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Abstract

In reachability analysis, the forward �xed-point approach for solving
the reachability problem, a central problem of model checking, has be-
come increasingly popular. Forward �xed-point analysis utilizes over-
approximations of state sets to decide whether a system can reach un-
desirable or desirable states. E�cient state set representations, such as
zonotopes, are used to compute certain operations on the state sets. How-
ever, while there is a number of specialized libraries available, none of them
are free or support the techniques used in our implementation.

In this thesis we introduce an extendable open-source software library
for the zonotope representation of (state) sets. Combining an abstract
approach to data types with object-oriented extendability, it provides an
easy-to-use and reliable tool for e�cient state set operations and provides
the groundwork for a larger, more extensive library with a wider set of
representation types.
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Chapter 1

Introduction

Model checking is an important technique to verify software systems. With an
increasing number of software systems in everyday life, and software systems
controlling machines such as elevators, mobile phones, �ood control systems
[TWC01] or navigation system, it is more important than ever to ensure the
safety of these software system, as a system failure could endanger or impair
human lives directly.

Model checking allows to check whether certain properties hold on a modelled
system. Model checking, initially a technique to analyze only discrete-time
systems, has quickly been adapted for the analysis of hybrid systems [ACH+95].

A central problem in the model checking of software systems is to check, whether
a system reaches certain states, i.e., whether the system can reach a set of
certain undesired or desired states. This reachability problem is central to model
checking. It is the question, whether for two given states s, s′ in a system, s′ is
reachable from s.

Reachability analysis is still a major research topic in hybrid systems. One
approach is to compute (over-approximations of) state sets in the form of certain
geometric objects like, e.g., polytopes [Zie95], zonotopes [BEG+95], or ellipsoids
[KV00]. For the reachability analysis, we can use a forward �xed-point approach,
starting from an (over-approximation of the) initial state set and computing one-
step successors iteratively until either a �xed-point is found or a given maximal
computation depth is reached. To implement these computations, we need
certain operations on the state set. Such operations on state sets are:

� The computation of the union and the intersection of two sets.

� The membership test, i.e., testing whether a given point belongs to a set.

� Linear transformations on a set.

� The emptiness test.

State sets may have an in�nite number of elements. Therefore, we need �nite
representations for them, which can be stored and worked on in the reachability
analysis algorithm.
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Figure 1.1: Illustration of the initial state set and the reachable state set.

The types of the geometric representations of sets have a large in�uence on the
e�ciency and precision of the reachability analysis. Certain geometric represen-
tations allow for more e�cient analysis, but may have certain drawbacks, e.g.,
leading to a larger over-approximation. Figure 1.1 and Figure 1.2 illustrate the
over-approximation of the reachable sets on a two-dimensional example using
rectangles.

In this work, we focus on a certain geometric form to over-approximate state
sets: zonotopes. Zonotopes [BEG+95] have an elegant de�nition and can be
intuitively de�ned by a center point and the Minkowski sum of �nitely many
line segments called generators. The full de�nition for zonotopes is given in
Chapter 2.

The aim of this work is to provide a transparent, e�cient and extendable library
for the representation of zonotopes and operations on them. The library is
written in C++. Furthermore, the library is released under the GNU General
Public License (GPL) [Fre], a free software license and can thus be used by
third parties for future research. While there are some libraries for zonotope
operations, they either have a non-free licensing system, or are limited to certain
data types.

We provide an open-source C++ library that supports the usage of zonotopes
in reachability analysis. In addition, the library features an extendable library
for matrix computations, used by the zonotope library. The zonotope library
features zonotope creation and operations on them, as well as some opera-
tions with other geometric objects, most importantly functionality for zonotope-
hyperplane intersection. Although some analysis tools use zonotopes, to our best
knowledge, there is no open-source C++ library providing these functionalities.

We �rst introduce all necessary preliminaries and de�nitions in Chapter 2. In
Chapter 3, we discuss a zonotope-hyperplane intersection algorithm which we
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Figure 1.2: An exemplary over-approximation of the reachable state set and the
initial state set in Figure 1.1 using boxes.

provided with our library, while details speci�c to our implementation be pre-
sented in Chapter 4, together with some experimental results. In the closing
Chapter 5, we will draw conclusions.
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Chapter 2

Preliminaries

In this chapter, we discuss the necessary preliminaries to understand this the-
sis. We formally introduce a number of geometric objects, most importantly
hyperplanes, polytopes and zonotopes. We describe the necessary operations
on geometric objects. At last, we discuss their implications for the the reacha-
bility analysis of continuous systems.

De�nitions for sets of points can be arbitrarily complex, which is why some
formalization is necessary to de�ne representations for and operations on these
sets. As sets considered in the reachability analysis of hybrid systems often have
an in�nite number of points, (possibly over-approximative) �nite representations
for these sets are needed. A set of points can be represented (and usually over-
approximated) by a wide range of representations.

Furthermore, we need to de�ne e�cient operations for such representations, to
allow for transformations such as the rotation or shearing of a geometric object.
In this chapter, we will discuss these operations.

The geometrical structures mentioned in this thesis are de�ned for general �elds
and vector spaces. While our implementation does support these generaliza-
tions, we limit ourselves to d-dimensional Euclidean spaces in this chapter,
commonly referred to as Rd. For elements in Rd, Rm×n and similar vector
spaces, we will use the normal dot product and matrix multiplication. We de-
�ne the dot product as follows:

De�nition 1. (Dot product). The dot product v · w, with v,w ∈ Rd is de�ned
as:

v · w =

n∑
i=1

viwi.

While other underlying algebraic structures may be used in model checking,
the Euclidean space is generally considered su�cient. Di�erent representations
have di�erent advantages and disadvantages. The generator representation for
zonotopes � the only representation for zonotopes that is discussed in this thesis
� allows for easy membership tests, linear transformations and Minkowski sum
operations.
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2.1 Half-spaces and hyperplanes

We start with two very simple geometric representations: Half-spaces and hy-
perplanes. Weisstein [Wei13] de�nes an half-space informally as that portion
of an n-dimensional space, that is obtained by removing that part lying on one
side of an (n− 1)-dimensional hyperplane. We use the following de�nitions:

De�nition 2. (Half-space, hyperplane). A half-space in Rd is a set de�ned by
a single a�ne inequality with ~a ∈ Rd and a constant scalar γ ∈ R, with the set
being of the form:

H = {x ∈ Rd | ~a>x ≤ γ}.

A hyperplane is de�ned analogously by using the operator = instead of ≤. A hy-
perplane in a three-dimensional Euclidean space is called a plane. A hyperplane
in a two-dimensional Euclidean space is called a line.

A half-space separates the whole underlying vector space � in our case Rd � into
two halves. Hyperplanes are an often used representation for certain types of
in�nite sets of points. In reachability analysis, simple guards can be represented
by hyperplanes.

In addition, the following two classes of geometrical objects are discussed in this
thesis:

� Polytopes are bounded sets of points constrained by a �nite set of half
spaces. They are the higher-dimensional generalization of polygons and
polyhedra.

� Zonotopes are a subclass of polytopes that can intuitively be de�ned as
the Minkowski sum of �nitely many line segments.

In the next sections, we discuss polytopes and zonotopes, their representations,
and operations on them.

2.2 Polytopes

First, we discuss the di�erent representations for polytopes:
De�nition 3. (Polyhedron). A (convex) polyhedron P is the intersection of
a �nite set H = {h1, ..., hn} of half-spaces, hi = {x ∈ Rd | ~a>i x ≤ γi} for
i = 1, · · · , n:

P =
⋂
h∈H

h. (2.1)

Polytopes are bounded polyhedra.

Each d-dimensional polytope can also be given as the convex hull of its vertices
V ⊂ Rd. Therefore, a polytope can also be represented by a set of points, whose
convex hull is the polytope. For polytopes, di�erent operations have di�erent
complexities depending on the representation.
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Operation H-polytopes V-polytopes

convex hull of union hard easy
Minkowski sum hard easy
linear transformation easy easy
intersection easy hard
membership test easy easy

Table 2.1: We use hard to denote that there exists no polynomial-time algo-
rithm, and easy to denote that there exists a polynomial-time algorithm in the
size of the representation.

A polytope P =
⋂n

i=1{x ∈ Rd | ~a>i x ≤ γi} can be represented by the pair (A,b),
where:

A =

~a
T
1
...
~a>n

 , b =

γ1...
γn


with A being the matrix consisting of the normal vectors of the intersected half-
spaces, and b being the vector consisting of the scalar constants of the intersected
half-spaces.

We call such an H-representation of a polytope an H-polytope. Polytopes in
the following H-representation (vertex representation) are called V-polytopes.
A V-polytope consists of the convex hull of a the �nite set of vertices V of a
polytope.

P = {
∑
v∈V

αvv | αv ∈ R, αv ≥ 0 ∀v ∈ V, such that
∑
v∈V

αv = 1}.

For H-polytopes, there exists no polynomial-time algorithm for the computation
of the convex hull of the union or the computation of the Minkowski sum.

Similarly, there is no polynomial-time algorithm available to compute the in-
tersection of V-polytopes. The vertex representation for polytopes allows for
e�cient operations in most aspects, but has no polynomial time algorithm for
the intersection of two polytopes. Table 2.1 illustrates the computational com-
plexity aspects of polytopes.

This restriction is of particular interest for this work, as there are proposed
polynomial-time algorithms for zonotope intersection with polytopes. Le Guer-
nic's [Gue09] algorithm for the computation of a zonotope-hyperplane intersec-
tion computes an over-approximating H-polytope. Thus, we discuss zonotopes
and operations on zonotopes in depth in the next section.
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c
~g0

~g1

~g2

Figure 2.1: Zonotope construction in R2: The three generators of the zonotope
are shown, as well as the center point. The �rst generator is ~g0.

2.3 Zonotopes

Zonotopes are a sub-class of convex polytopes and a generalization of zonohe-
drons. Zonohedrons were originally de�ned and studied by the Russian crystal-
lographer E. S. Fedorov.

A zonotope is de�ned by a center point c and a set of n generators G =
(~g0, · · · , ~gn−1). We de�ne the interval set [−1, 1] := {x ∈ R | − 1 ≤ x ≤ 1}.
Then, the zonotope's set of points can be intuitively seen as the Minkowski sum
[KS40] of �nitely many line segments, represented by the generators:

De�nition 4. (Zonotope). A zonotope Z ⊆ Rd in the d-dimensional Euclidean
space Rd is a set of points, such that there are c ∈ Rd and ~g0, . . . , ~gn−1 ∈ Rd

being a �nite set of n generators with:

Z = {x ∈ Rd | ∃ a0, . . . , an−1 ∈ [−1,1].(x = c+

n−1∑
i=0

ai~gi)}.

We call (using the same symbol as for the set) Z =< c ; ~g0, · · · , ~gn−1 > the rep-
resentation of the zonotope. We call c the center point and G := {~g0, . . . , ~gn−1}
the generator set of Z.

In this work, we generally refer to De�nition 4 for zonotopes. If we refer to a
zonotope, we generally also refer to the zonotope's representation. Figure 2.1
to 2.5 show the construction of a simple two-dimensional zonotope with three
generators in R2.

Zonotopes have well-known polynomial-time algorithms for the Minkowski sum
computation, linear transformation and membership testing. For reachability
testing, the following operations on zonotopes, polytopes and hyperplanes are
of particular interest:

� The membership test for a zonotope.

� The Minkowski sum of two (n) zonotopes.

� Linear transformation for zonotopes.

� Intersection and (over-approximation of the) union of two zonotopes.
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c

~g1

~g2

Figure 2.2: The �rst zonotope, with the representation < c ; ~g0 > is shown as
a gray line. The generator ~g1 is the second generator used for construction.

c

~g1

~g2

Figure 2.3: The second generator is added to the construction, forming a poly-
gon. The edges constructed using the generator are marked with dashed lines.
The grey lines mark the current constructed zonotope.

c

~g2

Figure 2.4: The last generator is added to the zonotope, extending the polygon
in the directions of the last generator and its inverted counterpart. The dashed
lines mark the current constructed zonotope, dotted light grey lines the zonotope
from Figure 2.3. The dotted arrow visualizes the direction of the last generator
~g3.
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c

Figure 2.5: The constructed zonotope, with all prior constructed parts and
generators omitted.

� Test for emptiness.

� Intersection of a zonotope with a hyperplane as an approximation for the
zonotope-zonotope intersection.

In our work, we implemented several operations on zonotopes, including all of
the operations mentioned above.

Zonotope membership The membership test for zonotopes can be com-
puted using an algorithm with time complexity Ω(n2) for n being the number
of generators. The number of vertices of a zonotope can be quadratic in relation
to the number of generators. However, there are algorithms for intersection of
a zonotope with a point with only O(n log n) running time [GNZ03].

According to De�nition 4, a point v ∈ Rd has membership in a zonotope
with the representation < c ; ~g0, · · · , ~gn−1 > contained in Rd, if there exist
a0, · · · , an−1 ∈ [−1,1] such that:

c+
n−1∑
n=0

~giai = v.

The membership problem for zonotopes can be e�ciently solved using the sim-
plex algorithm [DT97], utilizing that the zonotopes generators represent a sys-
tem of linear inequalities that can be solved.

Minkowski sum of zonotopes The Minkowski sum of two zonotopes is
informally de�ned as the addition of the two center points and the generator sets.
The result can be used to, e.g., model the e�ect of disturbances or uncertainties
by bloating a set with another set, applying the Minkowski sum operation.
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The Minkowski sum of two sets A,B ⊆ Rd is de�ned as:

A⊕B = {a+ b | a ∈ A, b ∈ B}

Similarly, theMinkowski sum Z0⊕Z1 of two zonotopes Z0, Z1 with their respec-
tive center points c0, c1, generators ~g01, · · · , ~g0i and ~g11, · · · , ~g1j is represented
as follows:

Z0 ⊕ Z1 =< c0 + c1 ; ~g01, · · · , ~g0i, ~g11, · · · , ~g1j >

with the new center points c0 + c1 components being the sum of the of compo-
nents of c0 and c1.

The Minkowski sum computation for zonotopes is simple and can be done in lin-
ear time complexity with respect to the number of generators. Linear transfor-
mations are also often used and are also useful for generating testing examples,
as discussed in Chapter 4.

Linear transformations Of particular interest for this work are linear trans-
formations in the Euclidean space, i.e., linear transformations from Rm to Rn.
A common representation for linear transformations are transformation matri-
ces. Transformation matrices for linear transformations between Rm and Rn

are always m× n-matrices.

De�nition 5. (Linear transformation). A linear transformation with respect
to a matrix A ∈ Rm×n is a function f : Rn → Rm, f(x) = Ax. We call A the
linear transformation matrix.

Linear transformations, and especially automorphic linear transformations are
particularly simple to apply to zonotopes. Let Z be a zonotope with the repre-
sentation Z =< c ; ~g0, · · · , ~gn−1 >. The linear transformation f of the zonotope
Z with the corresponding transformation matrix A is a linear transformation
on the zonotopes center point c and generators ~g0, · · · , ~gn−1:

f(Z) =< Ac ; A~g0, · · · , A~gn−1 > .

2.4 The reachability algorithm using zonotopes

For systems with combined discrete-continuous behavior modeled as hybrid au-
tomata, the reachability problem can be solved utilizing geometric representa-
tions.

Using geometric objects, it is possible to conduct forward reachability compu-
tation, i.e., the extension of the initial state set until no new states are found or
an unsafe state is found reachable. A similar approach is the backward reach-
ability computation: By starting the search at a (usually unsafe) set of states,
we search backwards to see if the reachable set intersects with the initial set of
states.

While these techniques are very powerful, and allow for incomplete analysis,
the resulting computations on the exact sets are usually very expensive, and
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have strong limitations on the operations on the sets. Thus, we use over-
approximating representation of the reachable sets.

The use of e�cient set representations allows for a fast computation of reachable
sets, thus allowing to prove a systems safety: If, with forward search, the unsafe
set is not in the over-approximation of the reachable set, the system is provably
safe. Algorithm 2.1 illustrates the basic reachability algorithm in pseudo-code.

Algorithm 2.1: Basic reachability algorithm

1 Input : A s e t o f i n i t i a l s t a t e s I , a t a r g e t s e t T .
2 f i n i t e s e t L o f d i r e c t i o n s .
3 Output : t rue i f T i s reachable , f a l s e i f T i s not r eachab l e from I .
4 R← I � Current reachab l e s e t
5 DO

6 IF R i n t e r s e c t s T THEN
7 RETURN t rue � Target s e t i s r eachab l e .
8 ELSE

9 R← R∪ Post(R) � Extend the reachab l e s e t .
10 END IF

11 UNTIL Post(R) ⊆ R
12 RETURN f a l s e � Target s e t not r eachab l e .

Thus, using e�cient state set representations, such as zonotopes, to conduct
forward and backward reachability analysis, we can speed up the analysis of
continuous systems. In this thesis, we use zonotopes to over-approximate the
reachable sets.

While zonotopes are very e�cient concerning most operations, they are not
closed under the intersection operation, as the intersection of a hyperplane and
a zonotope may not be a zonotope itself, but a polytope. However, checking
the emptiness of the intersection of a zonotope and a hyperplane can be done in
polynomial time regarding the number of generators of the zonotope [Gue09].

The method we are focusing on for zonotope-hyperplane intersection is the one
proposed by Le Guernic [Gue09], which computes an over-approximation. The
algorithm accepts a set of points represented by a zonotope, a hyperplane and a
�nite set L of directions, and computes and over-approximated polytope of the
hyperplane-zonotope intersection with |L| a�ne inequalities. The algorithm ap-
proximates the intersection by projecting the zonotope and the hyperplane into
|L| di�erent two-dimensional vector spaces spanned by the hyperplane normal
vector and a vector ~l from the set of directions. In this two-dimensional vec-
tor space the intersection of the two-dimensional representation of the zonotope
with the two-dimensional-representation of the hyperplane is computed.

This can be done in time complexity O(d log n) [Gue09]. The resulting inter-
sections can then be used to compute an over-approximation of the intersection
in the original d-dimensional vector space represented by a set of constraints to
the d-dimensional polytope that is an over-approximated intersection. In the
next chapter we discuss Guernic's proposal for this intersection of hyperplanes
with d-dimensional zonotopes.
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Zonotope-hyperplane

intersection

Hybrid automata typically have guards whose satisfaction sets are half-spaces
or hyperplanes. Therefore, if state sets are represented by zonotopes, the com-
putation of the intersection of a zonotope and a hyperplane plays an important
role in the reachability analysis.

In this chapter, we discuss an algorithm for the over-approximation of a zonotope-
hyperplane intersection proposed by Le Guernic [Gue09]. In the following sec-
tion, we outline the algorithm for the zonotope-hyperplane intersection. Fol-
lowing this brief outline, we separately discuss each part of the intersection
algorithm in the Sections 3.2 to 3.4.

3.1 Outline

Guernic's algorithm computes an over-approximation of the intersection of a
zonotope with a hyperplane, i.e., an over-approximation of G∩Z for a hyperplane
G and a zonotope Z. The computation of an over-approximation is necessary,
as the intersection of a hyperplane and a zonotope is in general not a zonotope.

We use Le Guernic's proposal [Gue09] for the e�cient computation of an over-
approximation of the intersection.
The algorithm computes this over-approximation by intersecting projections of
the zonotope and the hyperplane in a variety of two-dimensional vector spaces.
From the intersections in the two-dimensional vector spaces, we derive half-
spaces in the original (Euclidean) space Rd.

These half-spaces are boundaries of a polytope over-approximating the inter-
section. By combining these half-spaces into a polytope as described in Section
3.4, we obtain an over-approximation of the intersection in the original vector
space.
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x

y

z

C

B

A

Figure 3.1: An exemplary zonotope in R3 with an intersecting hyperplane
marked in red. The hyperplane-zonotope intersection is bounded by the vertices
A,B and C.

The vector spaces have spanning sets consisting of the hyperplane's normal
vector and an additional second vector. We discuss the choice of the second
vector and the projection in Section 3.2. The over-approximation in the two-
dimensional vector space is computed using a divide-and-conquer algorithm,
which is discussed in Section 3.3.

In this chapter, we use the simple example in Figure 3.1 to illustrates the inter-
section algorithm. It shows a zonotope in the Euclidean space with its repre-
sentation having the center point (1, 1, 1)> ∈ R3 and the generator set:

g0, g1, g2 = (1, 0, 0)>, (0, 1, 0)>,(0, 0, 1)> ∈ R3.

It is intersected with a hyperplane with a normal vector h = (1, 1, 1)> and a
scalar constant γ = 5

3 . The resulting zonotope-hyperplane intersection has the
following vertices:

A =

1
2
2

 , B =

2
1
2

 , C =

2
2
1


The vertices A,B,C are on the edge of the zonotope and can be de�ned by using
all but one generator with a scalar multiplication with 1, as there are no linear
dependent generators. They ful�ll the hyperplane's parametric form equation:

x− 5

3
+ y − 5

3
+ z − 5

3
= 0

This example intersection is a triangle, and thus has no corresponding zonotope
representation, but can be represented precisely by a polytope with four a�ne
equations, one for the hyperplane, and three for the half-space boundaries.



3.2. Projecting the zonotope and the hyperplane 23

Algorithm 3.1: Guernic's original proposal

1 Input : A s e t S , a hyperplane G = {x ∈ Rd | ~h>x = γ} and a
2 f i n i t e s e t L o f d i r e c t i o n s .
3 Output : an over−approximation o f the polytope r ep r e s en t i ng S ∩ G .
4 IF S ∩ G 6= ∅ THEN
5 FOR l IN L DO
6 S2d ← DIM_REDUCE(S, h, l) ; � Pro j e c t i on to R2 .
7 Lγ ← {(x,y) ∈ R2 | x = γ}
8 ρl ← BOUND_INTERSECT_2D(S2d, Lγ) � I n t e r s e c t i o n in R2 .
9 END FOR

10 END IF

11 RETURN {x ∈ Rd | ∀l ∈ L, l> · x ≤ ρl} � Combining the polytope .

Algorithm 3.1 shows the original proposal for the intersection algorithm, which
we demonstrate on the example.

We discuss the projection and the choice of the base vectors in the following
section, and the intersection computation in Section 3.3.

3.2 Projecting the zonotope and the hyperplane

Since the intersection is computed in two-dimensional vector spaces, the zono-
tope and the intersecting hyperplane needs to be projected into a two-dimensional
vector space. The projection of the set DIM_REDUCE(S, h, l)in Algorithm 3.1
is a linear projection. A projection into the two-dimensional space has a linear
time complexity in the dimension size.

The two-dimensional projection ρh,l is de�ned as ρh,l : Rd → R2 with the normal
vector h of the hyperplane G = {x ∈ Rd | h>x = γ} and a second vector l ∈ Rd

is a linear projection, such that:

ρh,l(x) = (x · h, x · l) ∀x ∈ Rd.

The dimensional projection in Algorithm 3.1 DIM_REDUCE(S, h, l)is the two-
dimensional projection ρh,l of the set S from Rd to R2.

For each projection, we need to choose a pair of vectors � the base vectors for
the target vector space of the projection. The �rst base vector of the projected
space is the hyperplane's normal vector, and thus does not need to be computed.
We call the set of second base vectors chosen for the algorithm directions.

A direction can be chosen utilizing several di�erent strategies, which in�uence
the quality of the over-approximation. These strategies can, e.g., utilize base
vectors, i.e., selecting the base vectors of the original vector space as a base vector
for the two-dimensional vector space; choosing these vectors as base vectors is
not always possible, as we will discuss later in this section.

Other strategies utilize random direction generation or generator-related choice,
i.e., selecting the directions perpendicular to the zonotope generators, which
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γ = 5
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y

Figure 3.2: A projection of the zonotope and the hyperplane from Figure 3.1 into
a two-dimensional vector space. The hyperplane's scalar constant is represented
by the red vertical line.

γ = 5
3

x

y′

Figure 3.3: A projection similar to Figure 3.2, with a di�erent second vector y′.

may result in the intersection algorithm to compute half-spaces that contain
the zonotope's edges.

The choice of directions has a large impact on the quality of the resulting in-
tersection. As a rule, using more directions (and thus, more half-spaces) does
not necessarily have to, but in practice often does improve the precision of the
result.

Figure 3.2 shows the zonotope from the example in Figure 3.1 projected into a
two-dimensional vector space spanned by the hyperplane normal vector (1, 1, 1)>

and a vector l1 = (1, 1, −1)>. Figure 3.3 show the zonotope and the hyperplane
projected with a di�erent second base vector.

Therefore the directions � the normal vectors of the derived half-spaces � have
a large impact on the tightness of the computed over-approximation of the
intersection.

Every direction must be linear independent to the hyperplane normal vector. In
many scenarios, a vector perpendicular to the zonotopes surface, i.e., perpen-
dicular to a generator of the zonotope, can results in a tight over-approximation
of the zonotope:
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De�nition 6. (Perpendicular orientation). A vector ~v ∈ Rd is perpendicular,
write ~v ⊥ ~w, to a vector ~w ∈ Rd, i� ~v · ~w = 0.

With Guernic's intersection algorithm we can compute the intersection of the
projected zonotope and the projected hyperplane in polynomial time [Gue09],
which we discuss in the next section. As discussed in Section 3.4, we can improve
the precision of the approximation by increasing the number of directions.

Furthermore, the number of direction needs to be high enough, that the resulting
half-spaces form a convex polyhedron in the d-dimensional original vector space.
In the next section, we discuss the computation of the intersection in the vector
spaces generated in the part of the algorithm discussed here.

3.3 Divide-and-conquer intersection algorithm

The intersection computation of two-dimensional zonotopes and hyperplanes,
i.e., a line in a two-dimensional vector space, is the central part of the algo-
rithm.
This two-dimensional intersection problem has been solved for two-dimensional
polytopes (polygons) and hyperplanes, and can be solved for zonotopes and hy-
perplanes in a particularly elegant way. Algorithm 3.2 solves the problem of
intersecting a line with a two-dimensional zonotope in polynomial-time.

In this discussion of the algorithm, we de�ne the y-direction or the direction
along the y-axis as the second dimension of the vector space, and the x-direction,
or the direction along the x-axis as the �rst dimension of the vector space.

We will refer to elements in the zonotope as points. Analogous, we de�ne a point
lying in the positive x-direction from a given point as right of the given point
and a point lying in the negative x-direction from the given point as being left of
the given point. For the y-axis, we say a vector points upward if it has a positive
second component, and downward if it has a negative second component.

For points, we may refer to their valuation in the �rst dimension as their x-value
or �rst value, and to their valuation in the second dimension as their y-value or
second value.

3.3.1 Sorting the generators

To start the divide-and-conquer-algorithm on the generator set, the (now two-
dimensional) zonotope generators need to be sorted. This is done in two steps:
First, all generators that are pointing upwards are mirrored by inverting their
values. This is necessary for the next step and does not change the zonotopes
shape. Algorithm 3.2 shows this in the lines 5 to 10. Figure 3.4 and 3.5 illustrate
the mirroring of the generator set.

Following the mirroring, the generator set is sorted in a clockwise order. While
an arbitrary trigonometrical sorting is su�cient, it is necessary to decide for
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~g2

~g3

~g4

Figure 3.4: An unsorted example generator set of a zonotope into a two-
dimensional vector space.

~g0

~g1

~g2

~g3

~g4

Figure 3.5: The generator set from Figure 3.4 with the generators mirrored
downwards.
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Algorithm 3.2: The original algorithm

1 Input : A two−dimens iona l zonotope Z =< c ; ~g1, · · · , ~gr > and a l i n e
2 Lγ = {(x, y) : x = γ} such that Z ∩ Lγ 6= ∅ .
3 Output : ρZ∩Lγ ((0,1)

>) .
4 P ← c � cur rent p o s i t i o n P = (xP , yP )
5 FOR i FROM 1 TO r DO
6 IF y~gi > 0 or (y~gi = 0 and x~gi > 0) THEN � ~gi = (x~gi , y~gi )
7 ~gi ← −~gi � Ensure a l l g ene ra to r s are po in t ing downward
8 END IF

9 P ← P − ~gi � Drives P toward the h i ghe s t ver tex o f Z
10 END FOR

11 ~g1, · · · , ~gr ← SORT(~g1, · · · , ~gr) � Sort the gene ra to r s counter−c l o ckw i s e
12 IF xP < γ THEN
13 G← {~g1, · · · , ~gr} ∩ {R+ × R} � Look r i g h t
14 ELSE

15 G← {~g1, · · · , ~gr} ∩ {R− × R} � Look l e f t
16 END IF

17 s←
∑
~g∈G 2~g � I n i t i a l vantage po int

18 WHILE |G| > 1 DO
19 (G1, G2) = SPLIT_PIVOTING(G,s) � Sp l i t s e t a long s
20 s1 ←

∑
~g∈G1 2~g

21 IF [P ;P + s1] ∩ Lγ 6= ∅ THEN � Check i n t e r s e c t i o n
22 G← G1

23 s← s1 � Use g1 to compute s
24 ELSE

25 G← G2

26 s← s− s1 � New vantage po int
27 P ← P + s1
28 END IF

29 ENDWHILE

30 (x, y)← [P ;P + s1] ∩ Lγ � Compute i n t e r s e c t i o n
31 RETURN y

ascending or descending order. The polar angle of the generators can be uti-
lized as a sorting key; in our example (and in our implementation) we sort the
generators in ascending order.

The sorting is complexity-wise the most complex part of the algorithm, which
can be done in time (with respect to n generators) O(d log n). The rest of
the algorithm has a linear time complexity (to the number and size of the
generators). Thus, even for zonotopes with a large number of generators, this
algorithm is very e�cient. Guernic's original algorithm in Algorithm 3.2 refers
to the sorting in line 11. In the next section we discuss the computation of the
intersection with the hyperplane in a two-dimensional Euclidean space.

3.3.2 Vantage point iteration

This part of the algorithm is the divide-and-conquer type strategy for the gen-
erators set splitting. Following the sorting, we compute a highest vertex in the
zonotope, i.e., a point in the zonotope for which no point with a higher y-value
exists. This is done by starting with the center point of the zonotope and then
subtracting all the now downward-oriented generators from the center point.
Line 9 in Algorithm 3.2 illustrates this. This computation can easily be inte-
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P P ′

yres

~g0

~g1
~g2

γ = 5
3

2~g0

2~g1

s

Figure 3.6: P is the starting point the vantage point iteration. P ′ is the vantage
point after one iteration step. The generator set is already sorted. The starting
set (visualized as a dotted arrow) G is {~g0, ~g1}, after the �rst step G is {~g1}.
yres is the computed intersection point.

grated with the generator mirroring and sorting, and thus does not in�uence
the time complexity of the algorithm.

We call this �rst computed topmost point of the zonotope the vantage point,
the starting point of the iteration. In the next step, we check if the hyperplane
� which is represented in the two-dimensional space as a vertical line � is left
or right of the vantage point. Then we omit all generators not pointing in that
direction from our working set (line 12 to 16 in the code listing). The remaining
generators form the working set.

Following the computation of the �rst vantage point, the (sorted) working set
is then split until only the generator that forms the edge intersecting with the
hyperplane remains. This is done by splitting the set and moving the vantage
point forward (i.e., along the generators), until the intersection can be computed
using the vantage point and the single remaining generator in the working set.
Figure 3.6 illustrates this on the example from Figure 3.2.

Depending on the selection of the pivot element, this divide-and-conquer algo-
rithm to �nd the edge intersecting the line can be in linear time, if each generator
in the set is only visited once.

A good strategy for the pivot element selection of this divide-and-conquer-
algorithm is to split the working set into two subsetsG1, G2, such that all vectors
in G1 are above the intersecting vector s, and all vectors in G2 are below or
co-linear to s. After the set of generators is sorted, the vantage point iteration
on the two-dimensional zonotope is conducted. Figure 3.7 to 3.9 illustrate this
iteration on a more complex example.

The �nal intersection computation to return the y value of the intersected line
is trivial. With P := (Px, Py) (as referred to in line 30 of Algorithm 3.2) being
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P

c

~g0
~g1

~g2
~g3~g4~g4

γ

Figure 3.7: A more complex example for the vantage point iteration. The
generator set G contains all generators of the zonotope.

the current vantage point, s := (sx, sy) being the set intersecting the vertical
line with l being its x coordinate, the y value of the intersection is computed as
follows:

yres = Py + sx
l−Px
sx

.

The result of this computation multiplied with the original computed projection
vector and the projected vector constitutes to an half space, with the choosen
direction vector being the normal vector of the half-space. After projecting
the point back into the original vector space, every point in direction of the
computed projection is not in the intersection. In the following section, we
discuss this technique in detail.

3.4 Combining the half-spaces

Algorithm 3.2 returns the scalar y-value p of the intersection in the (two-
dimensional) vector space spanned by the hyperplane normal vector and the
direction ~l. For every direction ~l, we construct half-space h~l as follows:

h~l := {x ∈ Rd | ~l>x ≤ p~l}

The intersection polytope can be constructed by combining all computed half
spaces into an H-polytope in the original d-dimensional vector space. By com-
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Figure 3.8: The initial generator set is reduced to the generators pointing to-
wards the intersection.

puting the intersection of the half spaces generated by the set of directions, one
can compute an over-approximation I of the actual intersection:

I =
⋂
~l∈L

h~l

With more directions (and thus, more computed intersections) the precision of
the over-approximation can be increased. Figure 3.11 and 3.12 illustrates the
half-space intersections forming a polytope. The choice of the directions in the
example resulted in a very precise over-approximation of the intersection; in
fact, it is a precise computation of the intersection. While always possible, an
exact computation of the intersection is highly unlikely for any but the most
simple zonotopes.

In this chapter we described and discussed Guernic's algorithm for the compu-
tation of over-approximated hyperplane-zonotope intersections. In the following
chapter, we discuss the structure and the features of our library, and evaluate
it with some small experiments.
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Figure 3.9: Further splitting of the generator set results in the working set
containing only two generators, the second one resulting in the intersecting
edge.

Figure 3.10: The exemplary zonotope from Figure 3.1, which added indicators
for four half-spaces. The intersection with the form of an triangle is over-
approximated by a rectangle.
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Figure 3.11: The over-approximation from Figure 3.10 with an additional half-
space.

Figure 3.12: The computed over-approximation from Figure 3.11 of the inter-
section, in this case exactly the intersection.



Chapter 4

Evaluation

In this chapter, we evaluate our work on the topic. First we discuss our zonotope
library, second we describe the experimental evaluation of our zonotope library,
explain the methodology of our testing and discuss the results in Section 4.1.
Following that, we discuss the structure of our implementation in Section 4.2.

Preliminarily to this thesis, we identi�ed the need for a free library providing
a geometric representations of reachable sets. The zonotope representation of
state sets, while having other interesting properties, allows for e�cient compu-
tation of the over-approximation of the intersection with a hyperplane. The
hyperplane representation is often used to represent a hyperplanar guard, and
is thus very useful for forward reachability analysis.

As mentioned in the earlier chapters, existing libraries have unacceptable limita-
tions and can thus not provide these functionalities. To meet the demand for a
such an implementation, we implemented a library for zonotope functionalities,
with a focus on the hyperplane-zonotope intersection described in Chapter 3.

This free library can be used in other projects, such as HyPro [M+13], as long as
they are GPL compliant. The library is easy to adapt, comes fully documented
and is thoroughly tested. In the next section, we discuss the experiments we
conducted to evaluate the libraries functionalities.

4.1 Experiments

To test our implementation, we conducted a number of experiments. The pur-
pose of the experiments is to ensure that the implementation of the intersection
algorithm described in Chapter 4 conducts a correct over-approximation. In
this section, we describe the methodology of the experiments and discuss two
of the experiments.

Our experiments use linear transformations on randomly generated zonotopes
and randomly generated hyperplanes. We start by generating a zonotope Z ⊂ Rd

utilizing the zonotope representation described in Chapter 2. The zonotope Z
is generated with varying number of randomly generated generators. In most
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tests, the corresponding polytope has �fteen or more faces. Similarly, we gener-
ate a hyperplane intersecting the generated zonotope, which randomly generated
normal and hyperplane vectors.

The values of the components of the generated vectors are generated using
random number generation. We use random number generation with a discrete
uniform distribution, i.e., we decide on a number of decimal places for the
generated numbers, e.g., two, and only generate numbers with decimal places
up to that number.

In the next step, we choose a linear transformation that transforms the zono-
tope along the surface of the hyperplane, i.e., in a way that the zonotope is
transformed, but still intersects the hyperplane. This can be done, for example,
by rotating the zonotope (and, more importantly the center point) along the
hyperplane's surface. Another technique is to apply the linear transformation
only to the generators of the zonotope, not to the center point. For convenience,
the center point can be shifted along the hyperplane to allow for an intersection
free plotting of the transformed zonotopes.

We use the latter transformation technique in the exemplary experiments shown
in the next section. This linear transformation is then applied a number of
times to the zonotope, each time computing the over-approximated intersection
algorithm described in Chapter 3, and plot the transformed zonotopes along
with the over-approximated intersections.

By plotting the computed results, we can easily check the quality of the com-
puted over-approximated intersection. With the help of a viewer for three-
dimensional objects, such as the one in MATLAB, one can easily verify that the
computed intersection is indeed a correct over-approximation. We exemplarily
discuss two simpli�ed experiments, with � for convenience � smaller genera-
tor sets and and rounded values in the vectors components. The full series of
experiments can be found in the User's Manual [Gla14].

Exemplary experiments To illustrate our testing process, we present two
simpli�ed examples of our testing (i.e., with rounded numbers and a small num-
ber of generators). Both zonotopes use the hyperplane represented by using
normal vector (1,1,1)> ∈ R3 with a scalar value 1.

These examples use linear transformations which are combinations of rotations,
shear transformations (a shear transformation is a linear mapping that dis-
places each point in a �xed direction, proportional to its distance from a line
� the eigenvector of the transformation) and scaling transformations, which are
applied several times to the generators of the experiments zonotope.

The zonotope in our �rst example has the following representation:

<

0
0
0

 ; {

 1.1
0

−3.61

 ,

 2.39
−1.61

3.6

 ,

 3
0.25
−3.9

 ,

−3.6
3.4
1.6

 ,

−3.4
2.1
2.9

} >
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Figure 4.1: A �rst exemplary experiment using a rotation and a shear trans-
formation on the zonotopes generators. The computed over-approximation is
marked in red. After each transformation, the zonotope is shifted along the
hyperplanes surface for convenience.

The transformation matrix used in the experiment, a combined shearing and
rotation, is the following: 1.36 0.2 0

−0.2 1 0
0 0 1


Figure 4.1 shows plotted version of the over-approximated zonotope-hyperplane
intersections computed.

The second, smaller experiment, uses a slightly simpler zonotope with four gen-
erators:

<

0
0
0

 ; {

1.1
0
0

 ,

 0.31
−1.60

0

 ,

 0
0.25
−1.9

 ,

−1.42
1.2
0

} >
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Figure 4.2: The second, smaller, exemplary experiment using a combined ro-
tation and scaling transformation. Similarly to Figure 4.1, the computed over-
approximation is marked in red.

The linear transformation matrix corresponding to this example is a combined
rotation and scaling matrix:

 1.82 0 0.22
0 0.85 0

−0.27 0 0.82


Figure 4.2 illustrates this examplary experiment.

These experiments allow for quick and reliable evaluation of the correctness of
the intersection. The intersection algorithm is very e�cient, as the sorting of
the generator set the most time consuming part. The rest of the algorithm has
a linear time complexity.

Testing Environment Our testing system runs on a 32-bit Intel Core 2 Duo
1.66 GHz CPU with 1 GB memory. The details of the testing system are
described in detail in the User's Manual [Gla14]. None of our experiments took
more than a second to run, and the �rst experiment described took an average
0.324 seconds to run, including writing the results to the hard disk.

In the User's manual, there are twenty documented experiments, with increasing
numbers of generators. It is also very easy to create additional experiments. In
the next section, we discuss the structure of our implementation.

4.2 Implementation

For the implementation of the zonotope library, it was necessary to implement a
library providing matrix functionalities. While there are matrix libraries avail-
able, such as the GNU Scienti�c Library (GSL) [G+09], they have limitations,
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such as GSL not allowing for arbitrary precision computations. The library is
available for download on the HyPro webpage [M+13].

4.2.1 Matrix implementation

Current matrix libraries are either not free software or, in the case of the GSL
library, do not support arbitrary precision data types. Thus, we needed to
implement a library for matrix creation and operations that is not limited to
�nite precision data types or speci�c data types at all. While the matrix is
currently limited to operations necessary for the given application, it can easily
be extended.

Unlike the GSL library, our library provides an object-oriented matrix imple-
mentation. It allows some matrix operations, i.e., operations on the matrix itself
and memory-stable operations, within the matrix class scope.

Our class provides built-in functionalities for several commonly used matrix
functionalities, such as changing of matrix entries, linear transformations, mul-
tiplying with matrices, scalars and vectors as well as row and column swapping.
Likewise, we implement structures for often used column and row vectors which
provide similar operations.

The matrix library can be extended with additional functionalities, if necessary.
The class-based approach allows for easy extending of objects, e.g., by inheri-
tance of objects. With the template-based approach to multiple data types, it
is easy to use own high-precision types like GNU MPFR [FHL+07] or special
purpose data types. Thus, the matrix can be used to implement the zonotope
representation.

4.2.2 Zonotope implementation

The zonotope implementations allows for creation, import, export and other
operations on zonotopes in the generator representation. For many operations,
it utilizes the matrix functionalities provided by the matrix library, which is
necessary to use the zonotope functionalities.

As it uses the matrix library, the zonotope representation library is independent
of certain data types, and can thus utilize arbitrary precision data types. We
provide functionalities for several typical zonotope operations, such as:

� General zonotope functionalities such as creating, importing and exporting
zonotopes.

� Additional functionalities, such as the membership test, Minkowski sum
computation of two zonotopes.

� Linear transformation of zonotopes.

� Computation of over-approximations of the intersection of a zonotopes
with a hyperplane by the way of intersecting two-dimensional projections.
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� Additional utility functionalities such as plotting, generator sorting ac-
cording to di�erent sorting criteria, and edge computation. These func-
tionalities are mostly used in tests and examples included in the library.

Some functionalities cannot � for reasons of consistency and memory manage-
ment � be used inside the zonotope class scope. These functions mostly create
new zonotopes or objects, e.g., the Minkowski sum of two zonotopes. To keep
the libraries usable for arbitrary data types, these new objects must be initial-
ized out of the zonotopes context.

The object-oriented library can easily be extended with new functionalities,
and the code is fully documented. A number of examples provide sample uses
and are easy to modify and to adapt. Further examples � which sometimes need
additional software � provide visualizations of zonotopes in the Euclidean space,
similar to the illustrations in Section 4.1.

4.2.3 Environment and external libraries

Our test system setup consists of a default installation of a Linux Mint 15 system
running on a Linux 3.8 kernel. The library is written in C++11, the most recent
version standard of the C++ programming language. While the library itself
is independent of external libraries and uses only built-in functionalities of the
GNU C++ library, some examples and tests use external libraries, however,
these are optional. For these external libraries, some constraints apply. In this
work, we used the following software:

� We compiled tests and examples using the C++ compiler from the GNU
Compiler Collection [The13a], version 4.7.3. Newer versions should work
without limitations, and older versions may work without limitations.

� We link against the GNU C++ library [The13b], commonly known as
libstdc++. We use the version libstdc++-6-4.7 of the library, which is
included in the GNU compiler collection. The GNU C++ library, as
well as the GNU C++ compiler are published under the terms of the
GNU General Public License (GPL) [Fre], the same license our library is
published under.

� For examples and visualizations, we use MATLAB.
We use version R2013a [MAT13], a non-free numerical computing envi-
ronment by MathWorks Inc. We strictly do not use MATLAB for any
computation in our library, although some of the examples make use of
MATLAB's visualization functionalities.

� For testing purposes, we use the Multi-Parametric Toolbox (MPT), an
open-source collection of algorithms for MATLAB [HKJM13]. We use
version 3.0.12 of MPT. MPT is distributed under the GPL [Fre].

� Again used only for testing, but also highly recommended, we use the GNU
MPRF Library, a library for multiple-precision �oating point computation
[FHL+07]. While not necessary for the usage of the library, it is used for
some examples and experiments. We used version 3.1.1-1 of the GNU
MPFR library.
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� In some examples, Christian Schneider's small wrapper library mpfr::real
[Sch] is used. While strictly optional, the library, which is also distributed
under the terms of the GPL provides a simple wrapper to arbitrary-
precision computations.

Detailed instructions on how to include and use some of the mentioned software
can be found in the documentation of the library. In the following chapter, we
will conclude this thesis.
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Chapter 5

Conclusion

Recent years have seen a rising popularity of forward reachability analysis of
hybrid systems utilizing �xed-point approach. Thus, the need for reliable tools
and libraries for solving the reachability problem using geometric state set rep-
resentations has similarly increased. While a number of libraries is available,
these are either not available under a free open-source license, do not allow
arbitrary precision computations, or do not implement the zonotopes set repre-
sentation. To the best of our knowledge, no such open-source library meeting
this requirements has been made available yet.

In this thesis, we identi�ed the demand for an implementation of an open-source
library for zonotope-related operations in model checking. Based on these de-
mands, we presented an extendable open-source library for operations on and
with sets represented by zonotopes. The library allows for all basic operations
concerning zonotopes, and further extends these with number of utility func-
tionalities, further extending its functionalities by realizing Le Guernic's e�cient
algorithm for zonotope-hyperplane intersection by over-approximation in two-
dimensional vector-spaces. The implemented matrix library lays out ground-
work for the zonotope library, and can be further extended to incorporate a
large number of matrix functionalities.
Our library utilizes an object-based approach, achieving reusability and extensi-
bility for future analysis and research. The utility functionalities allow for easy
use in evaluation and can easily be adapted for other data formats than the ones
already implemented. To assist the evaluation of our library we also conducted
a number of experiments, which can be found in Chapter 4. These experiments
and examples, which are included in the library, can easily be reproduced and
allow for quick and reliable checking of the libraries functionalities.

We are con�dent, that the libraries implementation of state set representa-
tions and the intersection algorithm can support researchers analyzing hybrid
systems. Our library with its combination of extensibility and its open-source
approach can assist researchers using the forward �xed-point approach in reach-
ability analysis.
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5.1 Future work

While proceeding with the project, it quickly became clear that some function-
alities � while useful � could not be implemented without exceeding the scope
of this bachelor thesis. In particular, adding more functionalities to the matrix
library, such as QR decomposition, LR decomposition and e�cient algorithms
for computing inverted matrices. These functionalities are not necessary for the
operations and algorithms described in this work, but are generally considered
essential functionalities of a matrix library.

Similarly, the implementation of more state set representations, such as boxes,
general polytopes or ellipsoids, would be a logical next step in developing a
greater representation library. Some works in this direction have already be-
gun. Furthermore, it might be interesting to utilize inheritance structures to
implement future set representations, allowing for seamless usage of di�erent
set representations in reachability analysis.

Concerning the intersection algorithm described in Chapter 3, a further analysis
of di�erent choosing and generations strategies for the intersection algorithm's
directions would be a very interesting topic. This would necessite a complete
analysis of the quality of the over-approximations and an in-depth analysis using
di�erent data sets for the underlying sets of points, which would exceed the
scope of this thesis. Similarly, we would like to conduct a full evaluation on the
library's e�ciency (in particular the intersection algorithm) in comparison to
similar implementations.
Nevertheless, we are con�dent to have contributed a useful library for research
and reachability analysis.
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