which is equivalent to

xi − α(xi) =
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj − xj)

which is equivalent to

xi − bα(xi)c = f0 +
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj − xj).

This equation does not restrict the valid solutions. We keep in mind that
f0 +

∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj −xj) is desired to be an integer and move on

with a case-by-case analysis. Therefore we split K and J in the following way:

J+ = {j ∈ J | aij > 0}
J− = {j ∈ J | aij < 0}
K+ = {j ∈ K | aij > 0}
K− = {j ∈ K | aij < 0}

First Case:
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj − xj) ≥ 0

That implies f0 +
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj −xj) ≥ 1 because dom(xi) = Z

and therefore xi − bα(xi)c must be an integer. Taking the splitting of K and J
into account we can therefore conclude

f0 +
∑
j∈J+

aij︸︷︷︸
≥ 0

(xj − lxj)

︸ ︷︷ ︸
≥

∑
j∈J

aij(xj − lxj)

−
∑
j∈K−

aij︸︷︷︸
< 0

(uxj − xj)

︸ ︷︷ ︸
≤

∑
j∈K

aij(uxj − xj)

≥ 1

which is equivalent to∑
j∈J+

aij
1−f0 (xj − lxj)−

∑
j∈K−

aij
1−f0 (uxj − xj) ≥ 1. (iii)

Second Case:
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj − xj) < 0

In this case the inequality

f0 +
∑
j∈J

aij(xj − lxj)−
∑
j∈K

aij(uxj − xj) ≤ 0

29

has to hold because dom(xi) = Z. After estimating the sums and transforming
the inequality equivalently we receive∑

j∈K+

aij︸︷︷︸
≥ 0

(uxj − xj)

︸ ︷︷ ︸
≥

∑
j∈K

aij(uxj − xj)

−
∑
j∈J−

aij︸︷︷︸
< 0

(xj − lxj)

︸ ︷︷ ︸
≤

∑
j∈J

aij(xj − lxj)

≥ f0

which is equivalent to∑
j∈K+

aij
f0

(uxj − xj) +
∑
j∈J−

−aij
f0

(xj − lxj) ≥ 1. (iv)

The inequalities (iii) and (iv) imply the �nal cut:∑
j∈J+

aij
1−f0 (xj − lxj) +

∑
j∈J−

−aij
f0

(xj − lxj) +
∑

j∈K+

aij
f0

(uxj − xj) +∑
j∈K−

−aij
1−f0 (uxj − xj) ≥ 1

which excludes the current solution not satisfying the integer requirements but
does not limit the set of valid solutions. An example Gomory cut is shown in
Figure 3.3 .

x2

x1

1

1

Figure 3.3: A Gomory cut is added to a set of constraints excluding the domain
violating assignment

3.2.2 Premises

For the generation of premises for Gomory cuts we use the same mechanism
that we have already used for the generation of premises for BB.

30

x2

x1

1

1

When calling checkSATModule(φ∧c) we want to guarantee that φ ≡ φ∧c and
therefore we consider constraints that do not limit the set of solutions of φ or
in other words are tautologies. So we have to reason that (

∧
ψ∈Ψ:pψ(~α)=0

ψ)→ g,

where g is a Gomory cut, is a tautology. If the antecedence is false the im-
plication is true. If the antecedence is true we distinguish two cases regarding
possible valid assignments for the premise. We split the constraints that we
consider into the ones that are involved in the premise generation and the re-
maining ones, namely Φ = {ψ ∈ Ψ : pψ(~α) = 0} and Φ′ = Ψ \ Φ. For the �rst
case, we assume that the assignment satisfying the antecedence also satis�es all
ψ ∈ Φ′ from which we can instantly deduce that g is also satis�ed because the
construction of Gomory cuts guarantees that no integer points of the considered
polytope are excluded. For the second case, we assume that the assignment sat-
isfying the antecedence does not satisfy all ψ ∈ Φ′. Therefore we have a ψ ∈ Φ′

that is not satis�ed. The formula ψ geometrically does not cross the excluded
assignment and hence assignments satisfying the antecedence and ¬ψ are not
in the half, regarding the subspace induced by g, of the excluded assignment
containing the assignments that do not satisfy the Gomory cut. So g is also
satis�ed by such an assignment.

3.2.3 Algorithm

The idea of applying pure Gomory cuts is to iteratively construct and add
them to the input formula until either satis�ability or unsatis�ability can be
determined or we can not derive a Gomory cut anymore such that we have to
return UNKNOWN . The following algorithm in pseudocode illustrates that:

31

Algorithm 2 checkGCLRAModule(φ)

Input: A QFLIA formula φ
Output: SAT, UNSAT or UNKNOWN
if ¬(generalSimplex()) then
return UNSAT

end if

varViolatesDomain := false
for xi ∈ B : dom(xi) = Z ∧ α(xi) 6∈ Z do

varViolatesDomain := true
if ∀xj ∈ N : aij 6= 0→ (α(xj) = lxj ∨ α(xj) = uxj) then
- Construct the cut constraint g and determine the premise p
- Learn lemma: p→ g

end if

end for

if varViolatesDomain then
return UNKNOWN

else

return SAT
end if

Note that the generation of the premise is necessary in this case because
because we want to ensure that the added lemma is actually a tautology.

The application of pure Gomory cuts is actually not very reasonable since
these can not always be constructed. But as we will see later we can bene�t
from complementing BB with Gomory cuts.

3.2.4 Example

The following example shows the application of pure Gomory cuts in SMT-RAT.

Example 3.2.1. Let p1 = x0−x1−x2−2x3−x5+x6+x8, p2 = x4−x7+x8+x9,
p3 = x2 − x3, p4 = x2 + x4, p5 = x0 + x3 + x5, p6 = x1 − x2 − x7, p7 =
x1+x6−x7−x8, p8 = x3−x6−x7−x9, p9 = x2+x4+x9 and p10 = x3+x4+x8.

3x6

−3x4

3x0 − 3x1−3x5 − 6x9

3x3

x9

6x5

x1

6x0 − 3x3 + 3x4

3x7

4x2 + 2x4 + 2x5−2x9

2x0

3x1−3x6−3x7

3x2

x8

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 1 0 0 0 −2 2 −1 −2 1 1
3 ; [−∞,∞]

0 −1 3 −6 0 −1 1 1 2 2 − 8
3 ; [−∞,∞]

3 −4 0 0 0 −1 1 4 2 2 2
3 ; [0,∞]

0 −1 0 −3 0 −1 1 1 2 2 5
3 ; [−∞,∞]

0 0 0 −1 0 0 0 0 1 0 1; [−1,∞]

−3 8 −3 12 3 −1 −2 −5 −13 −7 − 8
3 ; [−∞,∞]

0 −1 1 −1 0 1 0 0 1 1 1; [−∞,∞]

3 −4 0 3 3 5 −2 1 5 −1 − 7
3 ; [−∞,0]

0 −2 0 0 0 1 −1 −1 1 1 − 2
3 ; [−∞,∞]

−1 2 1 6 1 −1 0 −1 −5 −1 −3; [−∞,0]

1 −2 1 −2 1 1 0 1 3 1 1; [−∞,∞]

0 −2 3 −3 0 4 −1 2 4 1 4
3 ; [−1,∞]

0 −1 3 −3 0 −1 1 1 2 2 5
3 ; [−∞,∞]

0 0 1 −1 0 0 0 0 0 1 2; [−∞,∞]

0 1 0 −1 0 0 0 1 0 1
[−∞,0] [−∞,1] [0,∞] [−∞,−1] [−∞,0] [−∞,0] [0,∞] [1,∞] [0,∞] [1,∞]

32

We can deduce Gomory cuts for the basic variables x4, x6, x5, x7, x3, x2 since
they are not assigned to an integer and furthermore all occurring non-basic
variables are either assigned to their upper or their lower bound:

g1 : x4 ≤ −3

g2 : −2x2 − x3 − x4 + x8 ≤ −1

g3 : 3x0 − 2x1 − 4x2 − 6x3 + x5 + 3x6 − x7 + 3x8 ≤ −12

g4 : −x2 − x3 + x8 + x9 ≤ −1

g5 : −x3 ≤ −2

g6 : −x2 ≤ −2

After adding these to the tableau we obtain:

x6

−2x4

2x0−2x1−2x5−4x9

2x3

x9

−2x5

x1

−2x0 + x3−x4

−2x7

4x2 + 2x4 + 2x5−2x9

2x0

−2x1 + 2x6 + 2x7

2x2

x8

−pg2
−pg3
2p7

p1 p2 p3 p4 p5 p6 −pg4 p8 p9 p10

0 1 0 0 0 0 1 −1 −1 0 1; [−∞,∞]

0 0 2 −4 0 0 1 0 1 1 −3; [−∞,−3]

2 −2 0 0 0 0 1 2 1 1 1; [0,∞]

0 0 0 −2 0 0 1 0 1 1 2; [2,∞]

0 0 0 −1 0 0 0 0 1 0 1; [−1,∞]

1 −2 1 −4 −1 1 1 1 4 2 −3; [−∞,∞]

0 −1 1 −1 0 1 0 0 1 1 1; [−∞,∞]

−1 2 0 −1 −1 −1 1 −1 −2 0 −3; [−∞,0]

0 2 0 0 0 0 1 0 −1 −1 −1; [−∞,∞]

−1 2 1 6 1 −1 0 −1 −5 −1 −3; [−∞,0]

1 −2 1 −2 1 1 0 1 3 1 1; [−∞,∞]

0 2 −2 2 0 −2 1 −2 −3 −1 1; [−1,∞]

0 0 2 −2 0 0 1 0 1 1 2; [2,∞]

0 0 1 −1 0 0 0 0 0 1 2; [−∞,∞]

0 0 0 0 0 0 1 0 1 0 1; [1,∞]

−1 −4 2 −8 −2 1 2 2 8 4 −12; [−∞,−12]

0 2 0 0 0 2 3 −2 −1 −1 1; [0,∞]

0 1 0 −1 0 0 1 1 0 1
[−∞,0] [−∞,1] [0,∞] [−∞,−1] [−∞,0] [−∞,0] [1,∞] [1,∞] [0,∞] [1,∞]

3.2.5 Termination behavior

Applying pure Gomory cuts as explained above is incomplete. On the one
hand Gomory cuts are not always constructible and on the other hand the
approaching of assignments towards an integer evoked by the previous cuts can
be in�nitesimal small such that the assignment never reaches this integer. We
will still see later how the global strategy combining BB and Gomory cuts leads
to an improvement.

3.3 Cuts from Proofs

The two techniques that we considered before, BB and Gomory cuts, both add
in the case of a domain violation constraints to the set of existing constraints
such that the current assignment is excluded but the set of valid solutions stays
untouched. The cuts from proofs method presented in [DDA09] aims to exclude
whole subspaces of the polytope not containing integer points.

33

3.3.1 Theoretical Preliminaries

In order to make us familiar with this method we will �rst have a look at some
necessary theory.

De�nition 3.3.1 (Linear Diophantine Equations [DDA09]). A linear equation

of the form
n∑
i=1

aixi = c is diophantine if all coe�cients ai are integers and c is

an integer.

As already mentioned, integer arithmetic provides better performance than
fractional arithmetic. Therefore the SMT-RAT tableau works on integers by
converting LIA instances exhibiting fractions. The rows of the tableau represent
linear diophantine equations.

We proceed with the following lemma [NW88] giving us a criterion to judge
the solvability of a linear diophantine equation:

Lemma 3.3.1. A linear diophantine equation of the form
n∑
i=1

aixi = c has an

(integer) solution i� c is an integral multiple of the greatest common divisor
gcd(a1,...,an).

Lemma 3.3.1 implies the following corollary [DDA09]:

Corollary 3.3.2. Let E be a plane de�ned by
n∑
i=1

aixi = c with no integer

solutions and let g = gcd(a1,...,an). Then the two closest planes parallel to
and on either side of E containing integer points are bEc and dEe, given by
n∑
i=1

ai
g xi = b cg c and

n∑
i=1

ai
g xi = d cg e, respectively.

Corollary 3.3.2 is implied by the previous lemma because b cg c and d
c
g e are

trivially multiples of gcd(a1g ,...,
an
g) = 1 and therefore bEc and dEe have accord-

ing to Lemma 3.3.1 integer solutions. They are the closest planes with that char-
acteristic because every other right side of such a linear diophantine equation
would not be as tight as b cg c respectively d

c
g e. The cuts from proofs algorithm

uses such planes to exclude hyperplanes E containing no integer solutions just
as bEc and dEe to ensure that the set of valid solutions stays untouched.

Another concept that we need is the one of Hermite matrices. From the
slightly distinguishing de�nitions of the latter we use:

De�nition 3.3.2 (Hermite Normal Form [DDA09]). An m×m integer matrix
H is said to be in Hermite normal form (HNF) if (i) H is lower triangular, (ii)
hii > 0 for 0 ≤ i < m, and (iii) hij ≤ 0 and | hij |< hii for i > j.

3.3.2 Hermite Normal Form

As we will see, the cuts from proofs method uses the Hermite normal form. I
use the following algorithm for the calculation of the latter because it makes use
of operations that can be executed cheaply in the tableau of SMT-RAT. Given
a m×n matrix A of full row rank, meaning that the maximal number of linearly
independent rows of A is equal to the number of rows of A, the unique Hermite
normal form AHNF of A is established by the following operations:

34

� swapping columns

� multiplying the entries of a column by −1

� adding an integer multiple of one column to another one

After step k we receive a matrix of the form:

AHNFk =

h1,1 0 . . . 0 0 . . . 0
...

. . .
. . .

...
...

. . .
...

hk−1,1 . . .
. . . 0

...
. . .

...
hk,1 hk,k 0 . . . 0

Ak Bk

where the matrix

h1,1 0 . . . 0
...

. . .
. . .

...

hk−1,1 . . .
. . . 0

hk,1 hk,k

is a matrix in Hermite normal form with k rows and columns. We obtain
AHNFk+1

by eliminating all but one entry in the �rst row of Bk. First multiply
the columns of all negative entries of the �rst row of Bk by −1 such that all
those entries are positive. Then apply the Euclidean algorithm to the entries of
the �rst row of Bk by adding the columns correspondingly such that afterwards
only one positive entry, say b, is left in this row which, by swapping columns, is
located on the main diagonal of Bk. We might have to normalize row (k + 1)
of AHNFk by subtracting suitable multiples of b such that the other entries in
row (k+ 1) are not positive and their absolute value is smaller than b according
to the de�nition of the Hermite normal form. This procedure is then repeated
until k = m.

Example 3.3.1. Assume that:

A =

(
0 1 0
5 2 −10

)

In the �rst iteration we just have to swap the �rst two columns since the �rst
row only contains one element:

AHNF1 =

(
1 0 0
2 5 −10

)

35

After inverting (multiplying with −1) the third column, the Euclidean
algorithm is applied to 5 and 10 by adding the corresponding columns
appropriately. After normalization we obtain:

AHNF2
=

(
1 0 0
−3 5 0

)
Excluding the zero column we obtain:

AHNF =

(
1 0
−3 5

)
The following lemma from [NW88] creates a connection between the Hermite
normal form H of a matrix A and the calculation of integer solutions for a given
system of linear equalities A~x = b.

Lemma 3.3.3. Proof of Unsatis�ability
The system A~x = b has an integer solution if and only if A−1

HNF b ∈ Zm. If A~x =
b has no integer solutions, there exists a row, say i, of the matrix T = A−1

HNFA
such that the corresponding entry ni

di
of A−1

HNF b is not an integer. We call the

linear diophantine equation
n∑
j=1

(diti,jxj)−ni = 0, where the ti,1, ..., ti,n are the

entries of the i-th row of T , with no integer solutions a proof of unsatis�ability
of A~x = b.

In order to exploit this lemma we need further considerations since it argues
about a system A~x = b of linear equalities but we consider systems of linear
inequalities. The following de�nition helps to close this gap.

De�nition 3.3.3 (De�ning Constraint). A constraint of the form
n∑
j=1

(ajxj)−

z0 ≤ 0 occurring in a system given by the QFLIA formula φ is a de�ning

constraint of φ if
n∑
j=1

(ajα(xj))− z0 = 0.

3.3.3 Algorithm

Taking the aforesaid into account, we use the following algorithm: Determine
in case of a domain violation the de�ning constraints of the given system of
linear inequalities for the current assignment. Then check, using Lemma 3.3.3.,
whether for those a proof of unsatis�ability c can be constructed by using the
Hermite normal form of the de�ning constraints. If so, the de�ning constraints
have no integer solutions such that we can exclude this subspace of the polytope
not containing integer solutions by branching on the two closest hyperplanes of
c according to Corollary 3.3.2 containing integer points. Otherwise use BB.
Furthermore choose a β with β ≥ n · |amax| where amax is the coe�cient of the
given system with the highest absolute value. The value β is needed to ensure
termination. Hence, like BB and Gomory cuts, the cuts from proofs algorithm
excludes invalid assignments, even subspaces, but does not restrict the set of
valid solutions.

36

Algorithm 3 checkCFPLRAModule(φ)

Input: A QFLIA formula φ
Output: SAT, UNSAT or UNKNOWN
if ¬(generalSimplex()) then
return UNSAT

end if

if ∃ 1 ≤ i ≤ n : dom(xi) = Z ∧ α(xi) 6∈ Z then

- Determine the de�ning constraints ADC
- Calculate the Hermite normal form AHNF of ADC
- Invert AHNF
if A−1

HNF · b 6∈ Zm then

- Determine a proof of unsatis�ability
l∑
i=1

(aixi)− ci = 0 (Lemma 3.3.3)

if ¬∃ 1 ≤ i ≤ n : ai > β · gcd(a1,...,an) then

- Learn lemma: (
l∑
i=1

(aig xi)− b
ci
g c ≤ 0) ∨ (

l∑
i=1

(aig xi)− d
ci
g e ≥ 0)

return UNKNOWN
end if

end if

- Learn lemma: (xi − bα(xi)c ≤ 0) ∨ (xi − dα(xi)e ≥ 0)
return UNKNOWN

end if

return SAT

This algorithm is complete which is ensured by ∃ 1 ≤ i ≤ n : ai > β ·
gcd(a1,...,an). The proof for that is given in [DDA09].

3.3.4 Example

Example 3.3.2. Assume we are given the following de�ning constraints that
occurred in the solving process of an instance:

x2 ≥ 1

5x1 + 2x2 − 10x3 ≥ 0

The assignments may be α(x1) = − 2
5 , α(x2) = 1, α(x3) = 0 and the matrix A

of de�ning constraints is given by:

A =

(
0 1 0
5 2 −10

)
We have already seen how the HNF of this matrix is determined which is given
by:

AHNF =

(
1 0
−3 5

)

37

Inverting AHNF leads to:

A−1
HNF =

(
1 0
3
5

1
5

)
We can now check whether a proof of unsatis�ability exists by testing whether
A−1
HNF b 6∈ Z2:

A−1
HNF ·

(
1
0

)
=

(
1
3
5

)
6∈ Z2

According to the algorithm, we can deduce a proof of unsatis�ability in the fol-
lowing way:

A−1
HNF ·A =

(
0 1 0
1 1 −2

)
Using the second row of A−1

HNF · A, since the second component of A−1
HNF · b is

fractional, we create the following proof of unsatis�ability containing no integer
points:

5x1 + 5x2 − 10x3 = 3

Using Corollary 3.3.2. we obtain the two closest planes bEc and dEe containing
integer points which can be used to branch according to:

x1 + x2 − 2x3 ≤ 0 ∨ x1 + x2 − 2x3 ≥ 1

3.3.5 Implementation Details

We will brie�y discuss some of the technical details that were necessary in order
to e�ciently implement the cuts from proofs method.

Firstly, since the swapping of two columns during the calculation of the Her-
mite normal form would have involved to �x the neighbor links for many entries,
I decided to only "swap" the columns virtually by introducing a permutation
σ(x) with x ∈ {1,...,n} such that for every column index i ∈ {1,...,n}, σ(i) is
the actual column index of this column in AHNF .

As we have seen a matrix A that is in Hermite normal form has lower triangu-
lar form which makes it quite easy to determine A−1 by substituting backwards
beginning in the �rst row only containing one entry.

38

Chapter 4

Global Strategy

As we have seen neither the BB nor the Gomory cuts method terminate for every
problem instance. It is therefore reasonable to think of a possible strategy min-
imizing the possibility of failing to terminate and simultaneously solving given
instances e�ciently. Most modern LIA solvers combine BB with some cutting
method. The SMT-RAT implementation provides a loop detection checking
whether a probable circle of maximal three, an appropriate value we have cho-
sen, variables exists such that the assignments of the involved variables either
rise or fall permanently but do not reach an integer. The term 'probable' is used
in this context because it is of course possible that the variables occurring in the
circle reach an integer after a big amount of iterations or the circle has a length
which is bigger than the value one chooses for the control length, 3 in our case.
The loop detection labels a recurring circle of variables as a loop if it occurs �fty
times, which is of course also adjustable, representing a good trade-o� between
the solvers' performance and the accuracy of the loop detection. If the loop
detection detects a (probable) loop, my implemented strategy tries to derive
Gomory cuts such that some of the instances, (probably) looping with the pure
BB approach, can be solved. As a matter of fact there are also instances where
the loop detection misleadingly detects a loop and therefore after a big amount
of iterations BB would have terminated. If in this case Gomory cuts do not
terminate we create non-terminating runs that would have terminated by using
the pure BB approach. But, as we will see in the experimental results section,
the advantages of this strategy clearly outweigh the disadvantages. We will also
see why the cuts from proofs technique is not part of the global strategy, even
if it guarantees termination.

Chapter 5

Experimental Results

After the theoretical discussion of the di�erent techniques, this chapter focuses
on judging them by measuring their runtime on the QFLIA benchmark set
of the SMT competition SMT-COMP 2014. Detailed information about the
competition and the used benchmarks is available at [SMT] and [BST10]. We
will also compare the results of the most promising strategies with those of
Microsoft's well-known SMT solver Z3. The comparison of the strategies focuses
on those benchmarks where the e�ect of my implemented techniques is high and
the e�ect of other factors is low. On some of the other benchmarks, a signi�cant
part of the computation takes place for example in the SAT solver. Apart from
that all instances from the vast amount of benchmark sets passed through error-
free. All of the benchmarks were executed on blades running under Debian
and each exhibiting 192 GB of memory and four 12-core AMD Opteron 6172
processors each providing a frequency of 2.1 GHz. Every benchmark instance
was given one core, a computation time of at most 200 seconds and a memory
usage of at most 4 GB.

5.1 Branching Strategies

We have seen that during the execution of BB the order in which the variables
are branched is nondeterministic. As a matter of fact the benchmark runs
have shown that the use of the previously introduced branching heuristics has
a signi�cant impact on the performance of BB.

Native Min pivot Most fea. Most inf. Z3
0

20

40

60

80

R
el
at
iv
e
sh
ar
e
of

so
lv
ed

in
st
an
ce
s
(%

)

CAV 2009 benchmarks
Cut lemmas
Dillig
Rings

The results for the "CAV 2009 benchmarks" show the trend that the branch
heuristics most infeasible and most feasible are most promising while min pivot
generates a decent progress on these compared to branching natively. This ob-
servation is con�rmed by the next two benchmarks. Compared to Z3, all heuris-
tics perform rather poor on the "Rings" benchmark. Interestingly, the heuristic
minimizing the pivoting e�ort performs relatively well on these instances. Hav-
ing a closer look at the latter it gets obvious that they have relatively huge
coe�cients, making the elementary operations that are necessary during piv-
otization more expensive and suggesting that this heuristic which minimizes
those elementary operations is a considerable option for instances of this kind.
It is still desirable to minimize the gap to Z3 on the "Rings" benchmark and
comparable instances. We will see in the next section that the global strategy
succeeds on that.

5.2 Global Strategy

The last section suggests that the use of the branching heuristics most feasible
and most infeasible provides good results but also that there are still instances
for which they either do not terminate in the given time of 200 seconds respec-
tively exceed the given memory of 4 GB or do not terminate at all. The use
of the global strategy decreases the number of instances falling into one of the
latter categories.

41

Global strategy Z3
0

20

40

60

80

R
el
at
iv
e
sh
ar
e
of

so
lv
ed

in
st
an
ce
s
(%

)

CAV 2009 benchmarks
Cut lemmas
Dillig
Rings

The global strategy increases the percentage of solved instances especially
on the "Cut lemmas" where it even performs better than Z3 and the "Rings"
benchmark closing the gap that we detected previously. To complement BB
with applying Gomory cuts on probably looping instances therefore signi�cantly
widens the range of instances that we can solve.

5.3 Runtime Analysis

Although the relative share of solved instances in the given time and mem-
ory bound is a good indicator for the success of the corresponding strategy, it
may not completely reveal di�erences in the e�ciency of the implementations.
Therefore we proceed with a runtime analysis for a benchmark set called calypto
including 37 instances from which we consider those 35 for which all strategies/-
solvers terminated. The results that we deduce from that are representative for
the runtime behavior on the other considered benchmarks.

42

0

2

4

6

8

10

12

14

Instance (1-35)

R
un
ti
m
e
(s
ec
.)

Most infeasible
Global strategy

Z3

The diagram con�rms the tendency that, except some outliers, the global
strategy just as BB with most infeasible branching can keep up with Z3 on the
considered terminating instances. Furthermore we see that those outliers for Z3
do not really occur which is probably due to the fact that it is highly optimized
and of course follows an even more advanced strategy.
In addition to that it is interesting to see that the global strategy's runtime is
signi�cantly lower on two instances compared to BB with most infeasible branch-
ing. One would actually expect that these runtimes are either approximately
the same or BB does not terminate while the global strategy does because the
latter tries to derive Gomory cuts when the loop detection detects a loop in
the branching process. This is due to the fact that the loop detection follows
a trade-o� regarding the length of a possible loop and a good but also not to
exuberant detection. As these two instances show, a misleading detection of
a loop is not necessarily harmful since Gomory cuts can even accelerate the
solving process. It is of course also possible that no Gomory cuts could have
been derived in this case and we therefore had to return UNKNOWN while BB
would have terminated. The test runs show that this case is very rare and the
chosen balance of the global strategy is appropriate.

43

5.4 Cuts from Proofs

Below we see a comparison of the cuts from proofs technique using the native
heuristic for BB compared to pure BB with the native heuristic. Hence we get
an impression of the di�erence that the cuts from proofs technique makes:

CFP Native
0

10

20

30

40

50

60

70

P
er
ce
nt
ag
e
of

so
lv
ed

in
st
an
ce
s

CAV 2009 benchmarks
Cut lemmas
Dillig
Rings

Taking a closer look at all results we can assert that there is a small set of
instances where the CFP method terminates and native BB does not, regarding
the time and memory requirements, but as we can see in the diagram this dif-
ference is not as big as the one we achieved by combining BB and Gomory cuts.
Since there are also some instances where native BB terminates and the CFP
method does not, especially on instances with huge coe�cients and big dimen-
sions, making the calculation of the Hermite normal form expensive, we rely
on the global strategy as given above. Considering the solving process of cuts
from proofs in SMT-RAT, I detected that the de�ning constraints frequently
are those where the corresponding component of the right side b is zero such
that A−1

HNF b 6∈ Zm, the main condition for the derivation of a cut from proof,
is hard to satisfy. The "Dillig" benchmark set is originally from the authors of
[DDA09] and the "Rings" benchmark was not considered here because it does
not reveal new insights.

44

Chapter 6

Conclusion

The aim of this thesis was to evaluate the three presented techniques and their
synthesis to a global strategy theoretically just as to embed them e�ciently into
SMT-RAT.

6.1 Summary

After having established the theoretical foundations for this thesis, we �rstly
considered BB which is widely applied in today's LIA solvers. We have seen
that it is a suitable technique for quite a lot of instances but is limited by incom-
pleteness. Then we moved on with Gomory cuts which we used to supplement
BB in order to derive a competitive strategy. Subsequently the quite recent cuts
from proofs method closed the algorithms' chapter.
The experimental results evaluated the presented algorithms and suggested that
the global strategy performs good against Z3 but of course also that there is
potential for further adjustments. The cuts from proofs technique does not
perform as well as the global strategy.

6.2 Future Work

6.2.1 Avoiding unnecessary branches

One common weakness of BB is the fact that during the execution of the al-
gorithm often a lot of branches are considered that either do not contribute to
�nd a solution at all or not as fast as another order of branching would have
done. One could try to tackle this by introducing a heuristic function evaluating
the success of the branching process by saving the progress that branching on a
certain variable generated in the recent iterations indicated, e.g., by the number
of variables satisfying their domain.

6.2.2 Advancing the global strategy

The current global strategy applies Gomory cuts only when BB seems to loop.
We can eventually bene�t from embedding the latter even more into the global
strategy. Such an adjustment could involve to already try to derive Gomory

cuts when BB struggles to �nd a solution which could be indicated by similar
ideas that were suggested in the last subsection.

6.2.3 Order of applying Gomory cuts

Until now Gomory cuts are added in a BFS fashion meaning that for a current
tableau state all possible cuts are derived and added to the tableau. Experi-
mental testing suggested that this is superior compared to adding cuts for one
variable until it satis�es its domain since it can take a long time until the as-
signment converges against an integer. Still one could bene�t of other heuristics
in determining the variable for which a cut is derived. Using similar heuristics
as were already used for BB is possibly promising.

6.3 Conclusion

Checking the satis�ability of linear inequalities over integers has its historical
roots in the middle of the last century and is still an open �eld of research as more
and more sophisticated algorithms enable an e�cient satis�ability check in var-
ious application domains. A clever combination of BB with cutting techniques
already provides good results and it will be interesting to track the progress of
this and other approaches.

46

Bibliography

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satis�ability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[CJW07] Richard Cottle, Ellis Johnson, and Roger Wets. George B. Dantzig
(1914�2005). Notices of the AMS, 54(3):344�362, 2007.

[CLJÁ12] Florian Corzilius, Ulrich Loup, Sebastian Junges, and Erika
Ábrahám. SMT-RAT: An SMT-compliant nonlinear real arithmetic
toolbox. In Theory and Applications of Satis�ability Testing(SAT),
LNCS 7317, pages 442�448. Springer, 2012.

[DDA09] Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A
complete and practical technique for solving linear inequalities over
integers. In Proc. of Computer Aided Veri�cation (CAV), LNCS 5643,
pages 233�247. Springer, 2009.

[DDM06] Bruno Dutertre and Leonardo De Moura. Integrating simplex with
DPLL (t). Computer Science Laboratory, SRI International, Tech.
Rep. SRI-CSL-06-01, 2006.

[DE73] George B. Dantzig and Curtis Eaves. Fourier-Motzkin elimination
and its dual. Journal of Combinatorial Theory, Series A, 14(3):288�
297, 1973.

[JLCÁ13] Sebastian Junges, Ulrich Loup, Florian Corzilius, and Erika
Ábrahám. On Gröbner bases in the context of satis�ability-modulo-
theories solving over the real numbers. In Traian Muntean, Dimitrios
Poulakis, and Robert Rolland, editors, Algebraic Informatics, volume
8080 of Lecture Notes in Computer Science, pages 186�198. Springer
Berlin Heidelberg, 2013.

[KS08] Daniel Kroening and Ofer Strichman. Decision procedures, volume 5.
Springer, 2008.

[Min] Mia Minnes. Mixed and integer linear programming using automata
techniques. www.math.cornell.edu/�minnes/Automata/AutDec.pdf.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and combi-
natorial optimization, volume 18. Wiley New York, 1988.

[Pug91] William Pugh. The Omega test: A fast and practical integer pro-
gramming algorithm for dependence analysis. In Proceedings of the

1991 ACM/IEEE Conference on Supercomputing, pages 4�13. ACM,
1991.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[SMT] SMT-COMP 2014. http://smtcomp.sourceforge.net/2014/.

48

	Introduction
	Historical Context
	Problem Definition
	Related Work

	Preliminaries
	Terminology
	QFLIA Formulas
	Polytopes and Relaxation
	Satisfiability Modulo Theories
	SMT-RAT
	Simplex
	Tableau

	Algorithms
	Branch and Bound
	Gomory Cuts
	Cuts from Proofs

	Global Strategy
	Experimental Results
	Branching Strategies
	Global Strategy
	Runtime Analysis
	Cuts from Proofs

	Conclusion
	Summary
	Future Work
	Conclusion

	Bibliography

