
Bachelor of Science Thesis

Datatypes and tools
for the analysis

of hybrid systems

Kim Maren Haps

Supervisors:
Prof. Dr. Erika Ábrahám

Advisor:
Johanna Nellen
Xin Chen 06.06.2013

iii

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und
noch nicht anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten
Quellen und Hilfsmittel sind angegeben, wörtliche und sinngemäße Zitate wur-
den als solche gekennzeichnet.

Kim Maren Haps
Aachen, den 06. Juni 2013

iv

Acknowledgements
Writing the Bachelor Thesis was only possible with the help, time and effort of
many people. Hereby, I would like to express my appreciation to all the people
who supported my research and helped me with the creation of this thesis.

First of all, I would like to pass the gratitude to my supervisor Erika Ábrahám
and my advisors Xin Chen and especially Johanna Nellen. Thanks for their
great supervision and patience. I could not have finished this thesis without
their valuable advice.

Secondly, I would like to thank the university, RWTH Aachen. Thanks for
offering me the opportunity to study here, as well as grateful gratitude to all
the teachers and nice classmates.

Last but not least, I am deeply grateful to my parents who have been en-
couraging and motivating me throughout my study in Aachen. Without their
support spiritually and financially, I could not have finished my study.

Thank you sincerely!

Kim Maren Haps

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Plants . 11
2.2 Sequential function charts . 13
2.3 Hybrid sequential function charts 17
2.4 Hybrid Automata . 20
2.5 SFC verification tool . 28

3 Data structure for hybrid automata 37

4 Building the composition 41

5 Testing the parallel composition 47
5.1 Benchmarks . 47
5.2 Experimental results . 50

6 Conclusion 59
6.1 Summary . 59
6.2 Future work . 59

Bibliography 61

vi Contents

Chapter 1

Introduction

In industry the use of plants in production processes is very common. For
the automation of the plants it is resorted to programmable logic controllers
(PLCs). They control the behavior the plants. To program such a PLC the
industry standard IEC 61131-3 [1] offers several languages.

The sequential function charts (SFCs) are one of them. This language de-
scribes the behavior of a process in a graphical way. It allows to split the process
into steps, which is very helpful, when building and analyzing large and complex
system.

A wrong programmed SFCs can lead to damages at the plant, for instance a
pump of the plant can run dry and get broken, if there is no safety mechanism
to prevent this. To detect such unwanted behavior that could occur during a
run of PLC a previous verification of the SFCs is recommended.

The SFC verification tool offers the opportunity to check SFCs for safety.
Since the SFCs only specifies the control of a plant, the behavior of the underly-
ing plant must be determined as well to get a full safety check. This behavior can
be described by conditional ODE systems. They specify under which conditions
some component of the plant has the defined behavior. The conditional ODE
systems are assigned to some steps to combine the control of the plant given by
the SFCs with the behavior, that occurs during the execution of the program.
The resulting system is called a hybrid sequential function chart (HSFC) [2].
Since there is no approach, which is able to check HSFCs directly, the SFC
verification tool takes the HSFCs and transforms them into hybrid automata.
These automata are given to SpaceEx, an analysis tool for hybrid automata [3].
The analysis of hybrid automata is very time intensive, so the SFC verification
tool tries to keep the model as small as possible. The conditional ODE systems
are not fully assigned to the SFCs at the beginning, but are added stepwise dur-
ing the CEGAR-based verification process. The first analysis of the automata
is done on the SFCs without any conditional ODE system. The result of the
executed analysis, which is safe or unsafe. In the latter case, it gives back a
counter example, which is used to determine a suitable candidate of the given
ODE systems to be assigned to the SFCs. So an additional ODE systems is
added during a refinement step. The verification is done when the model is safe
or there are no ODE systems to add, so the model is unsafe [4].

The transformation from the SFCs respectively the HSFCs to hybrid au-
tomata is customized to support the SpaceEx analysis tool. All restrictions,

10 Chapter 1. Introduction

which are given by SpaceEx such as supporting linear convex conditions only,
are applied to the automata while building them. The SFC verification tool
directly writes the automata to the input file for SpaceEx, there is no data
structure built for the automata. This restricts our tool to use of only SpaceEx.

While working on the project, we discovered some bugs in SpaceEx that
prevent a proper analysis of our SFCs. Therefore we plan to integrate other
analysis tools to the SFC verification tool. This will also increase the flexibility.

We implemented a new data structure for hybrid automata and adapted
the transformation from (H)SFCs into hybrid automata so that it uses this
data structure instead of creating the SpaceEx input file directly. The new
transformation is independent from any restriction given by SpaceEx and any
other analysis tool. The resulting hybrid automata are saved in our newly
implemented data structure. If we want to make the automata suitable for the
analysis by a specific tool, we can apply some other transformations on the data
structure afterwards. These transformations can be done by a ToolChain, which
can handle the restrictions of different tools.

Beside the data structure we introduced a component, which builds the
parallel composition of the hybrid automata of a system. Previously this was
not needed, because SpaceEx can compute the parallel composition of a set of
hybrid automata on the fly during the reachability analysis. In some test cases
we found out, that there are bugs in the computation of the parallel composition.
This is one reason for implementing the building of the composition as an own
component in our tool. The other reason is, that there are tool, which can
not handle the analysis for several automata. So if we want to use them for
the computation of the reachable states, we must provide them the parallel
composition of our set of hybrid automata. With these improvements our tool
is now as flexible as possible for the integration of different analysis tools.

The thesis is structured as follows: We introduce an example plant system,
sequential function charts respectively hybrid sequential function charts, hy-
brid automata and their parallel composition as well as the SFC verification
tool and its transformation from (H)SFCs to hybrid automata in chapter 2. In
chapter 3 we present the data structure for the hybrid automata. The building
of the composition by our tool is explained in chapter 4. The description of two
benchmarks and the comparison of our parallel composition with the composi-
tion SpaceEx computes can be found in chapter 5. We finish the thesis with
with a conclusion and the future work in chapter 6.

Chapter 2

Preliminaries

In this chapter we introduce an example plant that we use in this thesis. Af-
terwards we explain SFCs, hybrid SFCs, and hybrid automata. In the end we
describe the SFC verification tool including the transformation from (H)SFCs
to hybrid automata for SpaceEx. This basics are needed for the understanding
of the main part of this thesis.

2.1 Plants

Since the SFC verification tool is used for checking of chemical plants, we give a
simple example of it, that we in this thesis as a running example. This example
is retrieved from [2] and depicted in figure 2.1.

TI
T1

L0
max1

L0
min1

Y O

V out
1

NO

P1

Y O

V in
2

TI
T2

L0
max1

L0
min1

Y O

V out
2

NO

P2

Y O

V in
1

Pump 1 on

Pump 2 on

Pump 1 off

Pump 2 off

Figure 2.1: An example plant and its control panel from [2]

In this plant we have two equally build tanks T1 and T2 , which are filled
with water. The level of each tank Ti is denoted by the variable hi . To detect
a critical water level, each has tank has two sensors. Near the bottom of the
tank is a sensor, which signals a low water level (¬mini), if it is not covered by
water. In this case the tank Ti is starting to run dry, if more water leaves the
tank. The other sensor is near the top of the tank. When it gets in contact with

12 Chapter 2. Preliminaries

water, it detects a high water level (maxi), which can cause the tank to flood.
We have a wanted water level, if the two sensors signal (mini ∧ ¬maxi).

Beside the tanks, we have two pumps P1 and P2 in the plant. They are
connected each by pipes with both tanks. The pumps can be switched on or
off manually by using the control panel. This is indicated by the variables (Pi)
respectively (¬Pi). If a pump P1 is running, it pipes an amount c1 of water per
time unit from tank T1 into the other tank. The water levels of the tanks lower
respectively raise by c1 while the pump is turned on. This holds vice versa for
pump P2 . It pumps the water from tank T2 back into tank T1 with a capacity
of c2.

A control program is aware of the water levels of the tank to prevent a pump
from running dry or the tanks from flooding. It observes the tanks with the
sensors. The command to switch a pump on is only executed if the water level
of the tank, from which the water piped out, is not low, and the water level of
the other tank is not high.

2.2. Sequential function charts 13

2.2 Sequential function charts

To model the control for a plant we use the sequential function charts (SFCs).
They offer us the possibility of a graphical representation of the control and
allow us to split the control sequences into steps. The following description
holds only for a restricted set of sequential function charts (SFC) defined by
the IEC standard 61131-3 [1]. The differences are explained, when they occur
in the description.

A sequential function chart (SFC) has a set of variables Var . There are three
different types of variables: input, output and local variables. Input variables
are set by the environment or another SFC. Output and local variables can be
changed by the SFC during execution. But while output variables can be read
from the outside of an SFC, local variables are just for the internal use of an
SFC. Each variable has a data type such as integer, real or boolean. The IEC
standard 61131-3 offers more data types[1].

Mainly the structure of an SFC is determined by set of steps Steps and a
set of guarded transitions Trans. The execution starts in an initial step s0,
which is at the top of the SFC. All other steps are normally arranged top down
accordingly to the order they should be executed in. A transition of an SFC
connects two steps with each other. It leads from the bottom of the source step
to the top of the target step, thus it is directed.

When entering a step, it becomes activated and the set of action blocks
Blocks, which are assigned to the step, are performed. The set of all action
blocks in an SFC is B . Every action block consists of an action qualifier and
an action itself. An action qualifier determines, when the corresponding action
should be performed. There are three types of it: entry , do and exit . The action
qualifier entry causes that an action is executed only once, when entering a step.
So does the qualifier do, but its action is also performed the whole time, when
the step is activated. When the step is deactivated, thus when it is left via a
transition, the action of the qualifier exit is executed [2]. In the IEC standard
P1, N and P0 are used for the action qualifiers. For a better understanding we
renamed them with enter, do and exit. The IEC standard also defines more of
these qualifiers, which are not considered here [1].

There can be more than one action block with the same action qualifier
assigned to a step. In this case the action are performed in a sequence formally
given by a total order ⊏. In the graphical representation the order is depicted
by arranging the actions top down. In figure 2.2, for example, there are two
actions action2 and action3 with a do qualifier. According to their arrangement
in the step, action2 would be executed before action3 .

There two types of actions. It can either change the value of a variable by
a variable assignment or it executes another SFC, which is attached to it. Here
the history flag Hist becomes important. If this flag is set to false, the execution
of the nested SFC is done by activating the initial step. If the history flag is
set to true, the last active step of this SFC is reactivated. In the graphical
representation of an SFC an action is denoted by an expressive name for what
it does. For instance, if the action is Pumpon = 1, the action name could be
turn pump on [5].

As mentioned previously transitions connect steps with each other. Every
transition has a guard, which determines by a boolean expression which valu-
ation for the variables is allowed to take the transition. As soon as a guard

14 Chapter 2. Preliminaries

Step1
entry/
action1

do/
action2

action3

exit/
action4

Figure 2.2: A schematic SFC step

is satisfied, the transition must be taken and the current step is deactivated.
So transitions are urgent. If there are more than one outgoing transition with
fulfilled guards, the one with the highest priority is taken. The priority of a
transition is given by a partial order ≺.

The source and the target of a transition must not be a single step, but
they can also be a set of steps. When having set of steps as source, all of these
steps must be activated and the guard of the transition must be fulfilled before
the transition can be taken. Thus, we have a synchronized deactivation of the
source steps. If there is a set of steps as target of a transition the synchronization
works just vice versa. The target steps are activated in parallel if the transition
is taken. These two cases can appear separately as well as combined.

The previous description of an SFC retrieved from [2] and [5] leads to the
following formal definition, which is also based on [2] and [5].

Definition 2.2.1 (SFC). A sequential function chart (SFC) is a 9-tuple S =
(Var , Steps, Actions, s0 , Trans, Blocks, ⊏, ≺, Hist), where

• Var = VarI ∪VarO ∪VarL is a finite set of variables,

• Steps is a finite set of steps,

• Actions is a finite set of actions, which can a variable assignment or an
other SFC,

• s0 ∈ Steps is the initial step,

• Trans ⊆ (2Steps/{∅}) ×G × (2Steps/{∅}) is a finite set of transition,

• Blocks ∶ Steps → 2B is a function which assigns a set of action blocks to
each step,

• ⊏ ⊆ Action ×Action is a total order of the actions, which defines in which
order the active actions must be executed,

• ≺ ⊆ Trans ×Trans is a partial order on the transitions,

• Hist ∈ {0,1} is a history flag, which determines whether a SFC is executed
with history (Hist = 1) or not (Hist = 0).

2.2. Sequential function charts 15

Semantics of an SFC Now we describe, how an SFC is executed on a pro-
grammable logic controller (PLC). A PLC works in cycles. The duration of
each cycle, the cycle time, varies between a lower bound δl and an upper bound
δu. For the execution of an SFC the PLC performs the following steps in ev-
ery cycle. Firstly the PLC gets the data from the environment and updates
the corresponding values of the input variables. With the new valuation of the
variables the PLC checks for every active step, if there are outgoing transitions,
whose guards are satisfied by the valuation. From the set of the enabled transi-
tions, the one with highest priority is taken. Now the PLC determines the set of
actions, which are executed subsequently. The set consists of the actions with
a do qualifier of all active steps and for every transition, that has been taken,
the actions with an exit qualifier of the source and the actions with an entry
qualifier of the target step. After executing these actions, the PLC sends the
value of the output variables to the environment [5].

A more deeply description and the formal definition for the semantics can
be found in [5].

Example 2.2.1. Figure 2.3 depicts an SFC for pump P1 of the plant example.

off1

entry/
pump P1 off
close valve V out

1

close valve V in
2

do/
exit/

on1
entry/
open valve V in

2

open valve V out
1

pump P1 on
do/
exit/

P on
1 ∧min1 ∧ ¬max2 P off

1 ∨ ¬min1 ∨max2

Figure 2.3: SFC for pump 1 from [2]

The initial step is off1 . When entering this step, three entry actions are
performed. The first one is “pump P1 off”, which turns pump P1 off. Afterwards
the valve for the outgoing water flow is closed by the action “close valve V out

1 ”.
Last the action “close valve V in

2 ” closes the valve for the incoming water flow of
the second tank. Now no water can leave tank T1 and flow into tank T2 . Since
there are no do or exit actions, the PLC is done, when it has executed the entry
actions.

The PLC must leave this step, when the guard of the outgoing transition is
fulfilled. The guard determines, that the step must be left, when the command to
switch the pump on (Pon

1) is retrieved from the environment. Besides this con-
dition tank T1 may not be empty (min1) and tank T2 may not be full (¬max2).
These informations are sent by the water level sensors of both tanks and assure,
that neither pump P1 can run dry nor tank T2 can be flooded.

As soon as the guard of the transition is satisfied, the step on1 is entered.
Here the PLC opens firstly valve V in

2 , so that water can flow into tank T2 . Then
the valve V out

1 is opened, so water can flow out of tank T1 . In the end the pump

16 Chapter 2. Preliminaries

P1 is turned on. Now the water is piped from tank T1 into tank T2 . Nothing
more happens in this step, because there are no do or exit actions, like in the
previous step.

For turning the pump P1 off, thus getting to step off1 again, one of the
following conditions must be satisfied. The PLC can get the command to turn
the pump off (Poff

1) or one of the water level sensors of the tanks indicates a
problem. In this case either tank T1 is empty (¬min1) and the pump will run
dry or tank T2 is full and will be flooded, if the pump pipes more water into the
tank.

2.3. Hybrid sequential function charts 17

2.3 Hybrid sequential function charts
Ordinary SFCs can handle only discrete behavior, because the values for the
variables can be set just by assignments of actions. These assignments are
static and thus do not allow a continuous evolving of the values.

Therefore we extend an SFCs with a conditional ordinary differential equa-
tion (ODE) system to a hybrid sequential function charts (HSFC) with contin-
uous behavior.

Firstly we describe the conditional ODE system.

2.3.1 Conditional ODE system
The components of a conditional ODE system are on the one hand a condition
and on the other hand a set of ODEs. The condition specifies which values
some variables from the SFC must have, so that an ODE is used to calculate a
new value for a continuous variable by a function f ∶ R≥0 → R. This function
computes the new value depending on the time t. For instance {f ∶ R≥0 →
R∣∃c ∈ R.∀t ∈ R≥0.f(t)(x) = 2t + c} says the value of a continuous variable x is
x = 2 ⋅ 4+ c = 8+ c for any c ∈ R, if the time t is four time units. A short form to
denote the function f(t) = 2t + c for any c ∈ R is ẋ = 2.

The following definition is from [2].

Definition 2.3.1 (Conditional ODE system). Let VarC be a set of continuous
variables, ODEVarC

the set of all ordinary differential equations over VarC and
Conds the set of all conditions.

Then a conditional ODE system is a pair (cond ∶ ODEs), where cond ∈
Conds and ODEs ⊆ ODEV arC and CODEV arC is set of all conditional ODE
systems.

Example 2.3.1. Assume we have the following conditional ODE system:

ODE = (Pon
1 ∧ ¬Pon

2 ∶ ḣ1 = −c1 , ḣ2 = c1)

The condition of the system determines, that the command for turning on
pump P1 (Pon

1)and the command for turning off pump P2 (Poff
2) must have

been received. If this condition is fulfilled, the water level of tank T1 lowers
according to the capacity c1 , which pump P1 pipes out of the tank per time unit
(ḣ1 = −c1). Corresponding to this the water level h2 of tank T2 increases by c1

(ḣ2 = c1).

To extend an SFC to an HSFC, a set of conditional ODE systems is assigned
to each step of the SFC. This extension is used to add continuous behavior to
the chart.

The following definition is from [2].

Definition 2.3.2. A hybrid SFC (HSFC) is a 10-tuple HC = (Var , Steps,
Actions, s0, Trans, Blocks, Dyn, ⊏, ≺, Hist), where

• Steps, Actions, s0, Trans, Blocks, ⊏, ≺, Hist are defined for SFCs,

• Var = VarI ∪VarO ∪VarL ∪VarC is a finite set of variables,

• Dyn ∶ Steps → CODE⋆
VarC

assigns a sequence of conditional ODE systems
for continuous variables in VarC to each step.

18 Chapter 2. Preliminaries

off1

entry/
pump P1 off
close valve V out

1

close valve V in
2

do/
exit/

¬Pon
1 ∧ Pon

2 ∶ ḣ1 = c2

¬Pon
1 ∧ ¬Pon

2 ∶ ḣ1 = 0

on1
entry/
open valve V in

2

open valve V out
1

pump P1 on
do/
exit/

Pon
1 ∧ Pon

2 ∶ ḣ1 = c2 − c1

Pon
1 ∧ ¬Pon

2 ∶ ḣ1 = −c1

P on
1 ∧min1 ∧ ¬max2 P off

1 ∨ ¬min1 ∨max2

Figure 2.4: HSFC for pump 1 from [2]

Semantics of HSFCs A PLC executes an HSFC similar to the execution of
an ordinary SFC. In every PLC cycle it performs the four steps updating the
input variables according to the environment, determining the enabled transi-
tions and taking them, executing the actions of the active steps and in the end
sending the values of the output variables to the environment. Now we add
a fifth step to the PLC cycle routine. After sending the values of the output
variables to the environment, the PLC determines a set of ODEs, which must
be executed. This set contains only these ODEs, which are attached an active
step and whose condition is fulfilled by the values of the variables of the SFC.
Afterwards the values of the continuous variables are computed and updated.
Because these values evolve during the whole execution of a PLC cycle, the time
t for the functions of the ODEs is exactly the cycle time. Thus, t is between δl
and δu.

The previous description is based on [2]. A more deeply explanation and the
formal definition can also be found in [2].

Example 2.3.2. Figure 2.4 shows the SFC of tank T1 from example 2.3, which
is extended to an HSFC by ODE systems. The executing of this HSFC by a PLC
is nearly the same as described in example 2.2.1 except the continuous behavior.
By adding the ODE systems to the steps the changing of the water level in tank
T1 is calculated in each PLC cycle.

Assume, the PLC is in step off1 and has performed all actions of this step
and has sent the output values to the environment. Now it calculates the new
value for the water level h1 . Which ODE system is chosen for that is determined
by the state of the pumps. Since we are in the step, where pump P1 is turned
off, both ODE systems have the condition ¬Pon

1 . So the evolving of the water
level depends on whether pump P2 is turned on (Pon

2) or off (¬Pon
2).

If pump P2 is turned on, the condition ¬Pon
1 ∧Pon

2 of the first ODE system
of step off1 holds and the equation ḣ1 = c2 is responsible for the changing of
the water level. This means, for the duration t of a cycle time the water level
of tank T1 increases by the amount of water pump P2 pipes into the tank per
time unit, which is given by c2 , the capacity of pump P2 .

The second ODE system of this step has the condition ¬Pon
1 ∧ ¬Pon

2 , so
both pumps must be turned off. Now the water level h1 does not change at all

2.3. Hybrid sequential function charts 19

(ḣ1 = 0), because in this case water is neither piped into nor out of the tank.
The second step on1 has also two ODE systems. Since in this step pump

P1 is switched on, both systems have Pon
1 as condition. Like in the first step,

it depends on the state of pump P2 , which of them is chosen for the evolving of
the water level.

If both pumps are turned on (Pon
1 ∧Pon

2), the water level changes according
to the difference of the pump capacities c1 and c2 or short ḣ1 = c2 − c1 .

In the case, pump P2 is turned off, the condition Pon
1 ∧ ¬Pon

2 holds. Now
water is piped out of the tank only (ḣ1 = −c1).

20 Chapter 2. Preliminaries

2.4 Hybrid Automata

A hybrid automaton is used to model and simulate systems with discrete and
continuous behavior. In reality there are several examples for such a combination
of both behaviors. Even the one tank system from the previous section 2.3 has
a discrete part of behavior, for instance turning the pumps on or off, as well as
a continuous part, the water level of the tank, which changes over time.

To keep track of the state of the system while simulating it a hybrid automa-
ton has a finite set of variables Var and a finite set of locations Loc. The set
Var is a union of two sets Varcon and Vardis . The variables of the set Varcon

refer to the continuous behavior. Usually they represent some sort of physical
measurement, which evolves over time. In contrast to this, the variables of the
set Vardis can only have a specific number of values, because they belong to
the discrete behavior of the system and thus the values do not evolve over time.
Each variable has a value assigned to itself. To assign the values to the different
variables in Var a function v ∶ Var → R called valuation is used. The set of all
possible valuations for the variables in Var is V .

The set of locations also refer to the discrete behavior of the system, like the
discrete variables, because a hybrid automaton may be in one single location at
a time. It can switch between the different locations during the simulation, but
it may never enter two locations at the same point of time. For this reason and
because the set of locations is finite, the locations belong the discrete behavior.

As mentioned above the variables respectively the value assigned to them and
the locations are used to determine the states of the system while simulating
it. When the hybrid automaton is in a location loc and the valuation of all
variables at this point of time is v, the state of the system is denoted by the
pair (loc, v). The set of all states, a system can be in, is Σ ∶= Loc × V .

At the beginning of a simulation a hybrid automaton must have a set of
states in which it can start. These states are the initial states of the system and
they are defined by the set Init ⊆ Loc × V .

loc1
invariant
activities

loc2
. . .
. . .

synchronization label
guard

assignment

Figure 2.5: A schematic hybrid automaton

In figure 2.5 a schematic hybrid automaton is shown. The locations are
depicted as rectangles with rounded corners. The figure shows, that an invariant
and an activity is assigned to each location.

An activity of a location determines, how the values of the continuous vari-
ables change, while staying in the location and time is passing by. This is done
by a function f ∶ R≥0 → V , which assigns a new value to a continuous vari-
able depending on the time. For instance Act(loc) = {f ∶ R≥0 → V ∣∃c ∈ R.∀t ∈
R≥0.f(t)(x) = 3t+c} says the value of the variable x ∈ Varcon is x = 3⋅4+c = 12+c
for any c ∈ R, if the controller stayed four time steps in the location loc. In the
graphical representation of a hybrid automaton the activities are given by a

2.4. Hybrid Automata 21

differential equation for a better readability. So the set {f ∶ R≥0 → V } with
f(t) = 3t + c for any c ∈ R is specified by ẋ = 3.

The conditions, which define if the controller may enter a location respec-
tively stay in it, are given by the invariants. An invariant of a location is a set
of valuations for the variables, that are allowed in the location. For example
Inv(loc) = {v ∈ V ∣v(x) ≤ 3} means that as long as the value of the variable
x ∈ Var is less or equal three, the valuation of the variables satisfies the in-
variant and the controller may stay in the location. But if for instance in the
next time step the activities would change the valuations of the variables in
a way, that the invariant gets violated, the controller must immediately leave
this location. Thus, the controller must leave a location before the valuation
can violate the invariant. For the graphical representation the invariants are
given as first order formulas without quantifiers. For example, the invariant
Inv(loc) = {v ∈ V ∣v(x) ≤ 3} would be denoted by x ≤ 3.

As shown in figure 2.5 the locations of an hybrid automaton are connected
via directed transitions or edges. These transitions have guards, assignments
and a synchronization label assigned.

The guard of a transition is similar to the invariant of a location. It specifies
a set of valuations the variables may have so the controller is allowed to take
the transition. But in contrary to the invariants of locations, transitions are not
urgent. So the controller can take the transition when its guard is fulfilled, but
it is not forced to take it. Unless the invariant does not allow to stay one more
time step in the current location and there are no other transitions whose guards
are satisfied. In the graphical representation they are denoted like invariants,
because they determine a set of allowed valuations.

There is also an equivalent to the activities of the locations, which are the
assignments of an edge. But contrary to activities, the assignments just assign
specific values to the variables in Var , which are not calculated by a function.
The reason for that is, the controller cannot stay in an edge for an amount of
time. It just uses it to get from one location to another.

Beside the guard and the assignment, an edge has a synchronization label.
This label is important for the parallel composition and will be explained more
precisely in section 2.4.1. A special edge is the τ -transition, which exists for
every location of the hybrid automaton. For this transition the source and the
target location are the same. Thus, it is a self loop. Besides the guard of this
transition gives no restriction for the valuation of the variables. The assignment
is given by Id , the identity set, which does not change any valuation of the
variables. The τ -transition is as much important for the composition as the
set of the controlled variables. This set is referred to as Con and contains all
variables of a hybrid automaton, whose valuation are defined by an activity
of a location in this automaton. Any other hybrid automaton is only allowed
to read them. The advantage of such controlled variables becomes clearer in
section 2.4.1.

The previous description based on [6] and [7] leads us to the following formal
definition, which is retrieved from [7], [4] and [6].

Definition 2.4.1 (Hybrid automaton). A hybrid automaton HA = (Loc, Var ,
Con, Act , Inv , Lab, Edge, Init) is a 8-tuple, where

• Loc is a finite set of locations,

22 Chapter 2. Preliminaries

• Var ∶= Varcon ∪Vardis is a union of

Varcon , a finite set of real valued, continuous variables,
Vardis , a finite set of discrete variables,

• Con ∶= {x ∈ Var ∣∃l ∈ Loc, f ∈ Act , v, v′ ∈ V , t ∈ R≥0 ∶ f(0)(x) = v(x) ∧
f(t)(x) = v′(x)} is a set of variables, whose evaluation is determined by
an function of an activity assigned to a location in HA

• Act is a function assigning a set of activities for the continuous variables
f ∶ R≤0 → V to each location, which are time invariant, meaning that
f ∈ Act(loc) implies (f + t) ∈ Act(loc) where (f + t)(t′) = f(t + t′) for all
t′ ∈ R≤0

• Inv ∶ Loc → P(V) is a function assigning an invariant Inv(loc) ⊆ V to
each location loc ∈ Loc,

• Lab is a finite set of synchronization labels, including τ ∈ Lab,

• Edge ⊆ Loc ×Lab ×Guard ×Ass ×Loc is a finite set of edges, including the
τ -transition (loc, τ, V, Id , loc) for each loc ∈ Loc,

– Guard ⊆ V is a set of valuations,
– Ass is a set of functions g ∶ Var → R,

where Id is the identity set Id = {v(x) ∈ V ∣v′(x) = v(x)} ∀x ∈ Var

• Init ⊆ Σ is a finite set of initial states,

Semantics of a hybrid automaton At the beginning of an execution the
hybrid automaton is in a state (loc0, v0) from the set of initial states Init . The
valuation v0 of the variables must satisfy the invariant of the initial location loc0,
so the hybrid automaton can enter the location. At this point and at any other
point of the execution the hybrid automaton has two options of performing an
action, either taking a time step (flow) or a discrete step (jump).

Taking a time step means the hybrid automaton stays in the current location
loc. While time is passing by, the valuation of the variables are changed by a
function f ∶ R≥0 → V . This function is determined by the activities Act(loc),
which are assigned to the location. Because no time has passed by when entering
the location, the result of the function f with zero time units must be equal
to the current valuation v. Thus, f(0) = v must hold. After t time units the
function f delivers a new valuation for the variables, which is v′ = f(t) and
the system is in a new state (loc, v′). But the amount of time units in which
the hybrid automaton is permitted to stay in the location, is restricted by the
invariant Inv(loc) which is assigned to the location. If and only if each valuation,
which is delivered by the function f during the time interval [0, t], is in the set
of allowed valuations given by the invariant Inv(loc), the hybrid automaton
can stay in the location. From this it follows that, before the invariant gets
violated, the hybrid automaton must leave the current location loc. It can leave
the location earlier, but must leave it at latest, when the next time step would
violate the invariant.

Leaving a location loc is done by performing a discrete step respectively a
jump. Therefore at least one edge is needed, which leads from loc as the source

2.4. Hybrid Automata 23

location to any other location loc′ as the target location. But the transition
might be taken only if the following conditions holds. On the one hand the
current valuation v must satisfy the guard of the transition. On the other hand
after the assignments of the edge are performed the new valuation v′ must be in
the set of valuations, which are allowed by the invariant Inv(loc′) of the target
location. If and only if these two conditions hold, the hybrid automaton can
leave the current location loc and enter the new location loc′. The state of the
system changes from (loc, v) to (loc′, v′), when performing a discrete step.

The description of the behavior of the hybrid automaton based on [6] and
[7] makes up the following semantics from [6]:

Definition 2.4.2 (Semantics of a hybrid automaton). The semantics of a hybrid
automaton HA = (Loc, Var , Con, Act , Inv , Lab, Edge, Init) consists of two
rules. One for the direct discrete steps from one location to another and one for
the continuous time steps, while staying in a location.

1. Discrete step semantics

e=(loc,a,g,ass,loc′)∈Edge v∈g v′=ass v′∈Inv(loc′)
(loc,v) aÐ→(loc′,v′)

Rulediscrete

where loc, loc′ ∈ Loc, a ∈ Lab, g ∈ Guard and ass ∈ Ass

2. Time step semantics

loc∈Loc f∈Act(loc) f(0)=v v′=f(t) t≥0 f([0,t])∈Inv(loc)
(loc,v) tÐ→(loc,v′)

Ruletime

Example 2.4.1. Assume we have the hybrid automaton HA1 given by the figure
2.6. The automaton starts by setting the variable s to zero and than enters the
first location loc1 . This location must be immediately left, because the invariant
does only allow to stay in it, if s ≤ 0. But since the activity ṡ = 1 increases the
value of s for every time unit, it would violate the invariant, if the control stays
in the location for one time unit.

The guard of trans1 s ≤ 0 of the outgoing transition is fulfilled, because s
has still the value zero. So the second location loc2 is entered. The invariant
0 ≤ s ≤ 60 allows to stay in this location, as long as the value of s is between
zero and 60. Since the activity increases the value of s by one per time unit,
the control must not leave the location until 60 time units have passed by. The
outgoing transition can only be taken, if s has exactly the value 60.

So we have to stay in loc2 until 60 time units have passed, before we leave
it. The value of s is then reset to zero and the control enters the initial state
again.

The summary of the behavior of this automaton is, that it counts the variable
s up to 60, resets it and starts again.

24 Chapter 2. Preliminaries

loc1
s ≤ 0
ṡ = 1

loc2
0 ≤ s ≤ 60
ṡ = 1

s ∶= 0

trans1
s ≤ 0

action_synch
s = 60
s ∶= 0

Figure 2.6: Hybrid automaton HA1

2.4.1 Parallel composition
Large systems consist of several components respectively of several hybrid au-
tomata, that run in parallel. But for the analysis of such systems just a single
automaton is required. Thus the parallel execution of the components of the
system has to be modeled by a single automaton. This is done by the parallel
composition.

To build the parallel composition H1 ∣∣H2 of two hybrid automata H1 and H2

firstly the set of locations Loc is made up. Therefore each location from Loc1 is
combined with each location from Loc2 . For every new location (loc1 , loc2) ∈ Loc
the invariants and activities are determined by building the intersection of the
original invariants respectively of the activities of the locations loc1 ∈ Loc1 and
loc2 ∈ Loc2 .

Thus, the invariant of the new location Inv((loc1 , loc2)) is a subset of the
valuations, which are allowed by the invariant of both location loc1 and location
loc2 . If for instance the invariant of loc1 is {x ≤ 3} and the invariant of loc2 is
{x ≥ 2}, the resulting invariant is Inv((loc1 , loc2)) = Inv1 (loc1) ∩ Inv2 (loc2) =
{v(x) ∈ V ∣2 ≤ v(x) ≤ 3} or simply {2 ≤ x ≤ 3}.

Nearly the same holds for the activities. Assume the activity of location
loc1 is {ẋ = 3}. From this activity we can get all valuations, where the new
value of x is determined by the function ẋ = 3 and y can have a random value
in R. The same holds for the activity of loc2 , which is {ẏ = 2}. Here the value
of x can be a random number in R. Thus, in the intersection the value of
both variables x and y are restricted by the given functions. The corresponding
activity Act((loc1 , loc2)) = Act1 (loc1) ∩Act2 (loc2) in the composition is {(ẋ =
3) ∧ (ẏ = 2)}. A special case, that must be taken care of while building the
composition, is if the two activities are contrary to each other. Assume, we have
two activities {ẋ = 1} and {ẋ = 2} of two locations loc1 , loc2 . The intersection
of these activities would be empty, which is not allowed and thus the location
(loc1 , loc2) is not allowed and would not be part of the set of locations in the
composition.

After building the location set of the composition and its associated com-
ponents, the transitions must be constructed. Here the synchronization la-
bels play a decisive role. They are responsible for the interaction between the
two hybrid automata H1 and H2. There exist two cases: Either the synchro-
nization label in both label sets of H1 and H2 , or it is just in one of them.
If a synchronization label a is in the label set of both automata and one of

2.4. Hybrid Automata 25

the two automata takes an edge with this label, the other one must take it
as well. So, the resulting edge e ∈ Edge of the edge (loc1 ,a, g1 ,ass1 , loc′1) ∈
Edge1 of H1 and the edge (loc2 ,a, g2 ,ass2 , loc′2) ∈ Edge2 of H2 would be
e = ((loc1 , loc2),a, g ,ass, (loc′1 , loc′2)). The guard g of this new edge is the
intersection of g1 , the guard of the edge of H1, and g2 , the guard of the edge of
H2. So it is assured that an edge in H1∣∣H2 can only be taken, if the guard of
the original edges of H1 and H2 are satisfied.

The assignment ass is built also via intersection. Let {x ∶= 2} be an as-
signment, where y has a random value and {y ∶= 1} an other assignment,
where the value of x is random, then the intersection of these two would be
{(x ∶= 2), (y ∶= 1)}. Similar to the intersection of the activities of an location, a
transition in a composition is not allowed, if the intersection of non-empty as-
signments from the original edges is empty: for {x ∶= 2, y ∶= 2} and {x ∶= 1} the
intersection is empty. In this special case the transition is not allowed. Beside
the intersection of the assignments, it must be paid attention to the variables
in them. In the composition a variable x may only get a value v′(x) ≠ v(x) by
an assignment, if x is in the set of the controlled variables of the original hybrid
automaton, which contains the edge, whose assignment causes the change. The
reason for this is that a variable may only be changed by an assignment of an
automaton, which is allowed to change the valuation of this variable. This is
specified be the sets of controlled variables of this automaton.

If a label is defined only for one automaton, in example a ∈ Lab1 but a ∉
Lab2, H1 takes a transition with the label a and H2 takes a τ -transition. The
corresponding transition in H1∣∣H2 is the following: ((loc1 , loc2), a, g1 , ass1 ,
(loc′1 , loc2)), because the guard of the τ -transition allows all valuation and the
assignment does not change any variable. The same holds vice versa, if a ∈ Lab2
and a ∉ Lab1.

Based on the previous description the formal definition of the parallel com-
position is as follows. Both are based on [6].

Definition 2.4.3 (Parallel composition). Let

H1 = (Loc1 ,Var ,Con1 ,Act1 , Inv1 ,Lab1 ,Edge1 , Init1) and

H2 = (Loc2 ,Var ,Con2 ,Act2 , Inv2 ,Lab2 ,Edge2 , Init2)

be two hybrid automata.Then the parallel composition H1 ∣∣H2 = (Loc, Var , Con,
Act , Inv , Lab, Edge, Init) is a hybrid automaton with

• (loc1 , loc2) ∈ Loc, iff

– loc1 ∈ Loc1 , loc2 ∈ Loc2 and

– (Act1 (loc1) = ∅ ∧Act2 (loc2) = ∅) ⇔ Act1 (loc1) ∩Act2 (loc2) = ∅

• Con = Con1 ∪Con2 ,

• Act(loc1 , loc2) = Act(loc1) ∩Act(loc2) for all (loc1 , loc2) ∈ Loc,

• Inv(loc1 , loc2) = Inv(loc1) ∩ Inv(loc2) for all (loc1 , loc2) ∈ Loc,

• Lab = Lab1 ∪ Lab2 ,

• ((loc1 , loc2),a,g ,ass, (loc′1 , loc′2)) ∈ Edge iff

26 Chapter 2. Preliminaries

– there exists (loc1 ,a1 , g1 ,ass1 , loc′1) ∈ Edge1 and (loc2 ,a2 , g2 ,ass2 , loc′2) ∈
Edge2 , such that

– either a1 = a2 = a or
a1 = a ∈ Lab1 ∖ Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2 ∖ Lab1 and

– g = g1 ∩ g2 and

– ass = ass1 ∩ ass2 and

– (ass1 = ∅ ∧ ass2 = ∅) ⇔ ass1 ∩ ass2 = ∅ holds.

• Init = {((loc1, loc2), v)∣(loc1, v) ∈ Init1 ∧ (loc2, v) ∈ Init2}.

Remark. Locations, whose invariant, and transitions, whose guard, evaluate
to false independent of the current valuation of the variables, can be omitted
without changing the behavior of the parallel composition.

Example 2.4.2. Let HA1 be the hybrid automaton from figure 2.6. A second
hybrid automaton HA2 is depicted in figure 2.7. Basically, it counts up a vari-
able m till 60 by taking a self loop transition with the label action_synch. It
resets the variable by an other transition, if m is exactly equal to 60.

loc3
0 ≤m ≤ 60
ṁ = 1

m ∶= 0

trans2
m = 60
m ∶= 0

action_synch
m ≤ 59

m ∶=m + 1

Figure 2.7: Hybrid automaton HA2

The behavior of the parallel compositionHA1 ∣∣HA2 , which is depicted in fig-
ure 2.8, is as follows: The automaton still counts the variable s up till 60. When
s is equal to this value, it is reset to zero and m is increased by one. If m reaches
the value 60, it reseted to zero. So s counts the seconds of a minute and m the
minutes of an hour.

To set up the parallel composition HA1 ∣∣HA2 we combine each location of
HA1 with the location of HA2 . Now we have two new locations (loc1 , loc3) and
(loc2 , loc3) for the composition.

2.4. Hybrid Automata 27

(loc1, loc3)
s ≤ 0 ∧ 0 ≤m ≤ 60
ṡ = 1 ∧ ṁ = 0

(loc2, loc3)
0 ≤ s ≤ 60 ∧ 0 ≤m ≤ 60

ṡ = 1 ∧ ṁ = 0

s ∶= 0 ∧m ∶= 0

trans1
s ≤ 0

action_synch
s = 60 ∧m ≤ 59

s ∶= 0 ∧m ∶=m + 1
trans2
m = 60
m ∶= 0

trans2
m = 60
m ∶= 0

Figure 2.8: Parallel composition HA1 ∣∣HA2

For the invariant of (loc1 , loc3), we build the intersection of the allowed sets
from the original locations. Since Inv(loc1) = {s ≤ 0} and Inv(loc3) = {0 ≤
m ≤ 60}, we allow to stay in (loc1 , loc3), if both invariants are fulfilled, thus
Inv(loc1 , loc3) = {s ≤ 0 ∧ 0 ≤ m ≤ 60}. We do the same for the invariant of the
location (loc2 , loc3) and get Inv(loc2 , loc3) = {0 ≤ s ≤ 60 ∧ 0 ≤m ≤ 60}.

Because both locations of HA1 have the same activity {ṡ = 1} and HA2 ’s
activity is {ṁ = 0}, we assigns the intersection {ṡ = 1 ∧ ṁ = 0} of them as
activity to both locations of the composition.

Now we build the transitions. The location loc1 has one outgoing transition
to loc2 with the synchronization label trans1 . Since this label occurs only in
HA1 , we add a transition from (loc1 , loc3) to (loc2 , loc3). We assign only the
guard of the original transition to it, because there are no assignments for the
original transition. The same holds for the transition in HA2 with the label
trans2 . We add it to both locations of the composition, because it is a self loop.

The label, which occurs in both automata, is action_synch. The correspond-
ing transition in HA1 leads from loc2 to loc1 and in HA2 it is a self loop. So we
add a transition to the composition from (loc2 , loc3) to (loc1 , loc3). The guard
and the assignment are the intersection of the originals.

28 Chapter 2. Preliminaries

2.5 SFC verification tool
Since SFCs are used to control plants and wrong programed control systems
can cause damages at a plant, the SFCs are safety critical. So it is important,
that the control system works reliable.

To check if the SFCs for the controlling of a plant are safe, we can use the
SFC verification tool. Additionally we need the behavior of the plant, which
is given by conditional ODE systems. During the verification process our tool
extends the SFCs with these systems to hybrid SFCs.

At this moment there exist no tool, which can perform a verification analysis
on an HSFC directly. But we can transform an (H)SFC to a hybrid automaton,
for which we have the opportunity of checking whether it is safe or not.

Therefore we use SpaceEx, a tool which analyzes hybrid automata. The
result of the analysis could be, that the model is safe. If this happens, the
verification is done and we do not have to take any further steps. But if the
analysis reveals, that the model is unsafe, we have to do some CEGAR steps on
the model. In this case SpaceEx gives us a set of bad states which should not
be reachable. With this set and a heuristic, the SFC verification tool chooses
a conditional ODE system and adds it to the SFC. Now the analysis is started
again. These procedure is repeated until the system becomes safe or no ODE
system is left to be added to the (H)SFC. In the latter case, the final result of
the analysis is, that the system is unsafe.

A full description of the heuristic, which chooses the ODE system, can be
found in [4].

In the following we explain the input files and their content, the transfor-
mation from an HSFC to a hybrid automata and some additionally needed
components, which are added during the transformation more deeply. We give
also a brief introduction of SpaceEx.

2.5.1 Input files
For the transformation of (H)SFCs to an hybrid automata, the SFC verifica-
tion tool needs several informations about the system, which are given by the
following input files:

plc.xml The plc.xml file contains a set of SFCs. They describe the behavior of
the plant control, which should be analyzed by the SFC verification tool.
We allow only SFCs without nested SFCs and without history flags.

The content of the file is based on the standard of programming interfaces
for industrial automation by PLCopen [8]. This standard is product- and
vendor-independent. To create the SFCs a program called Beremiz can be
used. It is an integrated development environment for machine automation
[9] with a graphical PLCopen editor.

connections.xml Here the connections between the in- and output variables
of the SFCs are defined. For each variable, which must be retrieved from
outside the SFC as input, it must be specified which SFC offers this vari-
able as output.

control.xml Every plant can have the option for some user input, for instance
switching the pumps on or off manually. The variables, that belong to a

2.5. SFC verification tool 29

behavior, which is part of the normal behavior of the plant, are determined
in this file.

condODE.xml The continuous behavior of the plant is specified by a set of
conditional ODE systems, which is given in this file. Besides it is defined
to which SFC of the system each ODE system belongs.

SpaceExConfig_phav.cfg, SpaceExConfig_supp.cgf For the analysis in
SpaceEx some configuration options are needed. Besides a forbidden range
for the values of a variable can be determined.

When starting the SFC verification tool all previous described files are read
in and are transferred into different data structures. The SFCs are covered
by a special data structure, which contains all the informations retrieved from
plc.xml. Additionally the variables controlled by user input and the continuous
variables are marked in this structure as well as the connection of the input vari-
ables to other SFCs. The ODE systems are covered by an own data structure.
The same holds for the SpaceEx configuration options [4].

2.5.2 From HSFC to hybrid automata for SpaceEx

Since SpaceEx only analyzes hybrid automata, the SFC verification tool has to
transform the HSFCs to hybrid automata. During the transformation, the SFC
verification tool must take care of some restrictions given by SpaceEx. They
will are explained later, when they become important in the transformation.

The transformation works as follows: The SFC verification tool creates an
hybrid automaton for each SFC of the system by transforming

1. the variables

2. the locations

3. the transitions.

The following descriptions are retrieved from [2] and [4]. The formal defini-
tion of the transformation from an (H)SFC to a hybrid automaton can be found
in [2].

Transformation of variables

To create the set of variables of an hybrid automaton, the SFC verification tool
must be aware of different ways the IEC 61131-3 standard and SpaceEx define
data types. The SFCs are created on the base of the IEC 61131-3 standard,
which offers the following six variable types[1]:

VAR may only be changed by the SFC, it belongs to.

VAR_INPUT can only be retrieved by an other SFC or by the environment.
The variables may not be changed inside the SFC, which has it as input.

VAR_OUTPUT sends its value to some SFC, where it is declared as input.
The values of the variable can be changed inside its SFC.

30 Chapter 2. Preliminaries

VAR_IN_OUT is retrieved from some other component and may be changed
inside its SFC. Besides it can be delivered to some other component of the
system.

VAR_GLOBAL is a global variable.

VAR_EXTERNAL is retrieved from the configuration and may be changed
inside the SFC.

However, SpaceEx only offers two flags to determine, which type a variables
has. The controlled flag denotes a variable which may be changed by the SFC it
belongs to and the local flag denotes variables, which can only be used internally
in the SFC . The latter can neither be changed nor read by another component.

The SFC verification tool must transform the variable types of the SFC to
the according types in SpaceEx. The variable type VAR becomes a controlled
and local variable in SpaceEx, since VAR is only for inner use of the SFC and
may only be changed by it. Variables of the type VAR_INPUT are retrieved
from other components and hence not local. They are not controlled, because
they may not be changed by the SFC. In contrary to this, variables of the type
VAR_OUTPUT are controlled because they may be changed by the SFC. But
they are not local, because their values can be retrieved by other components.
The same holds for VAR_IN_OUT, which is also transformed to controlled and
not local.

Also the data types of variables are restricted by SpaceEx. It supports only
integers and reals, while SFC variables can have other data types, for instance
boolean. The SFC verification tool solves this by only supporting integers and
reals and simulating booleans by integers, whose values may only be 1 for true
and 0 for false.

Transformation of steps

The SFC verification tool creates the set of locations upon the set of steps of
the SFC and the conditional ODE systems. For each step s ∈ Steps it is checked
whether it has some conditional ODE systems assigned or not.

In the simplest case, the step has no conditional ODE system and can be
copied to the hybrid automaton as location. The resulting location has no
invariant and no activity, because they can be retrieved from some ODE system
only.

In the other case the step has some conditional ODE systems CODE =
(cond1 ∶ ODE1), . . . , (condn ∶ ODEn) assigned. Now n + 1 copies s1,⋯, sn+1 of
the step s must be added to set of locations. Each copy si of s1, . . . , sn gets
an invariant, which is a conjunction of one condition (condi ∶ ODEi) and the
negation of the previously added conditions ⋀i−1

j=1 ¬condj . Building the invariant
with the conjunction of the wanted condition and the negation of all previous
conditions assures, that the location is only entered, when this one condition
is satisfied. This is important, because the corresponding equation ODEi is
assigned to the copy si as activity and every ODEi leads to another evaluation
of the variables values.

The invariant of the last copy sn+1 is the conjunction of the negated condi-
tions of all ODE systems ⋀n

j=1 ¬condj . This copy has no activity assigned and
can only be entered, if no condition of any ODE system can be satisfied.

2.5. SFC verification tool 31

Figure 2.9 shows the schematic transformation of a step.

s1
ODE1

cond1 = c1
⋯

sn
ODEn

condn = cn ∧⋀n−1
j=1 ¬cj

sn+1

condn+1 = ⋀n
j=1 ¬cj

s
⋯

c1 ∶ ODE1

⋯
cn ∶ ODEn

copy_trans
x ≥ ε
x ∶= 0

Figure 2.9: Transformation of an HSFC step

Because SpaceEx can handle only convex linear constrains for the invariants,
the SFC verification tool must execute some modifications on the locations
before they can be parsed to an input file for SpaceEx. Since no disjunctions
and negations are allowed, the disjunctive normal form DNFi is computed for
the invariant condi⋀i−1

j=1 ¬condj of each location si. If there are negations of
equations in the conjunctive clauses of the DNFi, the SFC verification tool
overapproximates them by replacing ¬(x ≥ y) with (x ≤ y), ¬(x ≤ y) with
(x ≥ y) and ¬(x = y) with (true). Afterwards the location si is replaced by a
copy si,k for every conjunctive clause conjk of the DNFi = conj1 ∨ ⋅ ⋅ ⋅ ∨ conjm
with conjk as invariant and ODEi as activity. Figure 2.10 shows the locations
after the modifications for SpaceEx.

In the end the SFC verification tool connects each copy si,k with each other
copy sj,l, where i ≠ j or k ≠ l, with a transition. So it is assured, that the
control can switch between the different locations resulting from the step. This
is needed, because in the original SFC it is possible to stay in the step s, but the
valuation of the variables can change, so that another conditional ODE system
is chosen to compute the values. Because the control can take these transitions
infinitely many times within no time, we get Zeno behavior. To avoid this
we add a new variable x. It must be greater or equal than some ε before a
copy_trans transition can be taken and is then reseted.

si,1
ODEi

conji,1

⋯
si,m
ODEi

conji,m

si
ODEi

DNF (condi) = ⋁m
k=1 conji,k

copy_trans
x ≥ ε
x ∶= 0

Figure 2.10: Applying SpaceEx restrictions

32 Chapter 2. Preliminaries

Transforming of transitions on locations

For every transition in an HSFC there is at least one corresponding transition
in the hybrid automaton.

For every transition ti in an HSFC, which connects a source and a target
step, the SFC verification tool adds transitions ti,1, . . . , ti,n to connect every
location, which has been made up by the transformation of the source step,
with every location maintained by the transformation of the target step.

Figure 2.11 shows the transformation of the transitions. For convenience the
source step is not split during the the transformation of the locations.

s

s1,n⋯s1,1 s2,1 ⋯ s2,m

s
entry/
entry(s)
do/
do(s)
exit/
exit(s)

⋯

g1 g2

s1
⋯

s2
⋯

t1,1 t1,n

t2,1 t2,m

Figure 2.11: Transformation of transition without guard and assignment

Each transition ti,k of ti,1, . . . , ti,n gets some actions assigned to it as as-
signment, because both only set values to the variables and do not calculate
them depending on time like the activities of an location does. To simulate the
behavior of an SFC when switching from a source to a target step, the SFC
verification tool assigns to a transition ti,k in the hybrid automaton the exit
actions of the source step and the entry and do actions of the target step. In
an SFC, the do actions of a step can be executed as long as the PLC stays in
the step. Thus a self loop with these actions is added to every location achieved
from the step transformation.

All these transitions have the synchronization label action_synch, because
when taking this transition a PLC cycle must be ended and the output vari-
ables must be sent to the environment. For updating the input variables at
the beginning of a new PLC cycle, every location has a second self loop with
read_synch as synchronization label. This transition has no guard, because it
must be allowed to take it at any time, when the control is forced to do so.

This does not hold for the action_synch transitions. In an SFC the step can
only be left, if the guard of the transition ti is fulfilled. To achieve the same
behavior in the hybrid automaton the guard must be transferred to the corre-
sponding transitions ti,1, . . . , ti,n. In addition to that the order ≺ of taking for
transitions in the SFC must be respected. Therefore the transitions ti,1, . . . , ti,n
corresponding to the outgoing transition ti of a step with highest priority have
only the guard of ti. In an SFC any other outgoing transition tj with j ≠ i,
which has a lower priority (ti ≺ tj), can only be taken, when no transition with
a higher priority can be chosen. To guarantee this behavior, the corresponding
transitions tj,1, . . . , tj,n get additionally to their own guard, the negation of all

2.5. SFC verification tool 33

guards from higher prioritized transitions.
Since in an SFC a transition must be taken as soon as it is enabled, we have to

assure, that the hybrid automaton does the same. So it must be prevented, that
the control always takes the self loop for the do actions, when an action_synch
is performed, instead of taking on outgoing transition. To achieve this, the
guard of this self loop is the conjunction of all guards from outgoing transition
negated. Figure 2.12 shows the schematic transformation of the transitions.

s

s1,m⋯s1,1 s2,1 ⋯ s2,o

s
entry/
entry(s)
do/
do(s)
exit/
exit(s)

⋯

g1 g2

s1
⋯

s2
⋯

ac
tio
n_

sy
nc

g 1

ex
it(
s)
,en

tr
y(
s 1
),d
o(
s 1
)

ac
ti
on

_
sy
nc

g 1
ex
it
(s
),
en
tr
y(
s 1
),
do

(s
1
)

action_
sync

(g
2 ∧

¬
g
1)

exit(s),entry(s
2),do(s

2)

action_
sync

(g
2 ∧ ¬

g
1)

exit(s),entry(s
2),do(s

2)

action_sync
⋀2

i=1 ¬gi
do(s)

read_sync
true

readInput()

Figure 2.12: Transformation of transitions

Like for the invariants of the locations, also for the guards of the transitions
SpaceEx allows no disjunctions and no negations. So the disjunctive normal
form DNFi,k is computed for the guard of every transition ti,k. The negation of
an equation in every conjunctive clause conjli,k of DNFi,k = conj1i,k∨⋅ ⋅ ⋅∨conjmi,k
is overapproximated. Now the transition ti,k is replaced by m transitions with
the same label and assignment, but with conjli,k as guard. Figure 2.13 shows
the transitions after the modification for SpaceEx.

s1

s2

s1

⋯

s2

action_sync
DNF (guardi,k) = ⋁m

l=1 conj
l
i,k

exit(s1),entry(s2),do(s2)

action_sync
conj1i,k

exit(s1),entry(s2),do(s2)

action_sync
conjmi,k

exit(s1),entry(s2),do(s2)

Figure 2.13: Applying SpaceEx restrictions on transitions

34 Chapter 2. Preliminaries

2.5.3 System components

During the transformation some additional hybrid automata are created. An
automaton timer can optionally be added to measure the runtime of the system.
To simulates the user input by randomly setting and resetting the user input
variables a controller automaton is added as well as a synchronization automa-
ton. The latter simulates a PLC cycle and synchronizes the automata of the
system, when reading the input and writing the output. Additionally SpaceEx
needs a network component. It specifies for each input variable of an automaton
of the system to which output variable of which automaton it belongs.

For a better understanding we describe how the synchronization automaton
simulates the PLC in the following.

Synchronization automaton

When a PLC executes several SFCs in parallel, retrieving the input variables
from the environment is done synchronized for all component. The same holds
for writing the output variables and sending them to the environment. To
simulate this behavior for the hybrid automata an additional automaton is used.
Figure 2.14 shows this synchronization automaton.

A PLC starts a cycle by getting the values for the input variables from the
environment, so the automaton has read_synch as initial state. The variable
t measures the time of the PLC cycle and is set to t ∶= 0 when starting the
automaton. Because t ≤ 0 is the invariant and ṫ = 1 the activity, the control
must immediately leave the location read_synch, because staying just one time
unit in this location would violate the invariant. The only outgoing transition
has the guard t ≤ 0, but since the control has left the location read_synch
immediately, the value of the cycle time is t = 0 and the guard is satisfied. By
taking the transition, which has the synchronization label read_synch, all other
hybrid automata of the system are forced to take their transition with this label
and perform the synchronized updating of the input variables.

Afterwards the control enters the location action_synch. Here the variable
t increases accordingly to the time that passes by because of the activity ṫ = 1.
The control may stay in this location as long as t does not violate the invariant,
thus as long as t is below or equal to δu, which is the upper bound for the
duration of a cycle. The location can be left earlier, since the guard of the only
outgoing transition is fulfilled once t is between the lower bound δl and the
upper bound δu of the duration of a cycle. Hence, the invariant of the location
action_synch and the guard of the outgoing transition assure that the cycle
time t can vary between these two bounds, but can never be less than δl or
more than δu.

The outgoing transition is not only important for the cycle time. It also
simulates the last step of an PLC cycle, which is sending the values of the output
variables to the environment. This can be happen in two ways. In the one case
the cycle time reaches the upper bound and the synchronization automaton
takes the transition with the synchronization label action_synch. In this case
all other automata of the system must perform the sending of the output values
at the same time by taking their transitions with this label. In the other case an
other automaton of the system takes its transition with the label action_synch
and thereby forces all other automata, including the synchronization automaton,

2.5. SFC verification tool 35

to do the same.
Once this transition is taken by the synchronization automaton, the cycle

time t is set to zero and a new cycle starts.

read_synch
t ≤ 0
ṫ = 1

action_synch
0 ≤ t ≤ δu
ṫ = 1

start
t ∶= 0

read_synch
t ≤ 0

action_synch
δl ≤ t ≤ δu
t ∶= 0

Figure 2.14: Hybrid automaton for synchronization of PLC cycle from [2]

2.5.4 SpaceEx
After the transformation of the (H)SFCs to hybrid automata and adding the
additionally needed components, we give the resulting input file to SpaceEx. It
performs a reachability analysis for the given system. During the analysis, it
checks if the values of the variables can reach a forbidden range. The range is
specified int the configuration file for SpaceEx.

For the reachability analysis SpaceEx can use the PHAVer method [10] or a
scenario based on the representation of the state space by support functions [11].
For piecewise constant dynamics the PHAVer method achieves good results and
for affine dynamics the support functions are more suitable [4].

SpaceEx is able to handle several hybrid automaton which runs in parallel.
Therefore it computes the composition on the fly during the analysis. It takes
the initial location and build all locations of the composition, that can be reached
from it via transitions. After adding them, it checks if they can be reached. Only
locations which are reachable considered in the further analysis.

To prevent chaotic evaluation of the variables during the analysis, SpaceEx
assigns for each variable an activity to each location which determines that the
value of a variable does not change unless there exists already an activity for
this variable. The same holds for the assignments. If there is no assignments
for a variable, SpaceEx adds an assignment which marks that the variable keeps
its value when the corresponding transition is taken.

A more deeply description of SpaceEx can be found in [3].

36 Chapter 2. Preliminaries

Chapter 3

Data structure for hybrid
automata

The SFC verification tool supports SpaceEx as the only analysis tool. During
the development of our tool, we decided to make it more flexible, so that we are
able to use other analysis tools for our verification.

The SFC verification tool saves only the SFC and the ODE systems in a
special data structure. The automata needed for the analysis are created and the
restrictions of SpaceEx are applied during this creation. The resulting automata
are directly written in an input file for SpaceEx. Thus, they are not saved in a
data structure. So it is not possible to transform the automata for others tools,
which need individual input file with other restrictions to the automata than
SpaceEx.

To realize the flexibility we introduce a new data structure for hybrid au-
tomata, which allows us to assign some changes according to chosen the tool for
the analysis afterwards.

Therefore we implemented some Creator classes which perform the transfor-
mation from the (H)SFCs to hybrid automata. We omit here the description of
the transformation, because it was already explained in section 2.5.2. The dif-
ference is, that the transformation omits the restrictions given by SpaceEx when
building the automata and stores them in the data structure instead of directly
writing them in the input file. Thus, we obtain general automata that are inde-
pendent of any tool syntax. Moreover, we implemented a tool for our toolchain,
that provides the SpaceEx specific syntax and applies the necessary changes to
the automata data structure. To create an input file for an analysis tool, we just
have to apply the necessary tool to the toolchain and implement a translation
from the automata data structure into the syntax of the corresponding tool.

For saving the hybrid automata, we introduced the following data structure
which is depicted in figure 3.1. The getter and setter methods are omitted for
a better readability.

Class Automaton Each hybrid automaton is represented by an object of the
class Automaton. It uses several classes to save the components, which belong to
the automaton. Every automaton has an unique id. This id is either the name of
the SFC, from which it is built, or the name of the additional components, which

38 Chapter 3. Data structure for hybrid automata

A
u
to
m
at
a

sy
st
em

N
am

e
:
St
ri
ng

lo
ca
ti
on

s
:
H
as
hT

ab
le

po
uA

ut
om

at
a
:
H
as
hT

ab
le

co
nt
ro
lA

ut
om

at
a
:
H
as
hT

ab
le

bi
nd

in
gV

ar
ia
bl
eS
et

:
H
as
hT

ab
le

bi
nd

in
gL

ab
el
Se
t
:
H
as
hT

ab
le

bi
nd

in
gO

ut
pu

tT
oI
np

ut
V
ar
s
:
H
as
hT

ab
le

bi
nd

in
gA

ut
om

at
a
:
H
as
hT

ab
le

A
u
to
m
at
on

id
:
St
ri
ng

lo
ca
ti
on

s
:
H
as
hT

ab
le

tr
an

si
ti
on

s
:
H
as
hT

ab
le

va
ri
ab

le
s
:
H
as
hT

ab
le

la
be

ls
:
H
as
hT

ab
le

A
L
ab

el
na

m
e
:
St
ri
ng

is
Lo

ca
l:

bo
ol
ea
n

A
T
ra
n
si
ti
on

id
:
St
ri
ng

sy
nc
hr
on

is
at
io
nL

ab
el

:
A
La

be
l

so
ur
ce

:
A
Lo

ca
ti
on

ta
rg
et

:
A
Lo

ca
ti
on

gu
ar
d
:
E
qu

at
io
nL

og
ic
Fo

rm
ul
a

as
si
gn

m
en
ts

:
A
rr
ay

Li
st

A
L
oc
at
io
n

id
:
St
ri
ng

na
m
e
:
St
ri
ng

in
va
ri
an

t
:
E
qu

at
io
nL

og
ic
Fo

rm
ul
a

flo
w
s
:
A
rr
ay

Li
st

is
In
it
ia
l:

bo
ol
ea
n

A
V
ar
ia
b
le

na
m
e
:
St
ri
ng

da
ta
T
yp

e
:
St
ri
ng

is
Lo

ca
l:

bo
ol
ea
n

is
In
pu

t
:
bo

ol
ea
n

is
O
ut
pu

t
:
bo

ol
ea
n

is
C
on

st
an

t
:
bo

ol
ea
n

is
C
on

ti
nu

ou
s
:
bo

ol
ea
n

in
it
V
al
ue

:
St
ri
ng

F
ig
ur
e
3.
1:

C
la
ss

di
ag
ra
m

of
th
e
au

to
m
at
a
da

ta
st
ru
ct
ur
e

39

are needed for the simulation of an PLC run, for instance the synchronizer.

Class AVariable The set of variables is stored in a table, where every variable
is an object of the class AVariable. An object of this class has a name and a
data type. Beside this some booleans determine, if the variable is only local
or used as input or output variable. It is also specified, if it is continuous or
constant, so can never change its value after the initialization. The initial value
of the variable is saved in this class too.

Class ALabel All labels, which are used in the automaton, are saved in a
table as object of the class ALabel. This class determines the name of the label
and whether it is used locally or globally as a synchronization label.

Class ALocation A location of the automaton is an object of the class ALo-
cation, which has an id and a name. The name is a combination of the step
name and the id for a better readability, when looking at the results, while the
id is only for the inner use in the program. Additionally, the invariants and the
activities, here called flows, are saved in this class. A boolean determines, if it
is an initial location or not.

Class ATransition The transitions, which connects the locations with each
other, are also stored in a table. They are objects of the class ATransition.
It has an id for differing the transitions from each other. The source and the
target are saved as objects of the class ALocation. Besides the guard and the
assignments belonging to the transition are save here.

Class Automata Since we retrieve several automata from the SFCs, there is
a class Automata. It saves all automata, which belong to the system, separated
in those, who are based on SFCs, and those, who are needed to simulate the
PLC or the user input. Beside the automata, we have three tables to store
informations for connection between them. For every input variable it must be
determined to which output variable it belongs. The first tables contains all
automaton which have in- or output variables. All in- and output variables of
the system are saved in a second table. And which input variable belongs to
which output variables is determined in the last table.

The advantage of this data structure is, that it is independent from SpaceEx.
So we can make up a new package of classes, which apply easily the restriction
and specifics any analysis tool needs later.

40 Chapter 3. Data structure for hybrid automata

Chapter 4

Building the composition

Since the goal is to make the SFC verification tool more flexible for the inte-
gration of other analysis tools, we have to take care of the fact that there are
analysis tools which do not build the parallel composition on their own. For this
reason, we introduced a class CompositionCreator for it. While working on the
project, we discovered, that SpaceEx has some problems with the composition
and does not always compute it correct. A comparison of the compositions built
by SpaceEx and by our tool can be found in chapter 5.

The class CompositionCreator gets an object of the class automata. From
this it makes up a list with all automata of the system. In the first run it takes
two automata from the list and starts computing the parallel composition of it.
Afterwards the currently created compositions and a next automaton from the
list are taken and the composition of these two is built. This is repeated until
no more automata are left in the list.

While building the parallel composition, we start with the locations. Here
we combine each location of the first automaton HA1 with each location of the
second automaton HA2 .

For the new invariant, we check first, if one of the original invariants is empty.
If this is the case, we do not need to compute an intersection and just take the
non-empty invariant for the new location. Even more simpler is the case for
two empty invariants. Here the new invariant is also empty. But if both are
not empty, we build the intersection of these two. Therefore we combine the
two invariants with a conjunction. To minimize the new invariant, we compute
the disjunctive normal form of it. Now we take every conjunctive term of this
formula and remove double occurring equations. To complete the minimization
of the formula, we search for every conjunctive term t1, which contains another
term t2 and erase t1. We can do this, because the set of valuations which fulfill
t1 is a subset of the set of valuations which fulfill t2. If we have for instance the
DNF (a ∧ b) ∨ (a ∧ b ∧ c), it is enough to keep (a ∧ b). It may happen, that we
get false as result of the intersection of the two invariants. In this case, we do
not add the location to the composition, because it can never be entered.

The activity for the location is also computed by the intersection of the two
original activities. Therefore we check, if one of them is empty and add the
non-empty one to the location. If both activities are not empty, we compare
each single equation from one activity with each equation from the other. If
they are double we add just one and if they differ we add both equations. If we

42 Chapter 4. Building the composition

find two equations, which try to change the same variable in different way, we
set a flag, that symbolizes, that the intersection is empty. If this flag is set, we
know that we have an empty intersection from two non-empty activities and do
not add the location to the composition according to definition 2.4.3.

After we have built the locations, we make up the variables of the compo-
sition. Therefore we check, if a variable occurs in both automata. If it is just
in one of them, we add it to the composition. A variable, which is part of both
automata, must eventually be changed in its relation to the whole system, be-
fore it is added to the composition. Only if it is assigned to be local in both
automata, it is a local variable in the composition, too. This holds not, if the
variable is an in- or output variable in at least one automaton. In this case it
must be possible to read or set the value of the variable by another automaton,
which would not be allowed, if we assign it as a local variable. For the case, that
it is an input respectively an output variable in one of the two automata, the
same holds for the composition.We assume, that the data type, the initial value
and the continuous and constant flag, are the same in both original variables.

The labels of the composition must also contain all labels from both au-
tomata. A label, which is just in the list of one automaton is directly added
to the composition. For the labels, which occur in both automata, we have to
distinguish, if the original label are both local. Only then they are added as
local labels to composition. Otherwise they are synchronization labels.

Now we have to build the transitions. For every location, we added to
the composition we take the two original locations and retrieve all outgoing
transitions from them. Each transition of the one location is compared to each
transition of the other location. If they have the same synchronization labels, we
build the intersection of the guards respectively the assignments like we did it
for the location. We add them to composition only, if the new guard is not false,
thus the transition can be taken, and if the intersection of the assignments is not
empty because of contrary assignments to some variables. The new transition
leads from the location for the two original locations to the location of the two
targets of the original transitions. If the synchronization label is only part of one
automaton, we take the transition and build a new one, which leads from the
location for the two original locations to the location, which is the combination
of the target of the original transition and the other location. For the guard
and the assignment we take the original ones of the transition.

In the end we perform a depth-first search starting from the initial location
of the composition. All locations which can not be reached via transitions are
detected and deleted to keep the composition as small as possible.

Example 4.0.1. Assume we have the synchronization automaton which is
shown in figure 2.14. Additionally we have an automaton control_panel
depicted in figure 4.1. It sets randomly the variables P1_off_request and
P1_on_request by taking the var_set transitions. These variables represent
the user input and trigger switching a pump P1 on or off. They are reseted by
taking the read_synch transition. A more deeply description of the function of
this automation can be found in section 5.2.1.

43

reset_vars

˙P1_off_request = 0 ∧
˙P1_on_request = 0

reset_vars

˙P1_off_request = 0 ∧
˙P1_on_request = 0

read_synch

P1_off_request ∶= 0 ∧
P1_on_request ∶= 0

action_synch

var_set
P1_off_request == 0
P1_off_request ∶= 1

var_set
P1_on_request == 0
P1_on_request ∶= 1

Figure 4.1: Hybrid automaton for simulating the user input for pump P1

We use the CompositionCreator to compute the parallel composition (syn-
chronizer || control_panel). We start with making up the locations. Therefore
we combine each location of the synchronization automaton with each location
of the control_panel and compute the intersection of their invariants and the
intersection of their activities. First we take the read_synch location from the
synchronization automaton and the reset_vars location from the control_panel.
Since the latter has no invariant, thus all valuation are allowed in this location,
we can just assign the invariant of the read_synch location to the new location.
For the intersection of the activities we combine the two original activities by
a conjunction, because we have no contrary or double assignments. This holds
for all locations of the composition, because the activities in both locations of the
synchronization automaton are equal as well as the activities of the locations
in the control_panel. Since both original locations are the initial locations of
their automata, the corresponding location in the composition is also the ini-
tial location. The location which is the combination of the read_synch location
and the control location has the invariant t ≤ 0, since the control location has
no invariant. Similar to this, the locations (action_synch, reset_vars) and
(action_synch, control) have both the invariant 0 ≤ t ≤ delta_u, because the
locations reset_vars and control have no invariants. The resulting locations are
shown in figure 4.2.

(read_synch, reset_vars)
t ≤ 0
ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(read_synch, control)
t ≤ 0
ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(action_synch, reset_vars)
0 ≤ t ≤ delta_u

ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(action_synch, control)
0 ≤ t ≤ delta_u

ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

Figure 4.2: Locations of the composition (synchronizer || control_panel)

44 Chapter 4. Building the composition

The variables of both automata can simply be assigned to the composition,
since no variable occurs in both automata. For the labels we have the ac-
tion_synch label and the read_synch label which are both synchronization la-
bels, because they were not local in the original automata. This hold not for
the var_set label. It is assigned to to the composition as a local label as in the
control_panel, since it is no label in the other automaton.

Now we create the transitions of the composition. For the location
(read_synch, reset_vars) we look up the outgoing transitions from the origi-
nal locations. The read_synch location has a transition with the synchronization
label read_synch leading to the action_synch location. Also the reset_vars loca-
tion has a transition with the same label. The target of this transition is the con-
trol location. Because both transitions have the same label, we add a transition to
composition which leads from (read_synch, reset_vars) to (action_synch, con-
trol). Since only one of the original transitions has a guard, we assigns it to the
new transition. The same holds for the assignments. The transition leading from
the location (action_synch, control) to the location (read_synch, reset_vars) is
built similar. Since the action_synch location has two self loops both with the
label var_set which is not part of the synchronization automaton, we add these
self loops to the (action_synch, control) location and the (action_synch, re-
set_vars) location. For the (read_synch, control) location no transitions are
added, because the read_synch location has an outgoing transition with the syn-
chronization label read_synch which is a part of both automata, but the control
location has no such outgoing transition. The same holds for the outgoing tran-
sition of the control location with the synchronization label action_synch. For
the same reason the (action_synch, reset_vars) location has no outgoing tran-
sition leading to other locations. The resulting automaton is depicted in figure
4.3.

(read_synch, reset_vars)
t ≤ 0
ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(read_synch, control)
t ≤ 0
ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(action_synch, reset_vars)
0 ≤ t ≤ delta_u

ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(action_synch, control)
0 ≤ t ≤ delta_u

ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

read_synch
t ≤ 0

P1_off_request ∶= 0 ∧
P1_on_request ∶= 1

action_synch
delta_l ≤ t ≤ delta_u

t ∶= 0

var_set
P1_off_request == 0
P1_off_request ∶= 1

var_set
P1_on_request == 0
P1_on_request ∶= 1

var_set
P1_off_request == 0
P1_off_request ∶= 1

var_set
P1_on_request == 0
P1_on_request ∶= 1

Figure 4.3: Composition (synchronizer || control_panel)

Now we look for the states that are not reachable. The locations (read_synch,
reset_vars) is the initial location, so we do not have to check it for reachability.
The location (action_synch, control) is reachable, because it has an incoming
transition from the initial locations. The locations (read_synch, control) and

45

(action_synch, reset_vars) are removed from the composition, since they have
either no incoming transition or only self loops. The final composition is shown
in figure 4.4.

(read_synch, reset_vars)
t ≤ 0
ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

(action_synch, control)
0 ≤ t ≤ delta_u

ṫ = 1 ∧
˙P1_off_request = 0 ∧
˙P1_on_request = 0

read_synch
t ≤ 0

P1_off_request ∶= 0 ∧
P1_on_request ∶= 1

action_synch
delta_l ≤ t ≤ delta_u

t ∶= 0

var_set
P1_off_request == 0
P1_off_request ∶= 1

var_set
P1_on_request == 0
P1_on_request ∶= 1

Figure 4.4: Final composition (synchronizer || control_panel)

46 Chapter 4. Building the composition

Chapter 5

Testing the parallel
composition

In this chapter we introduce two benchmarks and do a comparison between
our implementation of the parallel composition and the parallel composition
SpaceEx computes on the fly during the analysis.

5.1 Benchmarks

5.1.1 System with one tank

The first benchmark we use is very simple. The system consists of one tank
which is filled with water and a pump P1 . The pump can be switch on or off by
a user. If it is switched off, the water runs continuously out of the tank. But if
the pump is switched on, it replaces the water that runs out so the water level
is kept always at the same height.

off1

entry/
pump P1 off
do/
exit/

on1
entry/
pump P1 on
do/
exit/

P on
1 P off

1

Figure 5.1: SFC for pump

The SFC of the system is shown in figure 5.1. There are two steps, one for
the case the pump is switched off (off1) and one to show, that the pump is
working (on1). We assume, that the pump is turned off at the beginning, so the
step off1 is the initial step. Both steps are connected with each other by two
transitions. The first one leads from step off1 to step on1 . The transition must

48 Chapter 5. Testing the parallel composition

be taken, if the user gives the command to switch the pump on. The command
is represented by the variable Pon

1 , which is assigned to be true, if the pump
should be turned on. Vice versa the variable Poff

1 corresponds to getting the
command from the user to switch the pump off. If this command is received,
thus Poff

1 is true, the transition which leads from step on1 to step off1 must be
taken. In the steps we have each one entry action, pump P1 off in step off1

and pump P1 on in step on1 . They set a variable chbk_P1_on which gives a
check-back if the pump is currently running or not.

For the continuous behavior of the system, we have the following set of
conditional ODE systems:

(chkb_P1_on ∶ ḣ1 = 0)

(¬chkb_P1_on ∶ ḣ1 = −1)

They determine the change of the water level h1 in the tank during the execution
of the system depending on the state of the pump. If the pump is not running,
height of the water level decreases by one per time unit (ḣ1 = −1), since now
water is running out the tank without being replaced by new incoming water.
This changes, if the pump is turned on. Now the water level does not change
(ḣ1 = 0), because the incoming water piped in by the pump refills what runs
out.

Beside the SFC and the conditional ODE systems, we give to the SFC ver-
ification tool a file that marks the variables Pon

1 and Poff
1 as control variables,

because they represent some user input for the system.

5.1.2 System with two tanks
This benchmark is very similar to the plant example in figure 2.1, except that
we do not model the valves and the sensors for the water level. The remaining
system consists of two tanks T1 and T2 which are filled with water and are
connected to each other by pipes. We have two pumps P1 and P2 . The pump
P1 pipes water from tank T1 into T2 . Vice versa the pump P2 pipes water
from tank T1 back into T2 . The pumps can be switched on or off by a user.

offi

entry/
pump Pi off
do/
exit/

oni
entry/
pump Pi on
do/
exit/

P on
i P off

i

Figure 5.2: SFC for pump Pi with i ∈ {1,2}

The SFC for the pump P1 and P2 are shown in figure 5.2. They behave
like the pump from the previous section. So we have two steps, one for each
state of a pump Pi , (offi) and (oni). At the beginning, both pump are turned

5.1. Benchmarks 49

off, so the step offi is the initial step in both SFCs. The two transitions of the
SFCs have the same effect as in the system with one tank. We can switch the
locations with them, if a running pump Pi is turned off or an idle pump Pi is
turned on.

For the continuous behavior of the system, we have the following set of
conditional ODE systems:

(¬chkb_P1_on ∧ ¬chkb_P2_on ∶ ḣ1 = 0 ∧ ḣ2 = 0)

(¬chkb_P1_on ∧ chkb_P2_on ∶ ḣ1 = 2 ∧ ḣ2 = −2)

(chkb_P1_on ∧ ¬chkb_P2_on ∶ ḣ1 = −1 ∧ ḣ2 = 1)

(chkb_P1_on ∧ chkb_P2_on ∶ ḣ1 = 1 ∧ ḣ2 = −1)

They determine the change of the water levels h1 and h2 for both tanks during
the execution of the system. If no pump is running, the height of the water level
does not change. If only pump P2 is switched on, the water level decreases by
2 in tank T2 per time unit and the water level of tank T1 raises by 2. Vice
versa the height of the water in tank T1 lowers and the one of tank T2 raises
by 1 per time unit, if only pump P1 is running. Since pump P2 has a higher
capacity than pump P1 , the water level of tank T1 increases, while the water
in tank T2 becomes less, if both pump are switched on.

Beside the SFC and the conditional ODE systems, which we give to the
SFC verification tool, we mark the variables Pon

1 , Poff
1 , Pon

2 and Poff
2 as control

variables, because they represent some user input for the system.

50 Chapter 5. Testing the parallel composition

Figure 5.3: Hybrid automaton control_panel

5.2 Experimental results

5.2.1 Parallel composition for system with one tank

When we start the SFC verification tool, it reads in all the informations de-
scribed in section 5.1.1. Upon the given informations it builds a set of three
automata. One is the synchronization automaton shown in figure 2.5.3, which
simulates the PLC cycle. We omit the description, because its behavior and
function was already explained in section 2.5.3.

The second automaton is the control_panel, which is shown in figure 5.3.
It simulates the random user input. This is done by randomly taking one of
the var_set transitions, which are self loops of the location control. These
transitions set the control variables, that represent a request for either switching
the pump on or off. Via an action_synch transition we reach the other location
of this automaton. The transition has no effect in contrary to the read_synch
transition, which leads back to the control location. Here the control variables
for sending command to pump are reseted. So we are able to set them randomly
again, when we reenter the control location. Both locations have only activities,
which determine that the variables of the automaton can not be changed, when
we a take time step in the location. This assures, that they are only changed by
the var_set transitions and keep their values until they have been transmitted
to the pump by the read_synch transition.

The last automaton of the set is tank1, which simulates the behavior of the
tank and the pump. Figure 5.4 shows the resulting hybrid automaton, which
was build from the given input files.

The invariants and the activitie of the locations are the same. The invariants
denotes, the water level h1 may vary between -100 and 100. The activities
assure, that neither the incoming command to switch the pump on or off is
changed by the activities nor the state of the pump itself as long as we are in a
location. So the pump must keep running or stay turned off until we get another
command when taking the read_synch transition.

This transition is a self loop at both locations. It reads the input values
and assigns the new values to the variables P1_on and P1_off . These two
variables trigger the execution of the action_synch transitions. We have one of
them at each location as self loop. They are taken if the pump does not change

5.2. Experimental results 51

Figure 5.4: Hybrid automaton tank1

its state. For instance, if we are in the location where the pump is running and
we get the command to switch the pump on. Then we do not need to get to
the other location, since the pump is already running and we are in the correct
location. Vice versa holds for the case, when the pump is turned off and we
get the command to switch it off. But if we receive a command, which causes
a state change of the pump, we must take one of the action_synch transitions,
which connects the two locations with each other. Assume, the pump is running
and after taking the read_synch transition, the command is to turn the pump
off. Then we must leave our current location and get to the location off1 that
represents that the pump is not running. When we take the corresponding
action_synch transition, the check- back variable for the pump is set to false.
This indicates that the command was executed and the pump is now turned off.
Again vice versa hold for the other case.

The synchronization, the control_panel and the tank1 automaton are now
given to SpaceEx. It should check if the given system only allows a water
level between two and ten. Therefore it firstly builds the composition of the
automata. We checked this composition and compared it to the one, which
was build by our CompositionCreator which is depicted in figure 5.5. For a
better readability we removed all activities from the locations, which just deter-
mine, that the variables do not change. These are the activities for the control
variables, the check- back variable for the pump and the variables, which rep-
resent commands for the pump. The resulting automata are equal and both
correct. After the analysis SpaceEx gives us a counter example. Upon this
example the SFC verification tool decides to choose the conditional ODE sys-
tem (chkb_P1_on ∶ ḣ1 = 0) for extending the SFC to an HSFC. The hybrid
automata are now built again with modified informations. The synchronization
automaton as well the control_panel automaton are the same as before, since
their behavior is not influenced by the extension of the SFC. This holds not for
the automaton tank1. The conditional ODE system is assigned to the step on1

in the SFC. As consequence of this, we add the condition (chkb_P1_on == 1)
to the invariant of the corresponding location in the automaton tank1. Also
the activities of the location change. They are extended by the ODE (ḣ1 = 0).
Now we can stay in this location, only if the pump is running and meanwhile the
water level of the tanks does not change. But this is not the only change derived

52 Chapter 5. Testing the parallel composition

w
ai
tF
or
A
ct
io
nS

yn
c_

co
nt
ro
l_

off

cy
cl
e_

ti
m
e
<=

de
lt
a_

u
&

h1
<=

10
0
&

h1
>=

-1
00

cy
cl
e_

ti
m
e’

=
=

1

w
ai
tF
or
R
ea
dS

yn
c_

re
se
t_

va
rs
_
off

cy
cl
e_

ti
m
e
<=

0
&

h1
<=

10
0
&

h1
>=

-1
00

cy
cl
e_

ti
m
e’

=
=

1

w
ai
tF
or
R
ea
dS

yn
c_

re
se
t_

va
rs
_
on

cy
cl
e_

ti
m
e
<=

0
&

h1
<=

10
0
&

h1
>=

-1
00

cy
cl
e_

ti
m
e’

=
=

1

w
ai
tF
or
A
ct
io
nS

yn
c_

co
nt
ro
l_

on

cy
cl
e_

ti
m
e
<=

de
lt
a_

u
&

h1
<=

10
0
&

h1
>=

-1
00

cy
cl
e_

ti
m
e’

=
=

1

ac
ti
on

_
sy
nc

cy
cl
e_

ti
m
e
>=

de
lt
a_

u
&

P
1_

on
=
=

0

cy
cl
e_

ti
m
e’

=
=

0

ac
ti
on

_
sy
nc

cy
cl
e_

ti
m
e
>=

de
lt
a_

u
&

P
1_

on
=
=

1

cy
cl
e_

ti
m
e’

=
=

0
&

ch
kb

_
P
1_

on
’
=
=

1

ac
ti
on

_
sy
nc

cy
cl
e_

ti
m
e
>=

de
lt
a_

u
&

P
1_

off
=
=

0

cy
cl
e_

ti
m
e’

=
=

0

ac
ti
on

_
sy
nc

cy
cl
e_

ti
m
e
>=

de
lt
a_

u
&

P
1_

off
=
=

1

cy
cl
e_

ti
m
e’

=
=

0
&

ch
kb

_
P
1_

on
’
=
=

0

re
ad

_
sy
nc

cy
cl
e_

ti
m
e
<=

0

P
1_

off
_
re
qu

es
t
:=

0
&

P
1_

on
_
re
qu

es
t
:=

0
&

P
1_

off
:=

P
1_

off
_
re
qu

es
t
&

P
1_

on
:=

P
1_

on
_
re
qu

es
t

re
ad

_
sy
nc

cy
cl
e_

ti
m
e
<=

0

P
1_

off
_
re
qu

es
t
:=

0
&

P
1_

on
_
re
qu

es
t
:=

0
&

P
1_

off
:=

P
1_

off
_
re
qu

es
t
&

P
1_

on
:=

P
1_

on
_
re
qu

es
t

va
r_

se
t

P
1_

on
_
re
qu

es
t
==

0

P
1_

on
_
re
qu

es
t
:=

1

va
r_

se
t

P
1_

on
_
re
qu

es
t
==

0

P
1_

on
_
re
qu

es
t
:=

1

va
r_

se
t

P
1_

off
_
re
qu

es
t
==

0

P
1_

off
_
re
qu

es
t
:=

1

va
r_

se
t

P
1_

off
_
re
qu

es
t
==

0

P
1_

off
_
re
qu

es
t
:=

1

F
ig
ur
e
5.
5:

C
om

po
si
ti
on

((
sy
nc
hr
on

iz
er

||
co
nt
ro
l_

pa
ne
l)
||
ta
nk

1)

5.2. Experimental results 53

Figure 5.6: Hybrid automaton tank1 extended with conditional ODE system

from the newly added conditional ODE system. To complete the transformation
from the HSFC to an automaton, we have to add a new location. Therefore we
take the original of the location we just extended and copy it. Before we insert
it in the automaton, we expand its invariant by the negation of the condition,
thus (chkb_P1_on == 0). We connect it to the other locations, by copying all
incoming and outgoing transitions of the original location and assign them to
the new location. The resulting hybrid automaton is shown in figure 5.6.

We pass the new set of automata again over to SpaceEx and let it give us
the composition it build from the automata. This time we discovered some
differences between the composition of SpaceEx and the one we get from our
CompositionCreator.

Figure 5.7 and figure 5.8 show the part of composition, that differs. For
a better readability we removed all activities from the locations, which just
determine, that the variables do not change. Also we omitted each assignment,
which determines, that the variable keep their value when a transition is taken
in the composition built by SpaceEx.

The difference between the two compositions is a missing location in the com-
position build by SpaceEx. The CompositionCreator adds the location, which
is made up from the location waitForActionSynch from the synchronization au-
tomaton, the location control from the control_panel and on1_neg by tank1,
while SpaceEx omits especially this location. But although the composition
from SpaceEx has one location less and because of this all incoming and outgoing
transitions of the location do not exist, this has no effect on the behavior of the
automaton. The reason for this is, that the location, that has been omitted by
SpaceEx, can never be reached during the execution of the automaton. In figure

54 Chapter 5. Testing the parallel composition

5.8 can be seen, that the only incoming transition to this location is a read_synch
transition from the location waitForReadSynch_reset_vars_on1_neg. This lo-
cation can also never be entered. A part of it is retrieved from the location
on1_neg with the negated condition (chkb_P1_on == 0) we added during the
refinement. So the location would only be entered, if we executed a command
to switch the pump off. But since we copied all incoming and outgoing transi-
tions from the location on1 to connect the location with rest of the automaton
tank1, the only incoming transition for the location in the composition is an
action_synch transition. For taking it we must get the command to switch the
pump on and set the check- back variable to true. But this is exactly contrary
to the valuation, which allowed be the invariant of the location. Thus, this
location may never be entered for the reason, that the invariant can never be
fulfilled. And since the location waitForActionSynch_control_on1_neg can be
entered only via this location, it can also never be reached.

SpaceEx performs a reachability analysis during the building of its compo-
sition. While our CompositionCreator only removes location in case of false as
invariant or if there no incoming transition from other locations, it does a bit
more. It takes the initial location and build all locations of the composition,
that can be reached from it via transitions. After adding them, checks if they
can be reached or if the assignments from the incoming transitions violates the
invariant. If they do, SpaceEx not need to take care of this location, because it
can never be entered.

So omitting a non reachable location has no effect on the behavior of the
automaton and as consequence of it, we get equal results for the analysis of both
compositions.

The advantage of the way SpaceEx builds the composition is, that only the
reachable part of the composition is computed, which keep it as small as possible.
But it can also happen, that the composition is not complete and parts of it are
missing which influence the behavior of the whole system. A example for this is
shown in section 5.2.2. Another disadvantage is, if the analysis fails, SpaceEx
is not able to provide a composition anyway.

5.2. Experimental results 55

Figure 5.7: SpaceEx

Figure 5.8: CompositionCreator

56 Chapter 5. Testing the parallel composition

5.2.2 System with two tanks

Upon the informations of the system with two tank the SFC verification tool
builds four automata for the given system. The automata tank1 and tank2
simulates the SFC for the tanks without any conditional ODE system assigned
yet. They are both equal to automaton tank1 from the first test case, shown in
figure 5.4. Only the read_synch transitions have one more assignments. They
synchronize the check- back variable chbk_P1_on respectively chkb_P2_on.
To know the state of the pump, which belongs to the other tank, is important
for the later extension with ODE systems. As described in 5.1.2 the condi-
tions of the ODE systems make use of the states of both pumps to be able
to determine, how the water level of each tank evolves. To simulate the user
input, we have again an automaton controller_panel , which sets the variables
for the commands to wether switch a pump on or off randomly. These com-
mands are given for each pump. So we have four var_set transitions, for each
pump one to switch it on and one to switch it off. The last one is the synchro-
nizer automaton, which simulates the synchronization of the input and output
variables at the beginning and at the end of every PLC cycle. It is added as
plc_synchronizer . The SFC verification tool builds the input files for SpaceEx
and starts the analysis. SpaceEx builds now the parallel composition of these
automata ((plc_synchronizer ∣∣controller_panel)∣∣tank2)∣∣tank1 .

While we checked the composition, we found out, that it was not build
correctly. The failure is caused by the outgoing transitions of the location,
which is build of the following original locations: waitForActionSynch from
plc_synchronizer , control from controller_panel , on1 from tank1 and on1 from
tank2 .

The part of the composition, which is is build wrong is shown in figure
5.9. For a better comparison figure 5.10 shows also, how this part is build by
the CompositionCreator. For a better readability we omit the activities, which
determine, that control variables, check- back variables of the pumps as well
as the requests for the commands to switch the pumps on or off may not be
changed by a time step. We omitted also each assignment, which determines,
that the variable keep their value when a transition is taken in the composition
built by SpaceEx.

The location waitForActionSynch_control_on1_on1 with its invariant and
activities is build correctly.

The last two location indicate, that both pumps are running, while we are
in this location. But since control from controller_panel is also one of the
original locations, we should be able to set one of the four control variables. The
setting of these variables should simulate a random user input for switching the
pumps off or leave them running. To realize this there should be four self loop
transitions, two for each pump to switch them independently on or off. These
transitions are missing in the composition of SpaceEx.

The outgoing action_synch transitions are also missing. But waitForAction−
Synch from the plc_synchronizer is an original location. Thus, normally we
should wait for the time to pass by until the cycle time reaches at least δl and
leave this location at latest, when the cycle time reaches δu. However, since
there are no outgoing transitions, especially none with the label action_synch,
which should lead to another location, we are not able to go anywhere.

So we are in a location, where we should be able to simulate random user

5.2. Experimental results 57

input and leave it afterwards. But we can do nothing of this and if we enter
this location once, we can only let time elapse until the cycle time violates the
invariant and the run of the automaton fails.

Since the composition is build wrong, the result of the analysis is not reliable.
It gives us no informations about the wrong set up location and a counter
example where the two pumps can never be switched on at the same time. All
further analysis and refinement step are useless, because they rely on the wrong
result of this incorrectly built composition.

58 Chapter 5. Testing the parallel composition

Figure 5.9: SpaceEx

Figure 5.10: CompositionCreator

Chapter 6

Conclusion

6.1 Summary

We wanted to make the SFC verification tool as flexible as possible for the inte-
gration of other analysis tools. Previously the SFC verification tool was bounded
to SpaceEx. During the transformation from (H)SFCs to hybrid automata the
restrictions of SpaceEx were applied directly and in the end the automata were
written into an input file for SpaceEx without saving them.

We introduced a new data structure for hybrid automata. Besides we im-
plemented some Creator classes which transforms the (H)SFCs into hybrid au-
tomata without any restriction from any tool and save the automata in the
data structure. Thus, we obtain general automata that are independent of any
tool syntax. We are now able to apply any changes or restrictions needed for
an analysis tool on the stored automata by our toolchain afterwards. Since
some analysis tool can not handle several automata that run in parallel, we ex-
tended the toolchain with a component CompositionCreator that provides the
composition of all automata in the system.

Hence, the integration of any analysis tool is possible now, and we are no
longer bounded to SpaceEx. In our test cases we detected, that SpaceEx does
not always compute the composition correct and thus, delivers us sometimes
wrong results. This fact is very important, because a wrong result for the
hybrid automata leads to a incorrect result for the safety verification of the
SFCs. To avoid this, we compute the composition with our CompositionCreator
and let SpaceEx only do the analysis.

6.2 Future work

As consequence of our results we plan to integrate other analysis tools such as
flow∗ [12] to compute the reachable states. For each new tool we need to extend
the toolchain, so it can handle the restriction for hybrid automata given by the
tool. We have to implement a component for writing the input files for the new
tool and one to read in the file with the result from the analysis needed for the
refinement.

Since we try to keep our models as small as possible, we will improve the
building of the composition further. Therefore we want extend the minimization

60 Chapter 6. Conclusion

of the intersection for the invariants and the guards. Until now no contrary
equations such as (x ≤ 2 ∧ x ≥ 3) are detected in the formulae, which prevent,
that the formulae can ever be fulfilled. Locations or transitions with inconsistent
invariants or guards can never be entered or taken, so omitting them has no effect
on the behavior of the composition.

Bibliography

[1] Int. Electrotechnical Commission. Programmable controllers, part 3. Pro-
gramming Languages, 61131-3., 2003.

[2] Johanna Nellen and Erika Ábrahám. Hybrid sequential function charts.
Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, 2012.

[3] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification
of hybrid systems. In 23rd International Conference on Computer Aided
Verification (CAV), LNCS, 2011.

[4] K. Driessen. Counterexample-Guided Abstraction Refinement for Hybrid
SFC Verification. RWTH Aachen, 2012.

[5] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell. A unifying semantics for
sequential function charts. In LNCS, 2004.

[6] E. Abráhám. Modeling and analysis of hybrid systems. Lecture Notes,
2012.

[7] T. A. Henzinger. The theory of hybrid automata. In Eleventh Annual IEEE
Symposium on Logic in Computer Science, 1996.

[8] PLCopen Technical Committee 6. Xml formats for iec 61131-3. Technical
report version 2.01, PLCopen, http://www.plcopen.org/pages/tc6_xml/,
2009.

[9] Beremiz. http://www.beremiz.org.

[10] G. Frehse. Phaver: algorithmic verifcation of hybrid systems past hytech.
In International Journal on Software Tools for Technology Transfer, vol-
ume 10, 2008.

[11] C. Le Guernic and A. Girard. Reachabilityanalysis of linear systems using
supportfunctions. In Nonlinear Analysis: Hybrid Systems, volume 4, 2010.

[12] X. Chen, E. Abráhám, and S. Sankaranarayanan. Flow*: An analyzer for
non-linear hybrid systems. Computer Aided Verification, 2013.

	Introduction
	Preliminaries
	Plants
	Sequential function charts
	Hybrid sequential function charts
	Hybrid Automata
	SFC verification tool

	Data structure for hybrid automata
	Building the composition
	Testing the parallel composition
	Benchmarks
	Experimental results

	Conclusion
	Summary
	Future work

	Bibliography

