
RWTH Aachen University
Rheinisch-Westfälische Technische Hochschule Aachen

Lehr- und Forschungsgebiet
Theorie hybrider Systeme
Prof. Dr. Erika Ábrahám

Master Thesis

Modular Verification for PLC

Controlled Hybrid Systems

Kai Axel Driessen
Matriculation Number: 297607

- September 2014 -

Primary Referee: Prof. Dr. Erika Ábrahám
Secondary Referee: Prof. Dr. Thomas Noll

Supervisors: Dipl.-Inform. Johanna Nellen
Dr. Martin R. Neuhäußer

Declaration of Academic

Integrity

I hereby declare that I have created this work completely on my own and used
no other sources or tools than the ones listed, and that I have marked any
citations accordingly.

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate
kenntlich gemacht habe.

Aachen, the 30th of September 2014

Acknowledgments

At this point, I would like to thank Prof. Dr. Erika Ábrahám for giving me
the opportunity to write my master thesis at the Chair of Computer Science 2
and for being primary referee of it. Secondly, I want to thank Prof. Prof. Dr.
Thomas Noll for making himself available to be the secondary referee.
I give thanks to my supervisors Dipl.-Inform. Johanna Nellen and Dr. Martin
R. Neuhäußer, who could always spare some of their time and who gave me
helpful advice during the work on the subject.
Last but not least, I am especially grateful to my parents Dagmar and Ulrich
Driessen for their continuous support throughout my studies in every respect.
Without them, my master’s course would not have been possible.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Programmable Logic Controllers . 6
2.2 Tank System . 7
2.3 Bounded Model Checking . 8

2.3.1 Intermediate Verification Language 8
2.3.2 Bounded Model Checking Algorithm 10
2.3.3 Bounded Model Checking Counterexample 12

2.4 Hybrid Automata . 13
2.5 Hybrid Automaton Reachability . 17

2.5.1 SpaceEx . 17
2.5.2 Flow* . 20
2.5.3 Reachable Paths . 21

2.6 SFC Verification Tool . 22
2.6.1 Conditional Ordinary Differential Equations 23
2.6.2 SFC Verification . 24

2.7 SMTInterpol . 25
2.8 Summary . 25

3 Hybrid Model 27
3.1 PLC Cycle Automaton . 28
3.2 Generate Counterexample Automaton 30
3.3 PLC Cycle Times . 32
3.4 Discrete/Dynamic Linking . 33

3.4.1 Replacement Rules . 34
3.4.2 Transition Dynamics . 35

3.5 Adding Conditional ODEs . 36
3.6 Conditional Initial Values . 39
3.7 Automaton Toolchain . 40

3.7.1 Adding Dynamic Behavior 41
3.7.2 Copy Transitions . 42
3.7.3 Single Initial Location . 43
3.7.4 Interval and Set Assignments 46
3.7.5 Additional Tools . 48

3.8 Wildcard Values . 49
3.8.1 Counterexample Wildcards 50

3.9 Summary . 52

4 Hybrid Counterexample Analysis 55
4.1 Input Parameters . 55

4.1.1 Dynamic Behavior . 55
4.1.2 Link File . 58
4.1.3 Properties . 59

4.2 Reachability Analysis . 60
4.2.1 Time Parameters . 60
4.2.2 Iteration Parameters . 61

4.3 Summary . 64

5 Explanation Generation 65
5.1 Explanations . 66
5.2 Reachable Paths . 67

5.2.1 SpaceEx Reachability Tree 68
5.2.2 Flow* Reachability Tree . 71

5.3 Explanation Generation . 73
5.4 Explanation Processing . 77
5.5 Explanation Wildcards . 79
5.6 Summary . 80

6 Experimental Results 83
6.1 Exemplary Systems . 83

6.1.1 Tank System . 83
6.1.2 Train Crossing . 87

6.2 Analysis Execution . 91
6.2.1 Tank System Analysis . 92
6.2.2 Train System Analysis . 99

6.3 Runtime Analysis . 108
6.3.1 Tank System Runtime . 109
6.3.2 Train System Runtime . 117
6.3.3 Improvements . 119

6.4 Summary . 120

7 Conclusion and Future Work 121

Bibliography 128

Chapter 1

Introduction

This master thesis deals with the verification of plant controls. The general
idea behind the novel approach which is presented in this thesis is to analyze
programs for programmable logic controllers (PLCs) by separating the discrete
from the dynamic behaviour of the plant. PLC are often used to control plants
by continuously executing a program thereby updating its input and output
interfaces. Systems controlled by PLCs are usually safety-critical. These system
might fail if specific states are reached. For example a tank which overflows
might cause such a failure. A discrete analysis of such a program is fast and
computes the exact states, which are reachable in the system. The analysis
can be performed efficiently for large discrete systems. During the analysis
of a PLC controlled plant the dynamic behaviour has to be considered as
well. Combining the plant dynamics with the discrete behaviour might create
large hybrid system, which are hard to verify. Thus, considering only the
discrete behaviour, which describes a failed discrete analysis, i.e. a discrete
counterexample, and combining it with the plant dynamics creates a smaller
model. Hereby, a possible state space explosion, which results from combining
the plant dynamics with the entire discrete behaviour, can be avoided. The goal
is to use the hybrid analysis to refute discrete counterexamples, which can not
occur due to the dynamic behaviour. Instead of analyzing large hybrid systems,
we verify multiple smaller models in order to improve the overall verification
and its runtime.

The general approach to verify PLC controlled plants is to analyze its control
program disassociated from the model of the plant or analyze them in combina-
tion [HG98, ELS05, BCMP98]. The PLC program for instance can be analyzed
by verifying a discrete model or timed automaton, if timed qualifiers are consid-
ered. Hybrid automata (HA) can be used to represent the plant dynamics. A
parallel composition of the control program with the plant dynamics however
might result in a large automaton. The counterexample guided abstraction
refinement (CEGAR) techniques as presented in [ELS05] can be used to reduce
the size of the automaton. Furthermore, the approach as to appear in [NA14]
is able to construct smaller models of such systems by iteratively adding the
plant dynamics. Thus, if a system is safe, the analysis might be able to verify a
reduced model and as a consequence does not require to perform hybrid analysis
on larger systems.

In this thesis we present a new approach which uses the result of a bounded
model checking (BMC) [BCC+03] analysis for the control program to construct

2 1. Introduction

a reduced model. We use BMC to verify the control program of the plant. The
input language for the PLC program is a custom assembler-like instruction list
called intermediate verification language. The same language is used to define
the safety properties of the PLC. The BMC analyses the execution of multiple
cycles of the PLC program using satisfiability modulo theories (SMT) solving.
Moreover, it constructs a control flow automaton and is bounded by the search
depth in the unrolled automaton. If the system is safe, there is no need for
further analysis, however, the resulting path of a failed analysis due to unsafe
states being reached is used as basis of models which are extended by the plant
dynamics. The BMC analysis is able to store its current state, i.e. the SMT
formulas representing the current control flow, when it detects a counterexample,
thereby allowing the analysis to resume after excluding counterexamples, which
have been refuted by the hybrid analysis.

The discrete counterexample path is combined with the dynamic behaviour of the
plant and a hybrid automaton is constructed. Hybrid reachability analysis allows
us to determine whether the discrete path described by the counterexample
can still occur in the extended model where we additionally consider the
dynamic behaviour. Existing tools which perform a hybrid reachability analysis
[FLGD+11, CAS13] can be used to verify these models. If the extended model of
the counterexample is confirmed, i.e. the discrete counterexample is reproduced
in the hybrid analysis, a possible counterexample has been detected and the
analysis stops with the result unknown. Due to the undecidability of the hybrid
reachability analysis [ACH+95], the reachable states are approximated. Thus,
the verification of the counterexample may occurred due to such approximation.
Otherwise, the dynamic behaviour has prevented the hybrid reachability analysis
from reproducing the counterexample. In this case, we determine the cause,
i.e. why the counterexample was not reproduced, and use it to provide an
explanation for the bounded model checker. This explanation is a prefix of
BMC counterexamples, which can not be reproduced by the hybrid analysis due
to the dynamic behaviour and can be used to exclude these counterexamples.

The counterexample prefix provided by the explanation is used to exclude the
corresponding counterexamples and the BMC analysis is resumed. The stored
state of the BMC is extended by formulas, which exclude the counterexamples
with the given prefix. Thus, the collaboration of the BMC and the hybrid
analysis allows us to iteratively exclude BMC counterexamples, which are not
reproducible in the extended model. If no BMC counterexample is found, the
given program is verified as no unsafe system states are reached for the given
BMC bound. This collaborative verification approach is illustrated in Figure 1.1.

1. Introduction 3

Safety
property

Instruction
List

Plant
dynamics

Hybrid
Verification

BMC
(Siemens)

Counter-
example
confirmed

Safe?
Return
safe

Return
unknown

Discrete
Analysis

no +
counterexample

yes

Hybrid
Analysis

no +
explanation

yes

Figure 1.1: Modular Verification of PLC-Controlled Plants

In order to explain the basic requirements for our novel approach and, sub-
sequently, elaborate on the approach itself, this master thesis is structured
in the following way. In Chapter 2, we introduce the basic operation princi-
ple of PLCs and give an example for a tank system which is controlled by a
PLC. Furthermore, we introduce a bounded model checker, which is currently
being developed by the Siemens AG, to analyze the discrete behaviour and
we introduce the counterexamples it produces. Moreover, we present hybrid
automata to model the extended models for the discrete counterexamples as
well as other third party tools, i.e. SpaceEx [FLGD+11] and Flow* [CAS13], for
the analysis of hybrid automata. Additionally, we present a verification tool for
PLC controlled plants, which provides functionality which can be repurposed
for our approach. This tools provides us with representations and parsers for
parts of the plant dynamics. We also introduce SMTInterpol [CHN12] as a
means to check the satisfiability of logic formulas. Chapter 3 describes the
transformation of BMC counterexamples into a hybrid automaton. We show
how to construct an automaton for the counterexample, which contains all plant
dynamics. Moreover, tools provided by the repurposed verification tool are used
to construct suitable models for SpaceEx and Flow*. Additionally, we present
an extension for BMC counterexamples, which increases their expressiveness.
In Chapter 4 we introduce the parameters for the verification and discuss the
settings for the hybrid reachability analysis. SpaceEx and Flow* have to be
configured differently for each model. After a hybrid reachability analysis has
been performed, in Chapter 5 we present methods to construct explanations
from the outputs of SpaceEx and Flow*. We discuss the expressiveness of
different explanations and elaborate on how the bounded model checker uses

4 1. Introduction

these explanations to exclude certain counterexamples. Furthermore, we show
how to extend the explanations to improve their expressiveness. In Chapter 6,
the presented tank system and a second example are verified using our new
approach. We discuss the results of these verifications present a runtime anal-
ysis. Moreover, we show where issues arise during the analysis and introduce
improvements to the verification. Chapter 7 constitutes a final comment on the
usability and the quality of the novel technique including an outlook regarding
known issues and unexploited opportunities.

Chapter 2

Preliminaries

In this chapter we present the preliminaries, which are required in this thesis.
The introduced components allow us to perform a discrete analysis, using
bounded model checking, of a program of a programmable logic controller which
controls a plant. Furthermore, we present hybrid automata and the architecture
of a tool, which is able to verify sequential function charts, which can be used
to program programmable logic controllers (PLCs), and the plant dynamics by
combining them into a hybrid sequential function chart (HSFCs). Thereafter,
these HSFCs are transformed into hybrid automata. Moreover, we introduce
third-party tools to verify these hybrid automata and solve arising logic formula
problems.

We introduce PLCs in Section 2.1, which are used to control plants. Their basic
operation principle of PLC scan cycles is explained. We give an example of a
system which can be controlled by a PLC in Section 2.2. This example consists
of a single tank with a valve, which is used to fill the tank with water. Sensors
provide information about the water level inside the tank. Furthermore, we
present a method to perform bounded model checking (BMC) to verify the
discrete behaviour, i.e. the control program of the PLC, of such a system in
Section 2.3. The input of the BMC is the intermediate verification language
(IVL), which is an assembler-like instruction list. Furthermore, the BMC
employs satisfiability modulo theories (SMT) solving to verify the discrete
behaviour. We introduce counterexamples, which define discrete paths that
result in unsafe system states, for this BMC. Additionally, we discuss how the
algorithm stores its current state when a counterexample is found and how it
can resume its analysis from this state. An introduction to hybrid automata is
given in Section 2.4 as we use these automata to construct a model for a BMC
counterexample which contains the plant dynamics. We also present hybrid
reachability analysis in Section 2.5 and introduce the third-party tools SpaceEx
and Flow* to perform such an analysis. Moreover, we also describe the output
needed to perform further analysis on the extended counterexamples. Some of
the functionality to add plant dynamics to a discrete system, which allows us to
extend BMC counterexamples with the dynamic behaviour, and to transform
hybrid automata, which is required to create suitable models for SpaceEx and
Flow*, are provided by the SFC Verification tool as presented in Section 2.6.
Data structures to represent the plant dynamics are also provided by this tool.
During the construction of the automaton, we use the SMT solver SMTInterpol
as presented in Section 2.7 to check the satisfiability of logic formulas.

6 2. Preliminaries

2.1 Programmable Logic Controllers

A Programmable Logic Controller (PLC) [BCMP98] is a digital computer which
is used to evaluate digital and analogue sensors and interact with the outside
world by operating devices like valves, pumps, motors and actuators through
its outputs. E.g., a plant like a tank system can be controlled by a PLC where
the inputs are provided by water level sensors and the outputs control pumps
and valves within the system. The inputs and outputs of the PLC are built to
be resistant to outside influences.

Figure 2.1: PLC Scan Cycle

In contrast to common computer programs, PLCs execute their programming
cyclically. The details of the scan cycle vary between manufacturers, the most
common scan cycles format however consist of four different phases as illustrated
in Figure 2.1. The overhead phase contains maintenance and communications of
which the former includes testing I/O integrity, verifying that the program logic
did not change and checking if the program stopped responding using a watchdog
timer, which times out if it is not reset periodically. The communication includes
traffic over the PLC programmer port, I/O racks and other external devices. In
the input scan phase a current snapshot of all digital and analog input values is
taken. This snapshot is stored in the PLC’s input memory table. The actual
programming of the PLC is executed in the logic execution phase. Afterwards,
the values resulting from the execution of the program are written to the output
memory table. The content of the output memory table is written to the output
modules in the output scan phase. The execution of this scan cycle is repeated
until the PLC is shut down.

The scan cycle time is the time it takes the PLC to complete one scan cycle.
This time usually ranges from a few hundred milliseconds on older and more
complex PLCs to a few milliseconds on newer PLCs and PLCs with short and
simple programming.

2. Preliminaries 7

The international standard IEC 61131-3 [IEC07] defines 5 different languages
to program PLCs. According to the standard function block diagrams (FBDs),
ladder diagrams (LDs), structured texts (STs), instruction lists (ILs) or sequen-
tial function charts (SFCs) can be used to program PLCs. In our case, a type
of assembler code, similar to instruction lists is used to program a PLC.

2.2 Tank System

In this thesis, we use a simple tank system as a running example for the
verification process. The tank system consists of a single tank, which can be
filled with water, and a valve, which controls the water flow inside the system.
If the valve is open, the water level inside the tank is rising, while a closed valve
allows the tank to drain through a hole in the tank. Furthermore, there are
four sensors that indicate the water height inside the tank. The tank system is
illustrated in Figure 2.2.

T I
T

S0
full

S1
max

S2
min

S3
nonempty

V O
v

Figure 2.2: Tank System

The tank T has the four water height sensors nonempty, min, max and full,
which each detect different water levels. If a sensor is active (returns true),
the water height h in T is above the sensor position (specific height for h).
These positions will be specified later. For now, we assume that if full ⇒
max ∧min ∧ nonempty, max ⇒ min ∧ nonempty and min ⇒ nonempty. Thus,
if a sensor is active, all sensors with positions below are active as well. Valve v
controls the water flowing into the tank system. Furthermore, we assume the
incoming water flow when v is open is larger than the outgoing flow through the
hole in the tank. The opening and closing of v depends on the sensor activity.
If sensor max is activated, i.e., its state changes from false to true, v is closed.
Accordingly, v is opened if the water height is too low, i.e if min is deactivated.
This behaviour is supposed to keep the water at an appropriate level.

8 2. Preliminaries

In order to ensure a safe system, T should never be too full or run dry. Hence,
the sensors full and nonempty are used to define states in the system, which
are unsafe and should not be reachable. In this example, if full is activated,
then T is overflowing and if nonempty is deactivated, then T is running dry.
Therefore, full ∨ ¬nonempty should never be satisfied.

In the following, we will refer to all input and output variables with matching
prefixes. Thus, nonempty, min, max and full are now innonempty, inmin, inmax
and infull and v is renamed to outv, making it easier to distinguish input and
output variables.

2.3 Bounded Model Checking

In this section we present an algorithm which uses bounded model checking
(BMC) to verify the discrete behaviour of a PLC program. Firstly, we describe
the input model for the bounded model checking in Section 2.3.1. The bounded
model checker we employ is presented in Section 2.3.2. Furthermore, we define
a counterexample which the BMC algorithm uses to define an execution of a
given system where an unsafe state is reached in Section 2.3.3.

2.3.1 Intermediate Verification Language

In this section we present the intermediate verification language (IVL) which
is used to model the discrete behaviour of a PLC program. The language is
based on Low Level Virtual Machine Intermediate Representation (LLVM-IR)
[Lat02] without three-address code support. LLVM allows programs in arbitrary
programming languages to be translated into the LLVM intermediate language.
A similar concept is applied to the IVL.

For our purpose we directly define the programs as an assembler like code.
Instructions supported by IVL include assignment, goto, assume, assert,
call and return. Assumptions (assume) allow us to model the control programs
behaviour, while assertions (assert) are used to define the safe states. The
data types which can be used for variables are Boolean, Integer (Bit Vectors) as
well as Arrays and Records. The variables can be defined globally or locally and
the language provides the possibility to define functions. Writing a program for
the tank system as described in Section 2.2 can be described as the code shown
in Listing 2.1.

2. Preliminaries 9

fun cycle (in_full : bool, in_max : bool, in_min : bool, in_nonempty : bool,
result : bool *)

begin
assert "no water at full sensor " ! in_full
assert " water at nonempty sensor " in_nonempty
goto min, max, between

min:
assume (! in_min)
set * result := true
return

max:
assume (in_max)
set * result := false
return

between:
assume (in_min && ! in_max)
return

end

fun main ()
vars

in_full : bool, in_max : bool, in_min : bool, in_nonempty : bool, out_v :
bool

begin
head:
set in_full := false
set in_max := false
set in_min := true
set in_nonempty := true
call cycle (in_full, in_max, in_min, in_nonempty, & out_v)
goto head
return

end

Listing 2.1: Tank System IVL

The program simulates the cyclic execution of a PLC program in the main
function main. The label head at the beginning of the code allows the algorithm
to return back to this position in the code using a goto command. The set
commands only provide an initial assignment for the variables. During each PLC
cycle, the variables assignments are generated by the BMC. The function cycle
models the actual behaviour of the tank system, where the valve is opened
and closed according to the sensor activity. The goto min, max, between
branches the execution and performs the code after each label. A return is
required after each code segment in order to stop each branch. Furthermore,
the assert commands define the conditions the system has to satisfy. If an
assertion is violated, the system is an unsafe state.

10 2. Preliminaries

2.3.2 Bounded Model Checking Algorithm

Model checking examines if a property is satisfied in a model of a given system.
This property can be a set of forbidden states, which should not be reachable
in the system. The general idea is to find an execution which reaches one of
these forbidden states, thus proving the model to be incorrect. Finding such a
counterexample allows further analysis to determine the problem in the current
model. These counterexamples however can be long and difficult to analyze
as the PLC runs in a loop until it is shut down. For our purposes we employ
bounded model checking to reduce the number of states which are examined
while analyzing discrete systems.

Bounded model checking is initialized with a parameter k, which restricts the
path length of the analysis as well as the length of the counterexamples. Due
to this restriction, bounded model checking does not require exponential space
and models can usually be checked very fast. The performance decreases if we
have a big system and a large parameter k. In general, bounded model checking
is not complete as the procedure might not detect longer counterexamples.

For our purposes, we employ a bounded model checker, which uses satisfiability
modulo theories (SMT) solving to verify a model similar to the approach
proposed in [CK03]. A program modeled by IVL is transformed into a control
flow automaton (CFA) by mapping a bit-precise memory model onto the
automaton. The CFA uses the guarded command language (GCL) [Dij97] to
describe the flow of the PLC program. The parameter k in this case refers to
the maximum depth, which is analyzed in the unrolled automaton. Afterwards
the CFA is transformed by replacing the GCL sequences with first order logic
formulas. The BMC unrolls the automaton to create sequences of formulas,
which are used to determine a set of constraints C and a set of properties
P [CK03]. The constraints and properties are computed for each step in the
automaton, while the BMC verifies that C ⇒ P is valid in each step. If this is
not the case, a counterexample is generated.

The general architecture of the tool we use also provides a CEGAR approach
for the analyis. Furthermore, a third engine (IC3) is planned to be integrated.
However, we only consider the BMC engine for the analysis. Figure 2.3 illustrates
the general architecture of the verification tool.

The BMC currently uses an IVL parser to parse the IVL code as presented in
Section 2.3.1. Afterwards, this code is transformed in an internal representation
of the IVL. Thereafter, the IVL is transformed into a bit-precise memory model
before the control flow automaton is constructed. BMC is then used to verify
the program and provide a counterexample if the system is unsafe.

2. Preliminaries 11

IVL Program

IVL Parser

Internal IVL Representation

Memory Model

Control Flow Automaton

BMC IC3 CEGAR

Counterexample Representation

Figure 2.3: BMC Architecture

Halting the BMC after the detection of a counterexample, allows the us to
analyze this counterexample further. If the BMC finds a counterexample, the
current states is saved so the analysis can continue from this state. This can be
achieved by utilizing the SMT solver functionality. The BMC uses Z3 [DMB08]
to solve the occurring SMT formulas. The theory employed for the SMT solving
is quantifier-free expressions over Booleans, Arrays and BitVectors, where all
array index and value sorts are bit vector sorts. The stored state is the state
before the counterexample has been found, thus allowing us to perform further
analysis on the counterexample and to exclude the counterexample from the
BMC analysis if necessary.

This exclusion is accomplished by the BMC restoring the state when the last
counterexample was detected and adding a new formula to the SMT solver.
This new formula contains restrictions, which preclude the sequence of values
that describe the counterexample from occurring again in this analysis. Thus, it
is possible to use a discrete counterexample provided by the BMC as an origin
for an analysis of the dynamic behaviour. The results of this hybrid analysis can
be used to verify the validity of the counterexample with given plant dynamics.
Therefore, the counterexamples that have been disproved by the hybrid analysis
can be excluded from the next iteration of the BMC as described before.

The presented BMC is still a work in progress and has some restrictions in
regard to its functionality. The previously mentioned memory model which
is used during the transformations is quite naive. All operations are modeled

12 2. Preliminaries

correctly but there is still room for improvements. Furthermore, the IVL
can still be optimized by functionality like slicing, constant-propagation and
forward-expression substitution. The BMC algorithm currently does not support
non-determinism in the automaton or floating-points. All these problems are
currently being worked on.

2.3.3 Bounded Model Checking Counterexample

The counterexamples generated by the bounded model checker, which we employ,
consist of an execution path which can be transformed into sequences of variable
valuations and are produced if an assertion is violated. The structure of a
counterexample is defined as shown in Definition 2.1.

Definition 2.1 (Counterexample)
A counterexample (Vars,Seqs) defines a set of variables Vars and their
valuation sequences Seqs.

● Vars ∶= {var1, . . . , varm} is a finite list of discrete variables

● Seqs ∶= {s1, s2, . . . , sm} is a set of sequences si ∶= (vi,1, vi,2, . . . , vi,n) of
vari ∈ Vars with length n and variable valuations vi,1, vi,2, . . . , vi,n for
each variable vari with i ∈ {1,2, . . . ,m}

The counterexample describes a path of discrete valuations in the discrete
system, which ends in an unsafe state. A list of variables and their respective
types are defined in the header of the counterexample. Currently the bounded
model checker supports five different data types (boolean, signed and unsigned
bit vectors of sizes 16 and 32). Currently, we restrict our analysis to boolean
variables as the BMC is currently not able to process integer values. Furthermore,
all variables in our approach either have the prefix in_ or out_, which determines
if it is an input or an output variable, respectively. All consequent lines define an
valuation sequence for a variable, where each valuation vi,j of variable vari ∈ Vars
correlates to a PLC cycle j. The order of sequences corresponds to the order in
the variable list.

We assume an exemplary counterexample for the tank example discussed in
Section 2.2. The counterexample provides a sequence of valuations for variables
corresponding to the sensors and the valve of the tank system, which ends in

2. Preliminaries 13

an unsafe state, where infull is active. Thus, the tank is overflowing in the last
PLC cycle. The counterexample is presented in Listing 2.2.

(in_full :bool ,in_max :bool , in_min :bool , in_nonempty :bool , out_v :bool)
(0,0,0,0,0,0,0,0,1)
(0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1)
(1 ,1 ,0 ,0 ,0 ,1 ,1 ,1 ,1)
(1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1)
(0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1)

Listing 2.2: BMC Counterexample

The counterexample given in Listing 2.2 provides a variable and data type
declaration for each variable as well as different assignment sequences for the
sensors and the valve. These sequences describe a water level, which decreases,
as the valve is closed, until sensor inmin is no longer active. At this point
the valve is opened and the water level quickly rises until infull is active, thus
reaching an unsafe state.

2.4 Hybrid Automata

Hybrid automata (HA) [ACH+95] are automata, which can model discrete as
well as continuous behavior of a system. We use them to build a hybrid model
from a discrete counterexample of the BMC as presented in Section 2.3.3 and the
dynamic behaviour of the plant. A reachability analysis on this model reveals
whether we can refute or confirm a discrete counterexample. A formalization of
a hybrid automata (HA) is given in Definition 2.2.

A hybrid automata consists of locations, which include flows and invariants.
The flows describe how the continuous variables evolve over time. Each invariant
of a location must be satisfied for the system to remain in the location. The
guard and assignments of a transition between two locations are specified by a
transition relation µ ⊆ V × V . The transition can be taken with an evaluation
v changing the evaluation to ν′ iff (ν, ν′) ∈ µ. Furthermore, the invariant of a
location the system is about to enter via a transition must be satisfied after
the assignments are applied. A transition (l, a, µ, l′) can only be taken, if its
guard as defined by the transition relation µ and the source locations invariant
are satisfied by the current variable valuation ν ∈ Inv(l) and the new variables
valuations, which are updated according to the assignments of the transition
as defined by µ, afterward satisfy the target locations invariant ν′ ∈ Inv(l′).
The special properties of τ -transitions are only relevant during the parallel
composition of hybrid automata.

14 2. Preliminaries

Definition 2.2 (Hybrid Automaton)
A Hybrid Automaton is a tuple H ∶= (Loc,Var ,Lab,Trans,Flow, Inv, Init)
where

● Loc is a finite set of locations

● Var ∶= Vard ∪Var c is a finite set of discrete and continuous variables;
A valuation ν ∈ V, ν ∶ Var → R assigns a value to a variable where V
is the set of all valuations ν ∶ Var → R.

● Lab is set of synchronization labels

● Trans ⊆ Loc×(Lab, 2V 2)×Loc is a set of labeled transitions including τ -
transitions (l, τ, Id, l) for each location l ∈ Loc with Id = {(ν, ν)∣ν ∈ V }
are τ -transitions.

● Flow is a function assigning a set of time-invariant flows f ∶ R≥0 → V
to each location, i.e., ∀m ∈ Loc ∶ f ∈ Flow(m) Ô⇒ (f + t) ∈ Flow(m)
where (f + t)(t′) = f(t + t′) for all t, t′ ∈ R≥0;

● Inv ∶ Loc → 2V is a function that assigns an invariant to each location

● Init ⊆ Loc × V is a set of initial states. A pair of a location and
valuation is called a state

There are two different kinds of steps in a hybrid automaton. The discrete
step allows the automaton to change from one location into another using a
transition. For a system to change locations, a transition between the locations
is required and its guard and its source locations invariant have to be satisfied.
Furthermore, the target locations invariant has to be satisfied after updating
the variables according to the assignments of the transition. Assuming locations
l, l′ ∈ Loc and transition relation µ ⊆ V × V and label a, the discrete step is
described in Equation (2.1).

(l, a, µ, l′) ∈ Trans (ν, ν′) ∈ µ ν ∈ Inv(l) ν′ ∈ Inv(l′)
(l, ν) aÐ→ (l′, ν′)

(2.1)

Hybrid automata can also perform time steps. These steps represent the
passing of time and evolution of continuous variables in a system. During
such a time elapse, the hybrid automaton stays in the same location and
updates the variables according to the flow function. During this time step the

2. Preliminaries 15

invariant of the current location must not be violated. For a location l ∈ Loc,
variable valuations v, v′ ∈ V and a time horizon t the time step is defined in
Equation (2.2).

f ∈ Flow(l) f(0) = ν f(t) = ν′ t ≥ 0 ∀0 ≤ t′ ≤ t ∶ f(t′) ⊆ Inv(l)
(l, ν) tÐ→ (l, ν′)

(2.2)

A problem which can occur in hybrid automaton is Zeno behaviour. Zeno
behaviour describes the case where the system can take an infinite amount of
discrete jumps in a finite amount of time. This behaviour is not a problem
in the actual system, but may occur due to the model abstraction. If neither
a discrete nor a time step can be taken in the current location and variable
valuation, the hybrid system is in a deadlock.

Figure 2.4 is a simple hybrid automaton with a single continuous variable d,
which we use to introduce the notations of the hybrid automaton.

on
d ≤ 30
ḋ == 5

off
d ≥ 10
ḋ == −5

a/b ∶ d ≤ 10

d ∶= 30
d ∶= 20

a ∶ d ≥ 20

Figure 2.4: Exemplary Hybrid Automaton

The system has one continuous variables, i.e. the set of variables is defined as
Var = Var c ∪Vard where Var c = {d} and Vard = ∅ and two locations on and
off , i.e a set of locations Loc = {on,off}, with invariants d ≤ 30 and d ≥ 10
respectively. The invariants for the locations are defined as Inv(on) = {ν ∈
V ∣ν(d) ≤ 30} and Inv(off) = {ν ∈ V ∣ν(d) ≥ 10}. Furthermore, the flows defined
for these locations are ḋ == 5 for on and ḋ == −5 for off . The flows are shown
in Equations (2.3) and (2.4).

Flow(on) = {f ∶ R≥0 → V ∣∃c ∈ R.∀t ∈ R≥0.f(t)(d) = 5t + c} (2.3)
Flow(off) = {f ∶ R≥0 → V ∣∃c ∈ R.∀t ∈ R≥0.f(t)(d) = −5t + c} (2.4)

The set of synchronization labels is defined as Lab = {a, b}. The transition from
on to off labeled with a has a guard d ≥ 20 and no assignments, while the self

16 2. Preliminaries

loop of location off labeled with a/b has a guard d ≤ 10 and the assignment
d ∶= 30. The transition with label a/b describes two transitions where one
transition is labeled a and the other is labeled b, while they have the same
source and target location as well as the same guard d ≤ 10 and assignment
d ∶= 30. The set of transitions is defined in Equations (2.5) to (2.7) where Transτ
is the set of all τ -transitions.

Trans = {(on, a,{(ν, ν′) ∈ V 2∣ν(d) ≥ 20 ∧ ν(d) = ν′(d)},off), (2.5)
(off , a,{(ν, ν′) ∈ V 2∣ν(d) ≤ 10 ∧ ν′(d) = 30},off), (2.6)
(off , b,{(ν, ν′) ∈ V 2∣ν(d) ≤ 10 ∧ ν′(d) = 30},off)} ∪Transτ (2.7)

The only initial state of the hybrid automaton is the state with initial location
on and variable assignment d ∶= 20. Thus, the initial states are defined as
Init = {(on,{ν ∈ V ∣ν(d) = 20})}

Furthermore, we define a path in a hybrid automaton in Definition 2.3 as we
are interested in which states can be reached during the analysis of a hybrid
automaton.

Definition 2.3 (Path)
An (automaton) path ρ is a finite sequence of states, which consist of
a location and variable valuation, which describes a possible path in an
automaton

● ρ = (loc1, V1) → (loc2, V2) → . . . → (locn, Vn) describes an automaton
path of length n where (loci, Vi) is the state at position i in the path
with location loci and is a set of variable valuation Vi, where (loc1, V1)
is an inital state.

These path can be determined by a hybrid reachability analysis. For our
purposes, we reduce a path ρ = (loc1, V1) → (loc2, V2) → . . . → (locn, Vn) to a
location path loc1 → loc2 → . . .→ locn, if we only need to consider the reachable
locations of the automaton.

Furthermore, we differentiate between linear and non-linear hybrid automaton.
Linear hybrid automata are hybrid automata, where all flows, invariants and
transition relations are defined by linear expressions [ACH+95]. Non-linear
hybrid automata are not restricted in this way.

2. Preliminaries 17

2.5 Hybrid Automaton Reachability

The reachability problem for hybrid automaton is to decide whether there is a
path from an initial state to a specific target state. It is an important problem
for verifying automata. Unfortunately, for hybrid automata it is undecidable in
general [ACH+95]. To verify hybrid automata we need to compute the reachable
states of the automata and check if the system stays in safe states, i.e., never
reaches forbidden/bad states. These forbidden states define the safety conditions
for a given system. Using approximation, the reachable states of the hybrid
model can be computed efficiently.

In order to verify an automaton given a set of forbidden states either a forward
or backward analysis is performed. During the forward analysis, the verification
starts computing the reachability of the initial states. If the reachable set of
states intersects with the forbidden states, the system is not safe under the given
safety conditions. The backwards analysis performs a backwards reachability
starting from the forbidden states. If the intersection of the backwards reachable
states and the initial states is not empty, the system is not safe. For either
approach the reachability of a hybrid automaton has to be computed. These
computations terminate when either the specified maximal number of discrete
and time steps has been performed or a fixed point of the state set is found,
i.e., a point where the time and jump successors of all reachable states have
been computed without finding a new state.

Since the reachability for hybrid automata is undecidable in general as mentioned
before, the most common approach to analyze hybrid systems is to approximate
the reachable states in each step to determine the reachable states of the
automaton [ACH+95]. For our purposes, we use the SpaceEx tool platform
in order to perform a reachability analysis [FLGD+11]. We also utilize Flow*
[CAS13] to perform forward reachability analysis using Taylor Model flowpipes
for hybrid automata.

The third-party tools are introduced in the following sections. A detailed
description of the SpaceEx tool platform is given in Section 2.5.1. Furthermore,
Flow* is presented in Section 2.5.2.

2.5.1 SpaceEx

SpaceEx [FLGD+11] can perform a reachability analysis on hybrid systems
as well as a safety analysis. The models for SpaceEx are specified using the
SpaceEx modeling language [SC10]. The analysis supports different algorithms,
which include PHAVer [Fre05], the LGG Support Function and the STC en-

18 2. Preliminaries

hancement for LGG scenario. The PHAVer algorithm is applicable on linear
hybrid automata, i.e. hybrid systems with piecewise constant bounds on the
derivatives, and produces precise results for the reachability. During its ex-
ecution, it computes exact results for piecewise constant flows. The LGG
Support Function scenario implements a variant of the Le Guernic-Girad (LGG)
algorithm [GG09]. During the reachability analysis, support functions are used
to approximate the reachable states. The STC scenario is based on LGG and
computes less convex sets and more precise images of the discrete transitions.
These scenarios over-approximate the reachable states and can be applied to
hybrid systems with piecewise affine dynamics with non-deterministic inputs.
SpaceEx requires the hybrid automaton being stored in a XML-File and a
configuration file specifying initial states, output formats, number of iterations,
where an iteration describes the computations of all reachable states from a
given state and time horizon, and other preferences. The configuration (CFG)
file can also be used to define forbidden states.

The number of iterations defines the amount of states for which the reachable
states are computed given a time horizon. This option is required as the
reachability analysis for hybrid automata is undecidable in general and might
not reach a fix point, which would cause the analysis to terminate. If −1 is set
as the iteration number, SpaceEx will only terminate if a fix point is found. If
the system does not exhibit Zeno behaviour, we can use this option due to the
sequential structure of the counterexample which translates to the automaton as
well the automaton being a finite model and the only reachable path being loop
free. We can also find fix points in a system with Zeno behaviour, however the
analysis might require many iterations to detect such fix points. Furthermore,
it is possible to set the range of the time steps. If the SpaceEx configurations
are set too conservative, the tool might produce meaningless results, as only
few reachable states are computed.

SpaceEx produces several different outputs. The INTV output generates an
interval file containing over-approximated intervals for each variable containing
its reachable values. These intervals are given for the entire automaton and for
each location separately. Another output file is the TXT-File, which provides
information about the state and vertices of the polytopes that model the
reachable areas of the continuous variables. The state information include initial
values and locations. These outputs allow us to determine the reachable states,
but do not provide information about the paths which are taken during the
reachability analysis.

The third textual output is a non-standard console output. SpaceEx has been
modified to provide additional console output. When SpaceEx is executed using
debug level 2 as verbosity, information on the computation of the time and

2. Preliminaries 19

discrete steps is given. Using a slightly modified version of SpaceEx, enough
information is provided to determine the set of paths which have been analyzed.
In order to perform our analysis of the hybrid reachability, we require this
extended console output.

In addition to the textual outputs of SpaceEx, the tool platform also provides a
variety of graphical output formats. Figures 2.5 and 2.6 show exemplary two
and three dimensional outputs of SpaceEx.

Figure 2.5: 2d SpaceEx Output Figure 2.6: 3d SpaceEx Output

Graphical outputs supported by SpaceEx are the GEN (Vertice List) and JVX
output [JP00]. Both of these formats can be visualized using third-party tools.
Graph of the Plotutils [MT00] package can be used for GEN and JavaView
[Pol06] for the JVX format.

SpaceEx also has some restrictions. SpaceEx can handle linear convex guards
and invariants, i.e. it does not support the strict inequality operators < and
>. This can be solved by overapproximation to ≤ and ≥ or by approximating
with a deviation ε. Disjunction is not allowed in models, but occurrences of
disjunction in transition guards or invariants can be split into new transitions
and locations respectively, after they have been transformed into disjunctive
normal form. Furthermore, the supported variable types only include integer
and real. Boolean variables are redefined as numerical variables where the
boolean conditions are transformed into equality checks to the values of 1 for
true and 0 for false.

20 2. Preliminaries

2.5.2 Flow*

The Flow* tool [CAS13] allows to analyze hybrid automata by generating
flowpipes using Taylor Models (TMs) [BM98]. Flowpipes over-approximate the
reachable states over a certain time horizon. The previously mentioned TMs were
originally proposed by Berz and Makino in order to represent functions by Taylor
polynomials. The flow of the continuous variables of a system can be constrained
accurately by Taylor models as they are a sets defined by polynomials over
intervals, which are bloated by an additional interval. Furthermore, the usage
of Taylor models allows Flow* to analyze non-linear hybrid systems [CAS12].

Flow* is able to compute Taylor model flowpipes for continuous systems which
are described by non linear ordinary differential equations (ODEs). Furthermore,
Flow* supports the computation of the continuous evolution through ODEs with
discrete jumps. The verification tool is able to handle dynamics represented by
non-linear ODEs, which may include non-polynomial terms such as sine, cosine
and square root. Additionally, Flow* supports location invariant and transition
guards described by the conjunction of polynomial constraints. Transition
assignments are defined by polynomial mappings with uncertainties.

The tool also provides several output formats for a reachability analysis. The
FLOW file contains the reachable states of the system in the form of flowpipes,
while the PLT file offers a graphical plot format, which can be used to visualize
the output. Furthermore, if forbidden states are defined and reachable, Flow*
constructs a counterexample file, which contains all paths from an initial state
to a forbidden state.

Flow* has similar restrictions as SpaceEx. Disjunctions in transition guards
and location invariants have to be split into multiple transitions and locations
containing only conjunctions of polynomial constraints. On the other hand,
the current version of Flow* star is restricted to initial states which share the
same initial location. This restriction can be resolved by creating a new initial
location incorporating all original initial states and constructing transitions to
the original initial locations. These transitions are guarded with the original
initial assignments for each original initial location. Thus, after the reachability
analysis has taken such a transition the new state corresponds to the original
initial state of the automaton.

Unfortunately, the third party GSL matrix library [Gou09] which is used for
Flow* computations is the origin of a matrix rank deficiency exception. This
exception occurs in some more complex systems and until fixed prevents us
from using Flow* as a verification tool. However, we already have a functional
architecture, which allows us to utilize Flow* for the hybrid reachability analysis
as soon as the problem has been solved.

2. Preliminaries 21

2.5.3 Reachable Paths

Neither SpaceEx nor Flow* provides us directly with the output which is
required for our purposes. We can however derive such an output from the
given outputs of both tools. We are interested in the paths, which the hybrid
system visits during its analysis. The required outputs are reachability trees as
they provide a suitable data structure to store the reachable paths. We show
how to derive a reachability tree from the SpaceEx and Flow* output later on.

We use reachability trees to represent these paths as defined in Definition 2.3,
so that a reachability tree contains all states which have been reached during
the analysis. A definition for a reachability tree is given in Definition 2.4.

Definition 2.4 (Reachability Tree)
Given a hybrid automaton H = (Loc,Var ,Lab,Trans,Flow, Inv, Init), a
reachability tree is a connected cycle-free graph containing the states reach-
able during the hybrid reachability analysis. Each node η = (loc, V,C), which
represents a reachable state, consists of:

● loc ∈ Loc is the location of the automaton the analysis has reached

● V is a set of variable valuations of the variables in Var

● C are a set of successor nodes with states that are direct successors of
the state (loc, V)

The root node ηr = (locr, Vr,Cr) corresponds to an initial state of H with
(locr, Vr) ∈ Inv. In a leaf node ηl = (locl, Vl,∅) either there are no more
states reachable from (locl, Vl) or the reachability analysis has been restricted.

The tree can be used to determine the reachable locations in a hybrid automaton.
If the analyzed automaton has multiple initial states, there might be multiple
root nodes, thus instead of a tree, the output corresponds to a forest. Figure 2.7
shows an exemplary reachability tree, where each node contains a location loci
and a set of variable valuations Vi.

For our purposes, we only consider the paths that start in the root node (loc1, V1)
and end in one of the leaf nodes since we are interested in the complete paths.
All remaining path fragments, which are included in these paths are ignored as
they provide redundant information. The relevant paths of the tree in Figure 2.7
are shown in Equations (2.8) to (2.11)

22 2. Preliminaries

loc1
V1

loc2
V2

loc3
V3

loc4
V4

loc5
V5

loc6
V6

loc7
V7

Figure 2.7: Reachability Tree

(loc1, V1)→ (loc3, V3) (2.8)
(loc1, V1)→ (loc2, V2)→ (loc5, V5) (2.9)
(loc1, V1)→ (loc2, V2)→ (loc6, V6) (2.10)
(loc1, V1)→ (loc4, V4)→ (loc7, V7) (2.11)

The resulting list of paths in Equations (2.8) to (2.11) contains all states, which
have been reached during the hybrid reachability analysis.

2.6 SFC Verification Tool

We integrated the hybrid analysis of BMC counterexamples into an existing
tool for SFC Verification. The SFC Verification tool provides functionality to
transform a SFC and given plant dynamics, which model the dynamic behaviour
of a plant, into a hybrid automaton, thus allowing the user to verify a PLC
program using hybrid verification tools [NA14]. The dynamic behaviour of a
plant is provided using conditional ordinary differential equations as shown
in Section 2.6.1. Using these plant dynamics the given program is verified as
described in Section 2.6.2.

2. Preliminaries 23

2.6.1 Conditional Ordinary Differential Equations

The dynamic behaviour of a plant can be specified by conditional ordinary
differential equation systems (conditional ODEs) [NA12]. We define conditional
ODEs in Definition 2.5

Definition 2.5 (Conditional ODE System)
Let ODEVar be the set of all ordinary differential equations over Var and
Conds the set of all conditions over Var . A conditional ODE system is a
pair c ∶= (cond ∶ ODEs) with:

● cond ∈ Conds is a condition over the variables Var

● ODEs ⊆ ODEVar is a set of ODEs over Var

The condition determines when the related set of ordinary differential equation
systems is used to describe the flow of continuous variables. A list of conditional
ODEs as depicted in Equations (2.12) to (2.14) can be used to define the
dynamic behavior of the hybrid system.

cond1 ∶ ODEs1 (2.12)
cond2 ∶ ODEs2 (2.13)
⋮ ∶ ⋮

condl ∶ ODEsl (2.14)

Some conditions condi for i ∈ {1, 2, . . . , l} overlap at the boundaries, which might
cause Zeno behaviour in the hybrid model as the hybrid model is able to switch
between the overlapping conditional ODE systems. This might result in the
system switching conditional ODEs after each computation of reachable states.

Assuming a tank system where the inflow is controlled by a valve and the
outflow occurs due to a leak in the tank, where outv defines the current state of
the valve and the water height is h, we use a list of conditional ODE systems to
model the height change of the water inside a tank. The change of h depends
on whether the valve is open outv == 1 or the valve is closed outv == 0. A list
of conditional ODE systems for this tank system can be defined as shown in
Equations (2.15) and (2.16)

outv == 1 ∶ ḣ1 = 2, (2.15)
outv == 0 ∶ ḣ1 = −2 (2.16)

24 2. Preliminaries

As described in Section 2.2, an open valve corresponds to the water flowing into
the tank being larger than the amount of the water flowing out through the
hole in the bottom of the tank. This results in the water level rising by the
value of 2 for each time unit. Furthermore, a closed value corresponds to the
water level being reduced by 2, i.e. ḣ1 = −2, for each time unit, due to water
leaking out through a hole in the tank.

2.6.2 SFC Verification

The SFC Verification allows the verification of PLC-controlled plants. The
verification parses a SFC and the plant dynamics given by conditional ODEs
and constructs a hybrid sequential function chart (HSFC), which retains the
discrete behaviour of the SFC and incorporates the plant dynamics. The HSFC
is transformed into a hybrid automaton [NA12]. The SFC Verification tool uses
a toolchain to perform this transformation.

This toolchain provides several tools to transform a hybrid automaton as the
hybrid automaton resulting from the HSFC transformation might not provide a
suitable model for SpaceEx or Flow*. We repurpose these tools to transform
the automata we obtain during our analysis. These tools allow us to remove
some of the unreachable locations and their transitions as well as initial states
which contain unsatisfiable invariants in their initial location. Tools to split the
disjunction in transition guard and location invariants are also provided. Fixes
for several other problems pertaining to the restrictions of SpaceEx and Flow*
are made available by the tools.

We use some of these tools to transform our hybrid automaton in a verifiable
model. Furthermore, we utilize the model generators provided by the SFC
verification tool. These generators allow us to transform a HA into a valid tool
model for SpaceEx using the SpaceEx modeling language [SC10] or a model
using the Flow* syntax. Once such a model is generated by the tool, we can
use SpaceEx or Flow* to verify the given system.

The interface of the SFC Verification also provides a general configuration. Using
these configurations it is possible to set paths to verification tool executables.
Furthermore, the general configuration file determines which tool is being used
for the reachability analysis. Listing 2.3 illustrates an excerpt of an exemplary
general configuration file containing the settings relevant for our purposes.

Using all the functionality provided by the SFC Verification tool, we are able to
transform a hybrid automaton in suitable models for SpaceEx and Flow* and
construct the models files for the verification tools with the required syntax.

2. Preliminaries 25

SpaceEx = /home /.../ spaceex_exe / spaceex
FlowStar = /home /.../ flowstar -1.2.0/ flowstar

Verification Tool = SpaceEx
...

Listing 2.3: Property File

2.7 SMTInterpol

During the construction and analysis of the hybrid automata, we employ
SMTInterpol for arising satisfiability problems. As our tool is developed in Java
we have decided to use SMTInterpol [CHN12], as it provides an easy interface
for our purposes in the form of a Java API. Moreover, SMTInterpol has achieved
high rankings in the SMT competition SMT-COMP 2014. SMTInterpol is an
interpolating SMT solver which supports the quantifier-free fragments of the
combination of the theory of uninterpreted function as well as a theory of linear
arithmetic over integers and reals. Furthermore, SMTInterpol is SMTLIB 2
[BST10] compliant, which is an common standard for SMT solvers.

SMTInterpol converts asserted formulas into conjunctive normal form, which
is a conjunction of disjunction of literals, before solving them. Moreover, it
roughly follows the Davis–Putnam–Logemann–Loveland (DPLL) [GHN+04] as
an underlying algorithm. There are two different solver, which are used for
satisfiability checking. The first solver is able the handle uninterpreted functions
while the second solver is applicable to linear arithmetic. For our purposes,
we restrict the satisfiability analysis to linear arithmetic, as we do not use
uninterpreted functions in our models.

SMTInterpol can produce models for satisfiable formulas as well as provide
resolution proofs for unsatisfiable formulas.

2.8 Summary

In this chapter we have introduced programmable logic controllers which control
plants. An example for such a plant is given in the form of a tank which can
be filled with water or drained. The relevant water levels in this tank can be
determined by sensors. The discrete senor activity is verified by the BMC we
presented as it is able to detect if unsafe states are reachable in a program
of a PLC. Furthermore, counterexamples are defined, which are produced
if such an unsafe state is reached. Hybrid automata are used to represent

26 2. Preliminaries

the BMC counterexamples that have been extended with the plant dynamics.
Constructing hybrid automata to describe the counterexamples allows us to
perform hybrid reachability analysis using third-party tools like SpaceEx and
Flow*. Moreover, we are able to repurpose the existing architecture of the SFC
Verification tool, which already provides functionality to parse parts of the plant
dynamics as well as an automaton data structure and automaton transformation
tools. We use these to construct suitable models for SpaceEx and Flow*. During
some transformations we need to solve satisfiability problems for logic formulas.
We employ SMTInterpol for these tasks when they arise.

Chapter 3

Hybrid Model

In this chapter we present how to transform a bounded model checking coun-
terexample as defined in Section 2.3.3 to construct a hybrid automaton, which
combines the discrete behaviour provided by the counterexample with the plant
dynamics. The construction of such a hybrid automaton is accomplished by
adding the dynamic behaviour to a sequential automaton describing the different
discrete assignments for each PLC cycle, which are defined by a counterexample.
Once the automaton has been constructed, we can use hybrid reachability
analysis to verify the extended dynamic model describing the counterexample.
Figure 3.1 depicts the section of the complete verification procedure which is
discussed in this chapter.

Safety
property

Instruction
List

Plant
dynamics

Hybrid
Verification

BMC
(Siemens)

Counter-
example
confirmed

Safe?
Return
safe

Return
unknown

Discrete
Analysis

no +
counterexample

yes

Hybrid
Analysis

no +
explanation

yes

Figure 3.1: Automaton Generation

In Section 3.1 we show how we can construct a hybrid automaton which
represents the discrete behaviour of a BMC counterexample. We call this
automaton a PLC cycle automaton. Afterwards, we gradually add the dynamic
behaviour and introduce the parallel composition of two automata as shown
in Section 3.2. In the first step in Section 3.3, we extend the PLC cycle
automaton by adding a timer and constraints for this timer to model the
cycle time of each PLC cycle. This is accomplished by constructing a hybrid
automaton which models the cycle time and perform a parallel composition

28 3. Hybrid Model

with the PLC cycle automaton. In following step we add transition guards and
assignments for the dynamic behaviour according to a set of rules as presented
in Section 3.4. The flows of the plant dynamics are included by constructing
another hybrid automaton. This automaton models the dynamics for a list of
conditional ODEs. Thereafter, we perform another parallel composition using
the previously composition result with the extended guards and assignments
and the newly constructed automaton for the conditional ODEs. How the
initial assignments for the continuous variables are determined is presented
in Section 3.6. The initial values are determined based on conditions over
the discrete variables provided by the counterexample. Consequently, we have
added all plant dynamics to the model of the counterexample by constructing a
hybrid automaton, which is called a counterexample automaton, using these
transformations.

As explained in Section 2.6, we use the architecture of the SFC Verification tool,
which provides a toolchain with tools to add certain aspects of the dynamic
behaviour. This toolchain is presented in Section 3.7, where we explain the tools
which are crucial to construct the automaton as described. Furthermore, we
give a short overview of some tools which are needed to create suitable models
for SpaceEx and Flow*.

in Section 3.8 we propose an extension for the BMC counterexamples. The idea
is to allow wildcards instead of fixed value assignments. Subsequently, we show
how the construction of the PLC automaton changes if these wildcards occur in
the counterexample sequences.

Once the hybrid automaton has been constructed, we can use it to verify whether
the counterexample still describes a path where we reach an unsafe state while
the dynamic behaviour is taken into account. The result of such an analysis
can be used to determine discrete sequences, which cannot occur if the plant
dynamics are considered.

3.1 PLC Cycle Automaton

In order to analyze the dynamic behaviour of a plant, we combine the plant
dynamics with the counterexamples of the discrete analysis. This allows us
to create a reduced hybrid system as we only consider a single discrete path
which has been determined to be unsafe. Thus, we check whether this behaviour
can occur if the plant dynamics are incorporated. Our goal is to construct an
automaton, which extends the counterexample provided by the BMC with the
dynamic behaviour, thus allowing us to use hybrid reachability analysis to verify
the extended discrete counterexamples.

3. Hybrid Model 29

Firstly, the BMC counterexample is transformed into a hybrid automaton.
This PLC cycle automaton represents the sequences of variables given by the
counterexample without any plant dynamics. The hybrid automaton as defined
in Definition 2.2, which we use to model the PLC cycle automaton, however
has the possibility to be extended with the plant dynamics. This allows us to
gradually add dynamic behaviour.

The length of the equi-length variable sequences of a counterexample defines
the number of automaton locations as each location corresponds to a cycle
during the PLC execution. The assignments of the first cycle are provided by
the first entries of each sequence of the counterexample and are converted into
the initial state of the automaton. Furthermore, the input and output variables
are converted into assignments on the transitions between these locations when
the sequence is converted into an automaton. This allows us to model the cycle
sequence, since we assure that in each cycle the discrete values are assigned
according to the given counterexample.

Assuming we have input and output sequences of length n provided by a BMC
counterexample as shown in Equations (3.1) to (3.6), we can construct a PLC
cycle automaton as presented in Figure 3.2.

inv1 ∶ (v1,1, v1,2, . . . , v1,n) (3.1)
inv2 ∶ (v2,1, v2,2, . . . , v2,n) (3.2)
⋮ ∶ ⋮
invk

∶ (vk,1, vk,2, . . . , vk,n) (3.3)
outv1 ∶ (vk+1,1, vk+1,2, . . . , vk+1,n) (3.4)
outv2 ∶ (vk+2,1, vk+2,2, . . . , vk+2,n) (3.5)
⋮ ∶ ⋮

outvm ∶ (vk+m,1, vk+m,2, . . . , vk+m,n) (3.6)

cycle1 cycle2 . . . cyclen

inv1 ∶=v1,1

⋮
invk

∶=vk,1

outv1 ∶=vk+1,1

⋮
outvm ∶=vk+m,1

t1,2

inv1 ∶=v1,2

⋮
invk

∶=vk,2

outv1 ∶=vk+1,2

⋮
outvm ∶=vk+m,2

t2,3

inv1 ∶=v1,3

⋮
invk

∶=vk,3

outv1 ∶=vk+1,3

⋮
outvm ∶=vk+m,3

tn−1,n

inv1 ∶=v1,n

⋮
invk

∶=vk,n

outv1 ∶=vk+1,n

⋮
outvm ∶=vk+m,n

Figure 3.2: PLC Cycle Automaton

30 3. Hybrid Model

The discrete behaviour provided by the BMC counterexample is modeled by the
PLC cycle automaton. Synchronization labels are assigned to each transition
according to the cycle numbers of the source and target locations. Thus, a
transition from cyclei to cyclei+1 is labeled with the synchronization label ti,i+1.
The automaton has no continuous variables and flows, all transition guards
and invariants are set to true, i.e. all variable valuations are allowed, for each
transition and location. We now add the dynamic behaviour to the PLC cycle
automaton to construct a counterexample automaton.

3.2 Generate Counterexample Automaton

As our goal is to validate the counterexample, once it has been extended by
the dynamic behaviour, the counterexample automaton has to incorporate all
plant dynamics. Firstly, we show how we can construct such a counterexample
automaton by using the parallel composition on hybrid automata as defined in
Definition 2.2 to add plant dynamics.

Using the definition given in Definition 2.2, we are going to generate a hybrid
automaton, which contains the plant dynamics. We accomplish this, by con-
structing several hybrid automata containing different aspects of the dynamic
behaviour, for which we construct the parallel compositions. During each
parallel composition, we add additional dynamic behaviour.

The parallel composition H1∣∣H2 of two hybrid automata H1 and H2, results
in a hybrid automaton H. In order to construct the parallel composition, the
labeling of the transitions has to be considered. Non-synchronizing transitions,
i.e., τ -transitions do not synchronize with other transitions and can be taken in
the composition automaton independent of the second automatons behaviour.
Each hybrid automaton includes a set of τ -transitions, which do not change
the state of the automaton as defined in Definition 2.2. All transitions with
synchronization labels can only be taken if either the second automaton takes a
transition with the same label or if the label set of the second automaton does
not include the label and takes a τ -transition.

Furthermore, the possible variable valuations for two hybrid automata H1 and
H2 are extended. We consider the composition for disjunct sets of variables Var1
and Var2. ∀v ∈ Var1 ∩Var2, we rename v in one automaton to create disjunct
sets. Afterwards, we extend the domain of the valuations for both automata.
Assuming V1 is the set of all valuations ν1 ∶ Var1 → R and V2 is the set of
all valuations ν2 ∶ Var2 → R, the new set of all valuations for both automata
is V = V1 ∪ V2. Thus, we can use the new valuation domain to construct the
intersection of the valuations in H1 and H2, which results in new valuation

3. Hybrid Model 31

for the composition automaton. We define the parallel composition of hybrid
automata H1 and H2 as shown in Definition 3.1, which results in a new hybrid
automaton H.

Definition 3.1 (Parallel Composition HA/HA)
The parallel composition of the hybrid automaton H1 ∶=
(Loc1,Var1,Lab1,Trans1,Flow1, Inv1, Init1) and the hybrid automaton
H2 ∶= (Loc2,Var2,Lab2,Trans2,Flow2, Inv2, Init2) with extended valuations
is a hybrid automaton (Locp,Varp,Labp,Transp,Flowp, Invp, Initp) where:

● Locp ∶= Loc1 × Loc2

● Varp ∶= Var1 ∪Var2

● Labp ∶= Lab1 ∪ Lab2

● ((l1, l2), λ, µ, (l′1, l′2)) ∈ Transp iff

– there exists a transition (l1, λ1, µ1, l′1) ∈ Trans1 and a transition
(l2, λ2, µ2, l′2) ∈ Trans2 such that

– either λ = λ1 = λ2 or
λ = λ1 ∈ Lab1/Lab2 and λ2 = τ or
λ = λ2 ∈ Lab2/Lab1 and λ1 = τ and

– µ = µ1 ∩ µ2

● Flowp((l1, l2)) ∶= Flow1(l1) ∩ Flow2(l2) where l1 ∈ Loc1 and l2 ∈ Loc2

● Invp((l1, l2)) ∶= Inv1(l1) ∧ Inv2(l2) where l1 ∈ Loc1 and l2 ∈ Loc2

● Initp ∶= {((l1, l2), ν)∣(l1, ν1) ∈ Init1 ∧ (l2, ν2) ∈ Init2 ∧ ν = ν1 ∩ ν2}

The parallel composition creates new locations Locp consisting of all combina-
tions of the locations Loc1 of H1 and the locations Loc2 of H2. The labels Labp
of the new automaton are the union of the sets of labels Lab1 and Lab2 of the
two automata. A transition is added to the new systems if the synchronization
labels match. Moreover, we add a transition if H1 takes a transition with label
a ∈ Lab1/Lab2 and H2 takes a τ -transition as well as for the analogous case
where H2 takes a transition with a label which does not occur in Lab1. The
guards and transitions are composed by intersecting the transition relations µ1

32 3. Hybrid Model

and µ2, thus creating the intersection of the valuations defining the guards and
assignments. The new flows Flowp for a location (l1, l2) are created by adding
the intersection of the flows given by Flow1 and Flow2 for locations l1 and l2
respectively. This way the composition models the flows by adding the flows of
l1 and l2 to the combined location (l1, l2). The invariants Inv1 and Inv2 for the
locations l1 and l2 are added in conjunction for the combined location (l1, l2) in
Invp a both invariants have to be satisfied for the composition automaton to be
able to reach location (l1, l2). The new initial states Initp are constructed from
the intersection of the original initial states Init1 and Init2 as only the states
need to be considered, where both automata are in an initial state.

We use the parallel composition to extend the PLC cycle automaton which is
constructed as shown in Section 3.1.

3.3 PLC Cycle Times

A PLC executes its programming cyclically and requires a certain amount of
time for each cycle as explained in Section 2.1. These cycle times are part
of the PLCs dynamic behaviour and have to be added to model the dynamic
behaviour correctly. We can define cycle times for the PLC in three different
ways. The cycle time can be defined as

1. a constant time c for each PLC cycle or
2. an upper and lower bound [l, u] for each PLC cycle or
3. an upper and lower bound [li, ui] for each PLC cycle i individually.

We now show the construction of a hybrid automaton for the third case, as the
other two cases can be simply derived from this construction. Assuming we have
the cycle times [li, ui] for each PLC cycle i of the counterexample, we construct
an automaton of the same length, i.e., the same amount of locations since we
need a location for each cycle similar to the given PLC cycle automaton derived
from the counterexample as presented in Section 3.1. The hybrid automaton
for the parallel composition is illustrated in Figure 3.3.

cycle1

t≤u1

ṫ==1

cycle2

t≤u2

ṫ==1

. . .
cyclen

t≤un

ṫ==1
t∶=0

t1,2

t≥l1

t∶=0

t2,3

t≥l2

t∶=0

tn−1,n

t≥ln−1

t∶=0

Figure 3.3: PLC Cycle Times Automaton

3. Hybrid Model 33

The new automaton has a similar sequential structure as the PLC cycle au-
tomaton. Each location of the hybrid automaton contains a flow for the time
variable t which defines a constant passing of time. Furthermore, in each cycle
location i we require an invariant t ≤ ui and the guards to its successor are t ≥ li
and a reset assignment t ∶= 0. The combination of these restrictions and the
assignments allows us to model the upper and lower bounds for each PLC cycle
as the system can only stay between li and ui in each cycle i. The transitions are
labeled in the same way as the PLC cycle automaton presented in Figure 3.2.

We now apply the parallel composition H1∣∣H2 for automaton H1 as defined
Figure 3.2 and automaton H2 as defined in Figure 3.3. If we omit all unreachable
locations and transitions in H1∣∣H2, the composition results in the automaton
shown in Figure 3.4, where we rename all composition locations (cyclei, cyclei)
to cyclei in the new automaton.

cycle1

t≤u1

ṫ==1

cycle2

t≤u2

ṫ==1

. . .
cyclen

t≤un

ṫ==1
inv1 ∶=v1,1

⋮
outvm ∶=vk+m,1

t∶=0

t1,2

t≥l1

inv1 ∶=v1,2

⋮
invk

∶=vk,1

outvk+1 ∶=vk+1,2

⋮
outvm ∶=vk+m,2

t∶=0

t2,3

t≥l2

inv1 ∶=v1,3

⋮
invk

∶=vk,3

outvk+1 ∶=vk+1,3

⋮
outvm ∶=vk+m,3

t∶=0

tn−1,n

t≥ln−1

inv1 ∶=v1,n

⋮
invk

∶=vk,n

outvk+1 ∶=vk+1,n

⋮
outvm ∶=vk+m,n

t∶=0

Figure 3.4: Composition Automaton

The resulting automaton combines the discrete behaviour of the BMC coun-
terexample as well as the dynamic behaviour given by the PLC cycle times.

3.4 Discrete/Dynamic Linking

The discrete assignments given by the counterexamples also provide information
about the plant dynamics. The linking between the discrete and dynamic
behaviour is given by replacement rules as presented in Section 3.4.1. We use
these replacement rules to model the dynamic behaviour of the systems sensors
by defining restrictions of the continuous variables. We show how to apply these
replacement rules to a hybrid automaton in Section 3.4.2.

34 3. Hybrid Model

3.4.1 Replacement Rules

The replacement rules define the relations between the variables provided in the
BMC counterexample and the continuous variables of the conditional ODEs.
These relations can be used to connect the discrete sensors and variables to the
dynamic behavior of the system and are stored in Link Files. Currently, the
replacement rules support boolean and integer values. There are two different
types of Link File entries.

Firstly, an error ε > 0 is specified, which allows us to model < and > for
verification tools which are restricted to ≤ and ≥. Thus, using small values for ε
to model strict inequalities for the replacement rules, we get the transformations
seen in Equations (3.7) and (3.8).

l < r Ô⇒ l ≤ r − ε (3.7)
l > r Ô⇒ l ≥ r + ε (3.8)

The second type of entries connects the discrete with the dynamic behaviour.
We define a replacement rule as shown in Definition 3.2.

Definition 3.2 (Replacement Rule)
A replacement rule ρ ∶= cond ⇔ guard(⇔ assign) describes the relation
between the discrete and dynamic behaviour of a system for a set discrete
variables Varsd and a set of continuous variables Varsc. Furthermore,
Condsd is the set of all possible conditions for Varsd and Condsc is the set
of all possible conditions for Varsc.

● cond ∈ Condsd defines a condition over Ward. The rule is only applied
if cond is satisfied.

● guard ∈ Condsc describes the new guard for the transition over Varc
(optional if true)

● assign is a set of variable valuations ν ∶ Varsc → R for the continuous
variables defining new assignments for a transition

A replacement rule ρ defines a relation between discrete variables and continuous
variables. Each of these entries consist of two or three sides which are separated
by ⇔. The left side of the entry cond defines a condition over the discrete
variables. If during the automaton generation the assignments of the discrete
variables in a cycle satisfy the condition cond, the other sides guard and assign

3. Hybrid Model 35

of the entry are conjuncted with the current transition guard and provide
additional transition assignments. In this case, we say the replacement rule is
satisfied. All satisfiable replacement rules are applied in conjunction as new
transition guards and assignments. The replacement rules allow overlapping
conditions as well as conditions, which do not cover the entire domain of the
variables used in the conditions.

For the assignment of each transition, we check which replacement rules are
applied to the transition. The satisfiability of each condition is checked using
SMTInterpol which has been presented in Section 2.7. In order to use the SMT
solver, we construct a formula representing the condition of the replacment rule
and the discrete variable assignments. For each condition we assign a set of
equalities and inequalities to define the variable assignments according to the
sequence. Thus, an assignment of a single value c to a variable v results in
a equation v = c, which added in conjunction with the actual condition cond.
Furthermore, we can also model the assignment of intervals [l, u] to v, by adding
two inequalities v >= l and v <= u where l and u are numerical values.

3.4.2 Transition Dynamics

The guards and assignments for the continuous variables are determined accord-
ing to the discrete variable assignments using the replacement rules introduced
in Section 3.4.1. We present such a transformation with the aid of an exemplary
set of replacement rules and a counterexample. The replacement rules are
applied to all transitions in the transformed automaton shown in Figure 3.4.

A possible entry for a boolean variable inv and continuous variable d is the
replacement rule in_v == 1 <=> d > 10. If the negated condition is required
to model the plant dynamics as well, an entry in_v == 0 <=> d <= 10 has to
be added to the set of replacement rules. An exemplary set of replacement rules
for the discrete input variables inv1 , inv2 and inv3 and the continuous variables
d1 and d2 is shown in Equations (3.9) to (3.11).

inv1 == 1⇔ d1 ≥ 20⇔ d2 ∶= 0 (3.9)
inv2 == 0 ∧ inv3 < 10⇔ d2 ≤ 50 ∧ d1 < 30 (3.10)

inv3 >= 10⇔ d1 < 10 (3.11)

Assuming we apply the replacement rules to an exemplary transition representing
cycle i in a hybrid automaton with guard g and the assignments inv1 ∶= 1, inv2 ∶= 0
and inv3 ∶= 5 omitting all other assignments. We get the transformation shown
in Figure 3.5 for a transition of an extended PLC cycle automaton.

36 3. Hybrid Model

cyclei−1

t≤ui−1

ṫ==1

cyclei

t≤ui

ṫ==1

t≥li−1

t∶=0
inv1 ∶=1
inv2 ∶=0
inv3 ∶=5

cyclei−1

t≤ui−1

ṫ==1

cyclei

t≤ui

ṫ==1

t≥li−1∧
d1≥20∧

d2≤50∧d1<30

t∶=0
inv1 ∶=1
inv2 ∶=0
inv3 ∶=5
d2∶=0

Figure 3.5: Replacement Rule Application

For a transition in the PLC Cycle automaton which has been extended with
the cycle times, Figure 3.5 shows the original transition on the left side and the
transformed transitions where the replacement rules have been applied on the
right side. As the conditions of the replacement rules Equations (3.9) and (3.10)
are satisfied, their guards d1 ≥ 20, d2 ≤ 50 ∧ d1 < 30 and assignment d2 ∶= 0 are
added in conjunction to the current transition guard g and the given transition
assignments respectively.

This transformation is applied to all the transitions of the automaton given
in Figure 3.4. Then the guards have been adapted to incorporate restrictions
for the dynamic behavior, but the flows and their conditions have not yet
been added. We define these conditions and the related dynamic behavior by
conditional ordinary differential equations as described in Section 2.6.1.

3.5 Adding Conditional ODEs

The conditional ODE systems as introduced in Section 2.6.1 are added to the
hybrid automaton presented in Figure 3.4 after the replacement rules have been
applied as described in Section 3.4.2. This transformation is used to add the
flows for the continuous variables to each location as well as restrict the flows
according the conditions of the conditional ODE systems.

We now construct a hybrid automaton which represents the conditional ODE
systems. By adding this automaton, we want to model the behaviour of the
continuous variables for each condition and the ODEs. The general idea of
the composition is to create an automaton representing the dynamic behaviour
defined by conditional ODE systems, thus by composing it with the extended
PLC cycle automaton, i.e. the PLC cycle automaton which has been extended
with the cycle times and where the replacement rules have been applied, we
extend each location which represents a PLC cycle with dynamic behaviour of
the conditional ODE systems.

3. Hybrid Model 37

As the condition of a conditional ODE system defines when the ODEs are
applied as flows we add the condition to the invariant of a location and the
ODEs as flows. We model all conditional ODE systems by adding one location
for each conditional ODE system. If the conditions of the conditional ODE
systems do not cover all possible valuations, we need to construct a negation
for the conditions by creating the conjunction of all negated conditional ODE
system conditions, i.e. condneg = ¬cond1 ∧ ¬cond2 ∧ . . . ∧ ¬condl, and add an
additional location, where the flows ODEsneg represent chaotic behaviour for all
continuous variables defined in the ODEs of the conditional ODEs. Furthermore,
if the invariant would no longer be satisfied if a time step is taken, we need
transitions to the locations representing the other conditional ODEs allowing
the system to switch to another location where the invariant is satisfied by
the current state. The conditions must overlap for such a location change to
be able to occur. We call these connecting transitions copy transitions. All
locations are defined as initial locations, because this allows the system to start
its analysis in any conditional ODE system where the condition is satisfied.
The automaton representing the conditional ODEs shown in Equations (2.12)
to (2.14) is illustrated in Figure 3.6.

cycle1

cond1

ODEs1

t

. . .
cyclel

condl

ODEsl

t

cycleneg

condneg

ODEsneg

t

t/ct

t/ct

t/ct

t/ct

t/ct

t/ct

t/ct

t/ct
t/ct

t/ct

Figure 3.6: Conditional ODE Automaton

Each transition with the label t/ct defines two transitons, where one transition is
labeled with t and the second transition is labeled with ct. The transitions labeled
ct are the copy transitions, while the transitions labeled t are added so that the
parallel composition adds all possible transitions from a location corresponding
to cycle i to all locations corresponding to cycle i + 1 for i ∈ {1,2, . . . , n − 1}.

The hybrid automata in Figure 3.4 after replacement rules as described in
Section 3.4.2 have been applied is adapted by replacing all labels ti,i+1 with t for

38 3. Hybrid Model

i ∈ {1, 2, . . . , n−1}. We now compute the parallel composition of this automaton
and the automaton in Figure 3.6. Each location in Figure 3.4 is extended by
the behaviour of the newly constructed automaton. The intersection of synchro-
nization label sets is not empty since t is used in both automata. However as ct
only occurs in the conditional ODE system automaton, thus these transitions
are only synchronized with τ -transitions. The resulting parallel composition is
shown in Figure 3.7 where the location combination (cyclei, cyclej) is renamed
to cyclei,j, where cyclei is the location of the extended PLC cycle automaton
and cyclej is the location in the conditional ODE automaton.

cycle1,1

Inv1,1

ODEs1,1

. . .

cycle1,l

Inv1,l

ODEs1,l

cycle1,neg

Inv1,neg

ODEs1,neg

cycle2,1

Inv2,1

ODEs2,1

. . .

cycle2,l

Inv2,l

ODEs2,l

cycle2,neg

Inv2,neg

ODEs2,neg

. . .

. . .

. . .

. . .

cyclen,1

Invn,1

ODEsn,1

. . .

cyclen,l

Invn,l

ODEsn,l

cyclen,neg

Invn,neg

ODEsn,neg

c
t

c
t

c
t

c t

c t

c
t

c t

c t
c t

c
t

c
t

c
t

c
t

c t

c t

c
t

c t

c t
c t

c
t

c
t

c
t

c
t

c t

c t

c
t

c t

c t
c t

c
t

t
g1,2

a1,2

t
g2,3

a2,3

t
gn−1,n

an−1,n

Figure 3.7: Parallel Composition

All transitions connecting a location cyclei,u representing cycle i with a location
cyclei+1,v describing the successor cycle i + 1 where u, v ∈ {1, . . . , l, neg} are
assigned the label t, guard gi,i+1 and assignments ai,i+1. The guards gi,i+1
correspond to the guards given by the corresponding transitions in Figure 3.4
in conjunction with the guards provided by the application of the replacement
rules. Furthermore, the transitions of this automaton determine the assignments
ai,i+1. The new invariants Invi,v where v ∈ {1, . . . , l, neg} for a location of cycle
i consist of the conditions of the conditional ODE in conjunction with the
time constraint t ≤ ui. As the only type of flows in the automaton is the time

3. Hybrid Model 39

flow ṫ == 1 each set of ODEs ODEsi,v in cycle i is the set of flows provided by
ODEsv ∪ {ṫ == 1} for v ∈ {1, . . . , l, neg}. The assignments of the initial states
correspond to the initial assignments of the first cycle in Figure 3.4 as the
second automaton provides no new assignments.

The resulting automaton now models the discrete behaviour given by the BMC
counterexample as well as the dynamic behaviour defined by the replacement
rules and conditional ODE systems. The actual transformation is performed by
a toolchain as introduced in Section 2.6.2 containing tools to transform hybrid
automata in several steps.

3.6 Conditional Initial Values

The initial values for the continuous variables have not yet been defined. We
cannot simply set constant values for the continuous variables of the system,
as their values may depend on the activities of discrete variables. Thus, we
introduce conditional initial values, where each initial value of a continuous
variable depends on a condition.

Conditional initial values define conditions for each continuous variable of the
hybrid system for which specific values are assigned to the variable. A definition
for conditional initial values is given in Definition 3.3.

Definition 3.3 (Conditional Initial Value)
A conditional initial values cond ∶ assign of variable c where Varsd is a set
of discrete variables and Condsd is the set of all possible conditions over
variables Varsd

● cond ∈ Condsd is the condition over the discrete variables Varsd

● assign ⊂ R is a set of valuations for c.

If the condition cond of a conditional initial values is satisfied in a hybrid system
for the given initial discrete variable assignments, the continuous variable d
will be assigned according to assign. The conditional initial values support the
assignment of constant values as well as the assignment of intervals for numerical
values or the assignment of sets. The conditions of the set of conditional initial
values do not have to be complete and are allowed to overlap. If two conditional
initial values are satisfied for the same initial discrete assignments due to an
overlap of their conditions, both initial assignments are added to the initial

40 3. Hybrid Model

states. An exemplary set of conditional initial values for the water level h of
the tank system presented in Section 2.2 is given in Equations (3.12) to (3.16).

infull ∶ h ∶= 25 (3.12)
¬infull ∧ inmax ∶ h ∶= 17 (3.13)
¬inmax ∧ inmin ∶ h ∶= 10 (3.14)

¬inmin ∧ innonempty ∶ h ∶= 4 (3.15)
¬innonempty ∶ h ∶= −1 (3.16)

The given conditional initial values for h describe the sections of the tank, which
are defined by the discrete sensors. There are five different sections since there
are 4 water level sensors. These initial values should be chosen according the
sensor placements in the plant. The conditional initial values are assigned to
an automaton using a new tool which is added to the toolchain which has been
introduced in Section 2.6.2. During the analysis we also consider the set of
initial values, where for each area all possible values are assigned. Restricting
the values of the water level to h ∈ [−30, 50] we can define the conditional initial
values in Equations (3.17) to (3.21), which correspond to the water level sensors.

infull ∶ h ∶= [20,50] (3.17)
¬infull ∧ inmax ∶ h ∶= [15,20) (3.18)
¬inmax ∧ inmin ∶ h ∶= [5,15) (3.19)

¬inmin ∧ innonempty ∶ h ∶= [0,5) (3.20)
¬innonempty ∶ h ∶= [−30,0) (3.21)

3.7 Automaton Toolchain

The remaining transformations for the automaton are performed by a toolchain,
which allows us to transform automata into a verifiable model. The toolchain
has been developed for the SFC Verification tool, which allows the user to verify
sequential function charts. The SFC Verification tool utilizes several toolchain
tools to add the flow of continuous variables to automaton in multiple steps and
to transform the hybrid automaton into an automaton with a syntax which can
either be parsed by SpaceEx or Flow* by eliminating > and <, and disjunction
in transition guards and location invariants.

Firstly, we apply tools to add the flows for the continuous variables as introduced
in Section 3.7.1 and Section 3.7.2 as shown in Section 3.5. Conditional ordinary

3. Hybrid Model 41

differential equations as presented in Section 2.6.1 are used to define the flows
of the continuous variables. Furthermore, we use a tool to create a single initial
location in Section 3.7.3, which also models the conditional initial values as
presented in Section 3.6. We perform this transformation as the initial values
of the continuous variables depend on the discrete behaviour and Flow* does
not support multiple initial locations. In order to support interval and set
assignments, we also provide a tool to resolve these assignments in Section 3.7.4.
A short description of tools which allow us to transform an automaton into a
SpaceEx or Flow* verifiable model is given in Section 3.7.5.

3.7.1 Adding Dynamic Behavior

The Add Dynamic Behaviour tool preforms one part of the transformation
presented in Section 3.5. Assuming the same input, the tool splits each location
of the input automaton into l+1 locations for a list of conditional ODEs of size l.
The (l+1)th location describing the location with the negated conditional ODE
conditions. Furthermore, the transitions from a cycle to its successor are added
as explained in Section 3.5. The automaton resulting from the transformation
of the tool, given a PLC cycle automaton is illustrated in Figure 3.8.

cycle1,1

Inv1,1

ODEs1,1

. . .

cycle1,l

Inv1,l

ODEs1,l

cycle1,neg

Inv1,neg

ODEs1,neg

cycle2,1

Inv2,1

ODEs2,1

. . .

cycle2,l

Inv2,l

ODEs2,l

cycle2,neg

Inv2,neg

ODEs2,neg

. . .

. . .

. . .

. . .

cyclen,1

Invn,1

ODEsn,1

. . .

cyclen,l

Invn,l

ODEsn,l

cyclen,neg

Invn,neg

ODEsn,neg

t
g1,2

a1,2

t
g2,3

a2,3

t
gn−1,n

an−1,n

Figure 3.8: Add Dynamic Behaviour Transformation

42 3. Hybrid Model

The dashed rectangles contain sets of cycle locations, which are logically grouped,
as they represent the same location in the original counterexample, thus repre-
senting the same PLC cycle. These groupings are maintained in order to restore
the path taken in the original automaton by examining the path taken in the
transformed automaton.

We can omit the copy transitions as presented in Section 3.5 if the conditions
of the conditional ODEs only contain restrictions on the discrete variables as
seen for the tank system in Equations (2.15) and (2.16) since the discrete values
cannot change during the execution of a cycle location. For all other cases, we
add the copy transitions using another tool from the toolchain.

3.7.2 Copy Transitions

As described before, an invariant representing the condition of a conditional
ODE system may become unsatisfiable, but another one is still satisfiable, the
system must be able to change between the corresponding locations. These
changes are only allowed if both invariants are satisfied, thus they implicitly
provide guards for the copy transitions. For our case, the copy transitions are
only needed if the conditions of the ODEs contain constraints on the continuous
variables as the discrete behaviour can only change if a new cycle is entered.

In addition to the previously described tools, we use a tool to create transitions
between grouped locations to allow the system to switch between locations which
correspond to the same location in the original automaton. These transitions
do not have a guard or any assignments.

cycle1,1

. . .

cycle1,l+1

cycle2,1

. . .

cycle2,l+1

. . .

. . .

. . .

cyclen,1

. . .

cyclen,l+1

Figure 3.9: Automaton before copy transitions have been added

3. Hybrid Model 43

The locations framed by the dashed rectangles seen in Figure 3.9 are locations,
that have been grouped together by the automaton construction or an automaton
tool. For a group Ci ∶= {cyclei,1, . . . , cyclei,l+1} we add a new copy transition
for each location cyclei,j with j ∈ {1, . . . , l + 1} to each location cyclei,k where
k ∈ {1, . . . , l + 1}/{j} with i ∈ {1, . . . , n}.

cycle1,1

. . .

cycle1,l+1

cycle2,1

. . .

cycle2,l+1

. . .

. . .

. . .

cyclen,1

. . .

cyclen,l+1

Figure 3.10: Automaton after copy transitions have been added

Figure 3.10 shows the automaton after the execution of the tool where copy
transitions have been added between all cycles in each group.

3.7.3 Single Initial Location

Since some tools do not allow multiple initial locations, we create a new location
locinit which incorporates all other initial locations by adding transitions from
locinit to all original initial locations.

The previously presented construction of a labeled hybrid automaton as ex-
plained in Section 3.2 and Section 3.5 results in several initial states, where
each initial state has the same variable assignments. This is the case, as the
initial state is derived from the first assignments of each discrete variable of the
BMC counterexample is copied to all locations corresponding to the first PLC
cycle. These initial assignments are transferred to the new initial location locinit.
In order to force the system out of the new initial location locinit immediately,
we define the flow for the time t ∶= 0 as ṫ == 1 and an invariant t ≤ 0. This
combination of this dynamic behaviour prevents the system from staying in the
initial location. All the flows for all other continuous variables are set to 0 as
they should not change in the initial location.

44 3. Hybrid Model

The initial values only contain the initial values of the discrete variables derived
from the BMC counterexample and for t ∶= 0. The initial values of the continuous
variables need to be linked to the these initial values. Thus, we use conditional
initial values as described in Section 3.6, which consist of conditions and related
initial assignments. For each conditional initial value we add a new transition
from locinit to each original initial locations using the condition as a transition
guard and the initial value as an assignment. Thus, the initial value is assigned
if the guard is satisfied by the initial discrete assignments. If there are multiple
continuous variables, their conditional initial values are used to produce all
combinations of conditions and possible assignments. The continuous variables
can be initialized with 0 in the new initial state, as the actual initialization of
the continuous variables is accomplished by the constructed transitions. An
exemplary set of conditional initial values of a set and an interval is illustrated
in Equations (3.22) and (3.23).

insen ∶ h ∶= {0,1,2,3} (3.22)
¬insen ∧ outval > 10 ∶ h ∶= [4,20] (3.23)

We add two transitions from the new initial location to each original initial
locations. The guards of each pair corresponds to the conditions of the initial
values, thus they are insen and ¬insen ∧ outval > 10 respectively. The automaton
Figure 3.11 shows a model with multiple initial states with different locations
with a set of initial assignments init for the discrete variables. Furthermore,
as the initial assignments are accomplished by the transformation we use the
assignment of 0 for the actual initial states.

After the transformation, a new location locinit has been added and only one
initial state remains. The conditions of the conditional initial values are used
as guards for the new transitions from locinit to the original initial locations
loc1, loc2, . . . , locm. Furthermore, ODEs0 represents the set where for all contin-
uous variables d their ODE is ḋ == 0 except for ṫ == 1. The resulting automaton
is illustrated in Figure 3.12.

In order to make sure that only one condition is satisfiable, during the construc-
tion of the automaton we add the negated predecessor conditions in conjunction
with the transition guard. In this example, we can omit this negation, as we
would construct the conjunction of ¬insen and ¬insen ∧ outval > 10.

3. Hybrid Model 45

loc1

Inv1,1

ODEs1

. . .

locl

Inv1,l

ODEsl

locneg

Inv1,neg

ODEsneg

. . .

. . .

. . .

. . .
init

h∶=0

init

h∶=0

init

h∶=0

g1

e1

Figure 3.11: Exemplary Set of Initial States

locinit

t≤0
ODEs0

loc1

Inv1,1

ODEs1

. . .

locl

Inv1,l

ODEsl

locneg

Inv1,neg

ODEsneg

. . .

. . .

. . .

. . .

init

h∶=0

¬insen
∧outval>10

h∶=[
4,20]

¬insen∧outval>10

h∶=[4,20]

¬in
sen∧outval>10h∶=[4,20]

insen

h∶={
0,1,2,3}

insen

h∶={0,1,2,3}

in
senh∶={0,1,2,3}

g1

e1

Figure 3.12: Transformed Set of Initial States

46 3. Hybrid Model

As we already employ SMTInterpol as presented in Section 2.7 to check the
satisfiability of replacement rules, a possible improvement would be to create
different inital states according to the satisfiability of the conditions of the
conditional initial values given the discrete initial values derived from the BMC
counterexample. This method is only applicable, if the verification tool supports
multiple initial locations.

3.7.4 Interval and Set Assignments

Transition assignments for numerical variables can either be a single value, an
interval or a set of values. In order to verify these assignments we transform
the interval and set assignments into single value assignments. We introduce a
tool which converts interval and set assignments.

In the first step, all interval assignments are transformed. The idea for the
interval transformation is to create a new location, where the system is allowed
to assign the variable, which has an interval assigned, all possible values in
the interval. For each interval assignment v ∶= [lv, uv] on a transition from loc1
to loc2 a new location locv is generated. Furthermore locv has the invariant
v ≤ uv. Thus, we ensure, that if the location may only be left if the upper
bound of the variable is still satisfied. All differential equations Var/v for
all variables Var/{v} are set to 0 and the differential equation for v is set to
1. The transition original transition from loc1 to loc2 is replaced by two new
transitions from loc1 to locv and locv to loc2, where the transition from loc1 to
locv has the same guard γ as the original transition and the assignment v ∶= l.
This in combination with the flows prevents v from assuming values below the
lower bound, the assignment is only performed if the guard is satisfied and
all other variables stay the same. Furthermore, all remaining assignments α
are transferred to the transition from locv to loc2. This transition does not
have a guard. Therefore, after the interval assignment all other assignments are
applied. The full transformation of a single interval assignment is illustrated in
Figures 3.13 and 3.14.

loc1
inv1

ODEs1

loc2
inv2

ODEs2

γ

v ∶= [lv, uv]
α

Figure 3.13: Interval Assignment

3. Hybrid Model 47

loc1
inv1

ODEs1

locv

v ≤ uv
v̇ = 1
˙V /v = 0

loc2
inv2

ODEs2

γ

v ∶= lv α

Figure 3.14: Transformed Assignment

This transformation allows v to be assigned any value between lv and uv. The
variable v is initially assigned value lv, when the automaton enters locv. The
system can stay in locv at most for uv − lv time units and is able to leave locv
at any time before. Thus, v can have values between lv and uv when entering
loc2. If A still contains interval assignments, the transformation is repeated for
remaining interval assignments.

Set assignments are transformed by the same tool. They are transformed after
interval assignments, as they create multiple transitions, which would multiply
interval assignments as well. The idea is to create a new transition for each
element from the set and assign a different value of the set to the variable on
each transition. A set assignment v ∶= {a1, a2, . . . , an} of transition from location
locv to loc2 is transformed into n new transitions. These new transitions also
have source loc1 and target loc2. Each of these transitions assigns a different
value from {a1, a2, . . . , an} to v. The guard γ and remaining assignments α are
added to each of these transitions. Figure 3.15 shows the transition before the
transformation and Figure 3.16 illustrates the newly constructed transitions.

loc1
inv1

ODEs1

loc2
inv2

ODEs2

γ

v ∶= {a1, a2, . . . , an}
α

Figure 3.15: Set Assignment

The transformation allows assignment of any value from the set v ∶= {a1, a2, . . . , an}
by choosing the corresponding transition. If α still contains set assignments,
the transformation is repeated for all remaining set assignments. Both transfor-
mations can be accomplished in linear time.

48 3. Hybrid Model

loc1
inv1

ODEs1

loc2
inv2

ODEs2

γ

v ∶= a1
α
γ

v ∶= a2
α

γ

v ∶= an

α

Figure 3.16: Transformed Assignment

3.7.5 Additional Tools

In addition to the previously described tools, we employ additional tools to apply
further transformations to the automaton. These tools allow us to construct
hybrid automata, which have a syntax supported by either SpaceEx or Flow*.

As disjunction is not supported for some verification tools, we need to transform
any transition guard, which includes disjunctions. Initially, the transition guard
is transformed into disjunctive normal form (DNF). Afterwards, transitions are
split for each clause and the clauses are the new guards of the split transitions. A
second tool uses similar approach to split disjunction in invariants of locations.

In order to reduce the size of the automaton, we also remove all locations
with unsatisfiable invariants as well as all incoming, outgoing transitions and
initial states which include the location. Such locations occur for example, if
the conditions of all conditional ODEs are complete. In this case the negated
condition of all conditional ODEs is unsatisfiable.

After these tools have been applied, we have constructed the counterexample
automaton containing all plant dynamics. Furthermore, the resulting labeled
hybrid automaton has been transformed into an automaton with a syntax which
is supported by SpaceEx or Flow*, depending on the applied tools. For example,
in order for the model to be verifiable by SpaceEx, disjunctions have to be
resolved as well as strict inequalities. On the other hand, Flow* requires for all
initial states to share the same initial location as well.

3. Hybrid Model 49

3.8 Wildcard Values

The presented counterexamples can be extended to incorporate wildcards. A
wildcard represents the assignment of all possible values for a given data type
of a variable to the variable. Wildcards are defined in Definition 3.4.

Definition 3.4 (Wildcard)
A wildcard ω(v) = S is an assignment of all possible values for a variable v
according to its data type.

● Boolean has the possible values S = {true, false}

● Integer has the possible values S = Z

Using wildcards in counterexamples, their expressiveness can be increased
significantly. We are able to represent partial cycle sequences, which are sufficient
to represent a counterexample. An example of a sequence containing wildcards
for a reduced tank system as presented in Section 2.2 given in Listing 3.1.

(in_max :bool , in_min :bool , out_v :bool)
(* ,* ,* ,0 ,0 ,1 ,0 ,0 ,0)
(* ,* ,* ,0 ,1 ,1 ,* ,* ,*)
(* ,* ,* ,* ,* ,* ,* ,* ,*)

Listing 3.1: Counterexample with Wildcards

The given counterexample states, that no matter how the discrete variables
are set in the first three cycles, the BMC still detected a counterexample. The
fourth to sixth cycles however, have to exhibit the discrete behaviour for in_max
and in_min as described in the counterexample. Furthermore, in the last three
cycles in_max has to be assigned 0 in each cycle.

Currently, we restrict our usage of wildcards to boolean values. Each wildcard
for a boolean value results in two cases for the current PLC cycle as we can
either assign the value to true or false. A wildcard for an integer value would Z
however results in a countable but infinite set if possible values. This poses a
problem when we try to construct the possibilities for an integer value. This
feature will be implemented in future work.

50 3. Hybrid Model

3.8.1 Counterexample Wildcards

The counterexamples presented in Section 2.3.3, can be extended to incorporate
wildcards as described in Section 3.8. These wildcards have to be handled
differently during the assignment of transition guards and assignments than a
constant assignment of a value. There are two different cases for the automaton
transformation, if a wildcard occurs in a sequence. For now, only boolean
wildcards are supported in the automaton construction.

Firstly, when one or more wildcards appear as the first values in a sequence,
the initial states have to be adapted. The new initial states have to contain
all combinations of possible wildcard values. Assuming we have an arbitrary
number of non-wildcard initial assignments assign, these would create exactly
one set of initial assignments. For each initial boolean wildcard, the amount of
initial states is doubled, as there are exactly two possible assignments 0 and 1
representing false and true for a boolean variable.

For each initial state s and a new boolean wildcard ω(v) for variable v, we
create remove s and construct two new initial states sv∶=0 and sv∶=1. Initial state
sv∶=0 contains the assignment of s ∶= 0, while sv∶=1 includes the assignment s ∶= 0.
Figure 3.17 illustrates the transformation of a initial state into two new initial
states due to a boolean wildcard.

loc

inv

ODEs
assign

loc

Inv

ODEs
assign

v∶=0

assign
v∶=1

Figure 3.17: Initial Wildcard Assignment

The left initial state shows the state s before transformation, while the right
automaton shows the initial states sv∶=0 and sv∶=1. This transformation is
repeated for all initial states and all wildcards. Thus, for all initial states and a
new wildcard assignment, we apply the presented transformation on all initial
states. The resulting set of new initial states is then used as a starting point
for additional new wildcard variables and their transformations. As mentioned
before, each new boolean wildcard doubles the number of initial states, due to
the transformation being applied to all initial states.

The second transformation, which must be adapted for wildcards, is the transfor-
mation of the transition guards and assignments. As explained in Section 3.4.1,
we use the given assignments for a cycle to determine, which replacement rules

3. Hybrid Model 51

are satisfied. If wildcards occur in the assignments of the a cycle, we must
check all possible combinations of assignments for the wildcards. In the initial
construction presented in Section 3.2 and Section 3.4.2, we create a transition
from each cycle cyclei location to its successor cyclei+1. We now add a transition
between cyclei and cyclei+1 for each assignment combination. We then assign
guards and assignments according to the replacement rules.

Assuming we have an assignment for cycle cyclei+1, with three boolean wildcard
variables inv1 , inv2 and outv3 as well as an arbitrary number of non-wildcard
assignments assign. Furthermore, we assume the replacement rules given in
Equations (3.24) and (3.25).

inv1 == 1 ∧ inv2 == 1⇔ cond1 ⇔ assigncont (3.24)
inv1 == 1 ∨ inv2 == 1⇔ cond2 (3.25)

For better comprehension, we divide the transformation into two parts. In the
first part we separate the transitions for all possible input variable combinations.
We further split these transitions in the second part, where we assign all possible
output variable values to the different transitions. As we have two boolean
wildcard input variables, we obtain four transitions. The transitions for inv1 = ∗,
inv2 = ∗ and the non-wildcard assignments assign for the discrete variables and
the given replacement rules are illustrated in Figure 3.18.

cyclei

Invi

ODEsi

cyclei+1

Invi+1

ODEsi+1

cond1

assign

assigncont

cond2

assign

cond2

assign

assign

Figure 3.18: Transition Input Wildcard Transformation

Starting from the top transitions, the transitions represent the discrete input
variable assignments inv1 = 1 and inv2 = 1,inv1 = 1 and inv2 = 0,inv1 = 0 and

52 3. Hybrid Model

inv2 = 1 and inv1 = 0 and inv2 = 0. In addition to the input variables, we need
to consider the output wildcard variables. In this example, the only output
variable, which is a wildcard is outv3 . Each of the transitions created in the
previous step are now split for each output wildcard. We show the exemplary
transformation of the inv1 = 1 and inv2 = 0 transition in Figure 3.19.

cyclei

Invi

ODEsi

cyclei+1

Invi+1

ODEsi+1

cond2

assign

outv3 ∶=0

cond2

assign

outv3 ∶=1

Figure 3.19: Transition Output Wildcard Transformation

The second transformation can be achieved by assigning the values of the boolean
output variables as set assignments. For example in this case, we can simply
assign each transition with outv3 ∶= {0,1}. Afterwards, the transformation
proposed in Section 3.7.4 for set assignments can be used.

After both transformations have been applied, we have 23 transitions between
cyclei and cyclei+1. The presented transformation allow us to model wildcards
in a counterexample. We can model wildcards in the initial values as well as
wildcards in the other cycle assignments.

3.9 Summary

In this chapter we have presented the transformation of a BMC counterexample
into a hybrid automaton which contains all plant dynamics. The transformation
is performed gradually. In the first step, we construct an automaton repre-
senting the discrete behaviour described by the counterexample. This results
in a sequential automaton, where each location corresponds to a PLC cycle.
Afterwards, we show how to create an automaton modeling the cycle times
for each PLC cycle and use the parallel composition on these two automata.
The transition guards and assignments for continuous variables of the resulting
automaton are extended using replacement rules. Thereafter, we introduce an
automaton representing the dynamic behaviour provided by conditional ODE
systems. This automaton is used to construct another parallel composition
with the automaton that resulted from the last transformation. The last step
which adds plant dynamics consists of initializations of the continuous variables.

3. Hybrid Model 53

These initializations depend on the initial assignments of the discrete variables
provided by the counterexample. We present the tool chain which is part of
the architecture of the SFC Verification tool. The tools allow us to add the
plants dynamic behaviour to hybrid automata and to transform these automata
in order to create a suitable model for SpaceEx and Flow*. Furthermore, we
introduce wildcards and propose transformations to handle wildcard assignments
in counterexamples for discrete boolean values.

54 3. Hybrid Model

Chapter 4

Hybrid Counterexample

Analysis

In this chapter the different input formats for the plant dynamics are discussed.
We show how we can use XML files to represent conditional ODEs in a way
that we can repurpose the parsers of the SFC Verification tool as presented
in Section 2.6. Furthermore, we extend these XML files to incorporate the
conditional initial values. A format to store the replacement rules as presented
in Section 3.4.1 is also introduced. As the hybrid reachability is computed
using third-party tools, we discuss how to configure these tools according to the
structure of the generated automaton. The PLC cycle times provide information
about the settings referring to the time horizon and time step sizes. Moreover,
we address how the amount of computational steps of the reachability analysis
can be restricted.

The XML format for the conditional ODEs and conditional initial values is
shown in Section 4.1. Additionally, we show how to store the replacement rules
and how to define the PLC cycle times. Afterwards, we discuss the parameters,
which are used by SpaceEx and Flow* in Section 4.2. The time and iteration
parameters are set according to the generated automaton.

4.1 Input Parameters

In this section, we define the input parameters for the tank example as defined
in Section 2.2. Firstly, we define the plant dynamics using conditional ODEs and
conditional initial values and show how a XML file can be used to store these
dynamics in Section 4.1.1. The replacement rules as presented in Section 3.4.1
can be stored as shown in Section 4.1.2. In Section 4.1.3 we show how to define
the PLC cycle times for hybrid automaton as well as how to parametrize the
tool for our novel approach.

4.1.1 Dynamic Behavior

In order to add the dynamic behavior missing from the original model, we
define conditional ODE systems and conditional initial values as described in
Section 2.6.1 and Section 3.7.3.

56 4. Hybrid Counterexample Analysis

We define the conditional ODE systems in a XML file, where each conditional
ODE system consists of a single condition and at least one ODE. The following
XML file as shown in Listing 4.1 models the in Equations (2.15) and (2.16)
previously determined conditional ODE system.

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

<condODE >
<cond > <![CDATA [out_v]]></cond >
<equation >h’ == 2</equation >

</condODE >
<condODE >

<cond > <![CDATA [NOT out_v]]></cond >
<equation >h’ == -2</equation >

</condODE >
...

</condODEsys >

Listing 4.1: Conditional ODE System

The modeled behaviour describes the two possible states of the valve of the tank
system introduced in Section 2.2. The first conditional ODE system models
the incoming flow of water 2 for h under the condition, that the valve is open,
thus outv. The second conditional ODE system shows represents the water level
change of −2 if the valve is closed, i.e. ¬outv.

The tag <condODEsys> contains all conditional ODEs, which are defined in
<condODE> tags each. The <condODE> tags define a conditional ODE system
and contains at least two entries. The first entry <cond> contains the condition
of the conditional ODE system, which uses a custom syntax for logic formulas.
This syntax supports logic operators and comparators to check integer and real
values. The list of supported operators and comparators is shown in Table 4.1.

Operator Description
NOT ¬ Negation of a boolean value
AND ∧ Logic conjunction
OR ∨ Logic disjunction
== = Equality comparator

>,<,>=,<= >,<,≥,≤ Inequality comparators

Table 4.1: Custom Condition Syntax

All other entries inside <condODE> define the ODEs, where each <condODE>
contains at least one ODE. Each ODE is stored in <equation> tags. In this
example, the ODEs depend on the state of outv. If the valve is open, the water

4. Hybrid Counterexample Analysis 57

height inside the tank increases by 2 units per time unit. On the other hand, if
the valve is closed the water height decreases by 2 per time unit.

The presented format for the conditional ODEs is used in the SFC Verification
tool which has been presented in Section 2.6. We extend the XML file, so it can
define conditional initial values in addition to the conditional ODE systems.

For each continuous variable a set of conditions and associated initial values is as-
signed. The XML file for the exemplary set of conditional initial values as defined
in Equations (3.12) to (3.16) for the discrete variables infull, inmax, inmin, innonempty
and continuous variable h is shown in Listing 4.2.

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

...
<init >

<variable var = "h">
<condInit >

<cond > <![CDATA [in_full]]></cond >
<value >25 </value >

</condInit >
<condInit >

<cond > <![CDATA [in_max AND NOT in_full]]></cond >
<value >17 </value >

</condInit >
<condInit >

<cond > <![CDATA [NOT in_max AND in_min]]></cond >
<value >10 </value >

</condInit >
<condInit >

<cond > <![CDATA [NOT in_min AND in_nonempty]]></cond >
<value >4</value >

</condInit >
<condInit >

<cond > <![CDATA [NOT in_nonempty]]></cond >
<value > -1</value >

</condInit >
</variable >

</init >
</condODEsys >

Listing 4.2: Conditional Initial Values

The conditional initial values for each variable are defined in the <init> tags.
For each continuous variable v, we create a new set of tags <variable> with an
attribute var which contains the variable name v. Furthermore, each conditional
initial values is contained in a pair of tags <condInit> similar to a conditional
ODE system. This tag contains exactly two entries. The <cond> tag defines a
condition cond using the same custom syntax (Table 4.1) the conditional ODE
systems use. The <value> tags are used to set the value which is assigned to
v if the condition cond is satisfied. As explained in Section 3.6, these values

58 4. Hybrid Counterexample Analysis

can be constants, intervals or sets of values. A set {v1, . . . , vn} by setting value
between the <value> tags to {v_1,...,v_n}. For an interval [l, u] assignment
the tag value is set to [l,u].

In order to define open intervals as shown in Equations (3.17) to (3.21), the
values have to be defined with an error, similar to the approximation shown in
Section 3.4.1. Thus, [5,15) has to be set to [5,14.99999].

The conditions of the tank example are disjunct presented in Listing 4.2 as we
have defined infull ⇒ inmax ∧ inmin ∧ innonempty, inmax ⇒ inmin ∧ innonempty and
inmin ⇒ innonempty. In this case, each conditional initial value for h represents a
different water height section of the tank.

4.1.2 Link File

The conditional ODEs and conditional initial values are not sufficient to describe
all plant dynamics. We need to define the links between the discrete and dynamic
behaviour as described in Section 3.4. The Link File stores the replacement
rules as described in Section 3.4.1. The first line defines the error epsilon which
is used to approximate < and >. All consequent lines define a replacement rule
for a specific input sensor. An exemplary link file is shown in Listing 4.3.

epsilon = 0.00001
in_full == 1 <=> h >= 20
in_max == 1 <=> h >= 15
in_min == 1 <=> h >= 5
in_nonempty == 1 <=> h >= 0
in_full == 0 <=> h < 20
in_max == 0 <=> h < 15
in_min == 0 <=> h < 5
in_nonempty == 0 <=> h < 0

Listing 4.3: Link File

The first line epsilon = 0.00001 defines error ε ∶= 0.00001. The following lines
link the values of input variables with the continuous variable. As described
in Section 3.4.1, each entry corresponds to a possible guard on each transition.
Thus, to model the sensors correctly, two replacement rules have to be defined.
The first representing a sensor that is active, for example in_full == 1 <=> h
>= 20 and a second, where the sensor is not active in_full == 0 <=> h < 20.
The same principle applies to all other entries, as these variables are boolean
as well. The link table in Figure 4.1 shows all obtainable links of discrete to
continuous variables for this special case, where the Link File also contains the
negation for each condition of a replacement rule.

4. Hybrid Counterexample Analysis 59

Variable true false
infull h ≥ 20 h < 20
inmax h ≥ 15 h < 15
inmin h ≥ 5 h < 5

innonempty h ≥ 0 h < 0

Figure 4.1: Variable links

These links are used to model the guards of transitions according to the sequence
as described in Section 3.4.1.

4.1.3 Properties

In Addition to the conditional ODEs and the Link File, path parameters and
cycle times are defined in the property file for the hybrid counterexample
analysis. The property file shown in Listing 4.4 is used for a verification using
the SpaceEx tool platform.

SEQUENCE_FILE_LOCATION =/ home /.../ bmcCounterexample .txt
COND_ODE_FILE_LOCATION =/ home /.../ condODEs .xml
LINK_FILE_LOCATION =/ home /.../ linkDynamics .txt
RESULT_FILE_LOCATION =/ home /.../ result .xml
SPACEEX_FILE_LOCATION =/ home /.../ spaceExConfig_phav .cfg
FLOWSTAR_FILE_LOCATION =/ home /.../ flowStarConfig .cfg
CYCLE_TIMES =1

Listing 4.4: Property File

The parameter SEQUENCE_FILE_LOCATION specifies, where the counterexample
analysis tool is expecting the counterexample, which is provided by the BMC
analysis. COND_ODE_FILE_LOCATION defines the location of the XML file con-
taining the conditional ODEs and conditional initial values. The Link File is
specified in LINK_FILE_LOCATION. The file path set for RESULT_FILE_LOCATION
describes where the model of the hybrid system is placed. SpaceEx expects a
XML file, while Flow* needs a *.model file to verify the system. Additionally,
SPACEEX_FILE_LOCATION and FLOWSTAR_FILE_LOCATION provide the paths to
the verification tools configuration files.

The last parameter CYCLE_TIMES is used to set the cycle times of each PLC
cycle. As shown in Section 3.3, there are three different possiblities to define
these times. We can either set a constant c, the same interval [l, u] for each
cycle or an individual interval for each cycle. The last definition can be used by
providing a list of intervals [l1, u1], . . . , [ln, un] where each interval corresponds
to the minimal and maximal time of a PLC cycle.

60 4. Hybrid Counterexample Analysis

The bounded model checker as presented in Section 2.3 uses these property files
to interface with the hybrid analysis and define the PLC cycle times.

4.2 Reachability Analysis

In order to perform a meaningful analysis, certain parameters of the tools
which we utilize for hybrid reachability analysis have to be set according to
the behaviour of the PLC. Furthermore, we have to consider the length of the
counterexample and total number of locations.

In this section we discuss some of the parameters for the tools used for the
hybrid reachability analysis, i.e. SpaceEx and Flow*. The restrictions on the
cycle times as presented in Section 3.3 can be used to determine the settings
the verification tools. We show how to determine bounds for these parameters
in Section 4.2.1. In Section 4.2.2 we show, how we can determine bounds for
the parameters pertaining the the computation of timed and discrete steps.

4.2.1 Time Parameters

In this section we discuss how the structure of the automaton and the PLC
behaviour affect the time parameters of the reachability analysis. The hybrid
verification tools we employ use a time horizon to restrict the time elapse
computations. We differentiate between a local and global time horizon. If
a local time horizon t is specified, during the computation of all reachable
successor states of a state, the time elapses are bounded by t. A global time
horizon T restricts the computation of all reachable states to the states reachable
to the time interval [0, T] in a hybrid automaton.

Firstly, we define the time constraints on the analysis according to the PLC
cycle times which have been presented in Section 3.3. The cycle times provide
us with an upper bound on the global time horizon as utilized in Flow* of the
analysis as they can be used to compute the sum of all maximal PLC times.
This sum can be used as the upper bound as it represents the maximal time the
PLC needs to execute all cycles and due to the time invariants added during
the transformation in Section 3.3. The upper bound can be easily computed for
all three cases of the PLC cycle times, i.e. individual cycle time intervals for
each cycle, a single cycle time interval for all locations and a constant time for
all cycles. We now consider the most general case, where we have individual
intervals for each cycle. Equation (4.1) show how to compute the upper bound
tg for the global time horizon of the hybrid analysis, assuming we have n PLC
cycles with cycle time [li, ui] for each cycle i.

4. Hybrid Counterexample Analysis 61

tg ∶=
n

∑
i=1
ui (4.1)

If we assume the same cycle time interval [l, u] for each PLC cycle, the formula
is adapted with ui = u for i ∈ {1, . . . , n}. Similarly, for a constant c cycle time
we get ui = c for i ∈ {1, . . . , n}. If the verification tool allows to set a local time
horizon as in SpaceEx, we set the upper bound tl for the local time horizon as
defined in Equation (4.2) for individual PLC cycle time intervals.

tl ∶= max
i∈{1,...,n}

{ui} (4.2)

The largest upper limit of all cycle times is an upper bound as the analysis may
not stay longer than tl in any cycle location due to the invariants added during
the transformation described in Section 3.3. If the cycle times are restricted
by the same interval [l, u] for each cycle, the time horizon is bounded by tl = u.
The upper bound tl = c can be used for the constant time c.

Furthermore, the presented upper bounds can be used to bound the number of
time steps, which will be performed in each cycle. For example, we can ensure
that the analysis performs at most s steps by setting the time step size of the
verification tool to tg/s. A step size to ensure that at least s steps are performed
can be computed by considering the sum over all lower bounds of the PLC cycle
times instead of tg. This is assuming the system cannot change between more
than s conditional ODE location without Zeno behaviour occuring in the cycle.

If interval assignments are used in the automaton, the bounds have to be
adapted, since the locations resulting from a transformation of an interval
assignment as shown in Section 3.7.4, might increase the upper bounds tl and tg.
Another solution is to adapt the flow of the variable of the interval assignment
in this interval assignment location in order to avoid the computation of a large
time horizons in these locations.

4.2.2 Iteration Parameters

Considering the structure of the counterexample automaton presented in Chap-
ter 3 and the bounds on the maximal number of steps performed in each PLC
cycle as shown in Section 4.2.1. We discuss how we can bound the maximum
jump depth, i.e. the maximal number of discrete steps, and the number of
iterations, i.e. the number of time elapses of the local time horizon and successor
computations. In Figure 4.2 we illustrate a reachability tree to explain the
difference of jump depth and number of iterations.

62 4. Hybrid Counterexample Analysis

Ju
m
p
D
ep

th
2

l1
V1

l2
V2

l3
V3

l4
V4

l5
V5

l6
V6

l3
V ′

3

l4
V ′

4

l5
V ′

5

l6
V6

l6
V ′

6

l7
V7

l8
V8

Figure 4.2: Exemplary Reachability Tree

The tree in Figure 4.2 shows the reachable states of an exemplary hybrid
automaton which is restricted by a jump depth or a number of iterations.
Assuming all reachable states have been computed for the first three levels
in the tree, the tree could be the result of an analysis with maximum jump
depth 2 as it contains all states which are reachable after at most 2 discrete
steps. However if we assume the analysis was restricted by a specific number of
iterations, the blue states represent the states for which all reachable states for
a given time horizon t have been computed. Thus the analysis was restricted
by 6 iterations. The jump depth defines how many levels in the reachability
tree are computed, while the iterations define how many states are analyzed by
computing the reachable set of states, which are reachable from this state.

Flow* allows the user to define a maximum jump depth. The construction of
the counterexample automaton for n cycles, creates a single initial location with
invariants, which force the analysis to leave the location immediately. Thus,
after 1 discrete step, the analysis is in a location corresponding to the first
PLC cycle. We might need to consider locations which are constructed during
the interval assignment transformation as presented in Section 3.7.4 as well.
Assuming we can perform at most s time and discrete steps in a PLC cycle,
due to the restrictions provided by the fixed step size and location invariants as
described in Section 4.2.1. As the system can perform at most s time elapses in
each cycle, the analysis can perform at most s discrete steps. If Zeno behaviour
occurs in a cycle, it might be possible to take infinite amounts of jumps in the
cycle. However, if the next cycle is reachable, it is still reached after analyzing
s levels in the reachability tree. Additionally changing to the next PLC cycle is
1 discrete step bounding the discrete steps for a PLC cycle change at (s+ 1). In
order to reach the last PLC cycle n, these discrete steps have to be executed n−1
times as we have already entered the first cycle. The jump depth 1+(s+1)(n−1)
ensures that if a cycle location of the last PLC cycle is reachable, it will be
found during the analysis while restricting computation of all reachable states
by the given jump depth.

4. Hybrid Counterexample Analysis 63

Unfortunately, SpaceEx does not allow the specification of a maximum jump
depth. We can however restrict the number of iterations during the reachability
analysis as described in Section 2.5.1. SpaceEx performs a breadth-first search
while computing the reachable set of states. Assuming an automaton for n
cycles andm locations for all possible conditional ODE systems, we can compute
the maximum amount of iterations that are needed considering the specific
structure of a model. A SpaceEx iteration computes all reachable states, i.e.
all time and jump successors, for a state given a local time horizon t. In the
tree constructed during the reachability analysis each level defines the jump
successors states of the states of the previous level reachable within t while the
first level defines the initial states.

Assuming during the hybrid analysis, the system can switch between different
locations belonging to the same cycle. The required number of iterations, which
is needed to reach the last cycle, can be computed by considering the number of
conditional ODEs m including the negation and PLC cycles n. Assuming the
worst case, where all m ordinary differential equation locations are reachable
from the initial state, we have to perform (m+ 1) iterations to compute a jump
depth of 2 for the system. One iteration is computed for the initial state and
m iterations for all reachable conditional ODE locations. On each subsequent
level we assume that for each location all other conditional ODE locations m− 1
are reachable by using copy transitions and all conditional ODE locations m in
the next PLC cycle are reachable. Thus the number of states resulting in the
next level is (2m − 1) ∗m. On each following tree level the successors can be
approximated considering the number of possible reachable conditional ODE
system locations.

If there is no possibility of Zeno behaviour due to the restriction on the time and
sequential structure of the automaton, for example if the system can not switch
between conditional ODE locations as in the tank system, we do not need to
restrict the number of iterations as at most the n levels in the reachability tree
are computed. However, if the system is able to switch between conditional ODE
system locations, Zeno behaviour can occur and defining no iteration limit is no
longer sensible as the reachability analysis might perform many iterations before
terminating. In some models it may only be meaningful to switch the between
conditional ODE locations once. For example if we consider two conditional
ODE systems describing a gate g being closed, i.e. its value being lowered to 0,
and staying closed at 0 as shown in Equations (4.3) and (4.4).

g ≥ 0 ∶ ġ == −45 (4.3)
g ≤ 0 ∶ ġ == 0 (4.4)

64 4. Hybrid Counterexample Analysis

The conditions have to be intersecting in order for the automaton to be able
to switch between the location corresponding to the same cycle and the given
conditional ODE systems. The switch in this case can occur at g = 0 in a PLC
cycle. The problem is, once the gate is fully closed, the system can switch
between the locations after each time elapse as the intersection of the two
conditional ODE systems is always satisfied. The system however should stay
in the location corresponding to the conditional ODE system (Equation (4.4))
where the gate stays closed.

During each conditional ODE system location switch, a new level is added to
the tree, before the automaton changes into the successor PLC cycle location.
Thus, if we have information about the amount of conditional ODE system
location changes, we can restrict the number of iterations by computing the
amount of states on each level for the amount of levels required. Thus we are
able to appropriately restrict the number of iterations.

4.3 Summary

In this chapter we show how to store the plant dynamics required for the automa-
ton transformation. We introduced the XML format of the SFC Verification
tool, which is used to specify the plant dynamics. This XML file allows us to
model the conditional ODE systems for our model. Furthermore, we propose
an extension of this file for the conditional initial values. This extension allows
us to define conditions and associated initial values for each continuous variable
separately. Thereafter, a technique to store the replacement rules is presented.
An interface is introduced to allow the BMC to define the PLC cycle times.
The hybrid reachability analysis is configured according to the generated hybrid
automaton. We show how the PLC cycle times affect the time horizon of the
analysis and how the step size for the time steps can be configured. Moreover,
we discuss how the cycle times and the structure of the automaton affect the
number of iterations of the reachability analysis.

Chapter 5

Explanation Generation

This chapter deals with the generation of explanations for the BMC verification.
Explanations provide sets of sequences representing discrete paths, which can
be excluded during the BMC counterexample generation as their respective
hybrid automata cannot be used to replicate these counterexamples considering
the plant dynamics. In order to determine such sequences, the paths visited
during the hybrid reachability analysis have to be analyzed. The goal is to
either determine if the counterexample has been confirmed given the dynamic
behaviour or to compute discrete counterexamples which can be excluded from
the BMC analysis in the next iteration, as they are not a valid counterexample
given the dynamic behaviour.

In this section, we introduce explanations for the BMC analysis generated by
the hybrid analysis. Furthermore, methods to derive the reachable paths from
outputs of the previously presented hybrid verification tools are presented. The
reachability analysis gives us information about which counterexamples cannot
occur if the dynamic behaviour is added or it confirms the counterexample given
by the BMC. If the counterexample is confirmed, the result is unknown as the
confirmation might be the result of over-approximation during hybrid reacha-
bility analysis. These information are analyzed by considering the reachable
paths and stored as explanations. The explanations are used to exclude certain
counterexamples during the next iteration of the BMC. In addition, we discuss
how the BMC processes an explanation. Moreover, wildcards, which allow free
variable assignments in the sequences provided by an explanation, are introduced
to improve the expressiveness of explanations, because a sequence containing
wildcards defines multiple discrete paths. We show how wildcards enhance
the explanations as well as what restrictions still remain. The functionality
described in the chapter is illustrated in Figure 5.1.

A definition for explanations is provided in Section 5.1. Section 5.2 shows
how to derive the reachable paths for the SpaceEx and Flow* and store them
in a suitable data structure. Using these path, we construct explanations as
shown in Section 5.3. The bounded model checker uses these explanations to
improve its analysis as explained in Section 5.4. In Section 5.5 we improve
the expressiveness of explanations by extending the assignments by wildcards
similar to the approach for counterexamples shown in Section 3.8.1.

66 5. Explanation Generation

Safety
property

Instruction
List

Plant
dynamics

Hybrid
Verification

BMC
(Siemens)

Counter-
example
confirmed

Safe?
Return
safe

Return
unknown

Discrete
Analysis

no +
counterexample

yes

Hybrid
Analysis

no +
explanation

yes

Figure 5.1: Explanation Generation

5.1 Explanations

The BMC as presented in Section 2.3 can use sequences of variable assignments
for the discrete variables to exclude counterexamples from subsequent analysis
iterations. We define explanations to model these sequences. A counterexample
will be excluded if the explanation is a prefix of the counterexample. A definition
for an explanation is given in Definition 5.1

Definition 5.1 (Explanation)
An explanation (Vars,Seqs) describes a prefix of a counterexample
(Varsc,Seqsc) where

● Vars ∶= Varsc = {var1, . . . , varm} is a set of variables

● Seqs ∶= {s1,k, s2,k, . . . , sn,k} is a set of equi-length sequences si,k ∶=
(vi,1, vi,2, . . . , vi,k) of assignments for vari ∈ Vars with Seqsc =
{s1, s2, . . . , sn}, si = (vi,1, vi,2, . . . , vi,n) and i ∈ {1, 2, . . . ,m} with k ≤ n.

The explanation (∅,∅) does not exclude any counterexamples and is passed
to the BMC if a counterexample has been confirmed. The explanation
(Vars,∅) excludes all counterexamples.

An explanation for the bounded model checker is similar to the counterexamples
generated by the BMC. The counterexamples as shown in Section 2.3.3 consist

5. Explanation Generation 67

of sequences of variable assignments for the discrete variables of the BMC.
An explanation describes a prefix of these sequences. Thus, an exemplary
explanation (Vars,Seqs) of a counterexample (Varsc,Seqsc) with length n and
for all variables vari ∈ Vars and variable assignments vi,j for i ∈ {1,2, . . . ,m}
and j ∈ {1,2, . . . , k} is given in Equations (5.1) to (5.3).

var1 ∶ (v1,1, v1,2, . . . , v1,k) (5.1)
var2 ∶ (v2,1, v2,2, . . . , v2,k) (5.2)
⋮ ∶ ⋮
varm ∶ (vm,1, vm,2, . . . , vm,k) (5.3)

These explanations are stored in a file using the same format as the counterex-
amples provided by the bounded model checker. These files can be used by
the BMC to improve the analysis as described in Section 2.3.2. An exemplary
explanation for the tank example presented in Section 2.2 is shown in Listing 5.1.

(in_full :bool , in_max :bool , in_min :bool , in_nonempty :bool , out_v :bool)
(0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0)
(0 ,0 ,0 ,1 ,1 ,1 ,0 ,0 ,0)
(1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,0)
(1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1)
(1 ,1 ,1 ,1 ,0 ,0 ,0 ,0 ,0)

Listing 5.1: Tank System Explanation

In order to obtain explanations for a given counterexample, we have to consider
the reachable paths of the hybrid reachability analysis on the transformed
automaton. The reachable paths can be derived from the outputs given by
SpaceEx and Flow*.

5.2 Reachable Paths

In this chapter we discuss, how to obtain reachable paths from different verifica-
tion tool outputs. The reachable paths can be used to determine, which discrete
counterexamples are reproducible in the hybrid automaton. Section 5.2.1 de-
scribes how the console output provided by a modified SpaceEx can be used
to construct a reachability tree as shown in Section 2.5.3. Furthermore, Sec-
tion 5.2.2 shows how to configure Flow* to generate the path information needed
to derive a complete reachability tree.

68 5. Explanation Generation

5.2.1 SpaceEx Reachability Tree

The SpaceEx output allows us to (re)construct a path tree for the analyzed
model. Thus, the tree contains all used transitions and visited locations. During
this tree construction, states that have already been visited do not appear in the
tree. The information for the reachability tree is obtained from the extended
console output of SpaceEx for the verbosity D2, which defines an output with
debug level 2. The original SpaceEx output does not allow to detect, when a
state has to be added to the waiting list, which is a queue of states that still
needs to be analyzed by SpaceEx. An excerpt of an exemplary console output
for a automaton cycleSequence, which is derived from a BMC counterexample
is shown in Listing 5.2.

...
00:00:01.015 1 sym states passed , 1 waiting
00:00:01.015 Iteration 0 done after 0.253001 s
00:00:01.015 Iteration 1...
00:00:01.015
time elapse in loc(cycleSequence)== cycle1_1
00:00:01.015 Continuous post with continuous_post_sfm ...
00:00:01.036 max error 0 in direction -in_reset
00:00:01.041 Continuous post with continuous_post_sfm done after 0.0250001s,

cumul 0.0530001 s
00:00:01.041
discrete post with label "" from loc(cycleSequence)== cycle1_1 to loc(

cycleSequence)== cycle2_6
source location : loc(cycleSequence)== cycle1_1
00:00:01.042
discrete post with label "" from loc(cycleSequence)== cycle1_1 to loc(

cycleSequence)== cycle2_5
source location : loc(cycleSequence)== cycle1_1
00:00:01.042 Discrete post ...
00:00:01.044 computing discrete post of sfm ... of size 11
00:00:01.044 found 1 intervals intersecting with guard
00:00:01.060 computing discrete post of sfm done after 0.0160001s, cumul

0.0300001 s
00:00:01.060 Discrete post done after 0.0180001s, cumul 0.167001 s
00:00:01.060
Waiting list candidate found .
...
State was added to the waiting list.
...

Listing 5.2: SpaceEx Console Output

The parser can detect several different results for the computation. The lines
containing Iteration refer to the start of the analysis of a new state, i.e. the
execution of one iteration. Firstly, a time elapse is computed for the location
cycle1_1 as specified in time elapse in loc(cycleSequence)==cycle1_1.
Once this step is finished, the analysis starts by determining the discrete steps,
which the system can take. The intersection of the current state set, i.e. the
succesors of the time elapse, and the transition guards are checked. If there is
at least one interval in these states, which intersects with the guards, the target

5. Explanation Generation 69

state of the computation can be reached and is added as a possible candidate
(Waiting list candidate found). The transition which is checked can be
found in the line starting with discrete post. The information in this line
contain the source and target locations and the transition label.

After all possible discrete steps have been checked, the candidate states are
either added to the waiting list, i.e. the list of states which has to be examined
for new reachable states, or are discarded. A state is added if it has not yet been
visited, i.e. the candidate state is transferred to the waiting list (State was
added to the waiting list). Otherwise, the state is discarded (State was
not added to the waiting list). During the special case, where the newly
reach state is a superset of a state, i.e. the state includes another state, in the
waiting list, the new state is merged with waiting list state (State was merged
with another state in the waiting list). If a state in the waiting list is a
superset of the new state the states are merged analogously. The default setting
is that the merging of states is enabled, but it can be disabled if necessary.

Analyzing the output file, we can obtain a reachability tree, which does not
contain redundant states. The outputs referring to states being added to the
waiting list can be used to determine, which states are reached. Thus, a node is
added to the tree, if it has been added to the waiting list. We now consider the
simplified console output excerpt presented in Listing 5.3, which only shows the
time elapses, discrete steps and which states have been added to the candidate
and waiting list.

time elapse in loc(cycleSequence)== init
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c1_1
Waiting list candidate found .
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c1_2
State was added to the waiting list.

time elapse in loc(cycleSequence)== c1_1
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c2_1
Waiting list candidate found .
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c2_2
Waiting list candidate found .
State was added to the waiting list.
State was added to the waiting list.

time elapse in loc(cycleSequence)== c2_1
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c3_1
Waiting list candidate found .
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c3_2
Waiting list candidate found .
State was added to the waiting list.
State was added to the waiting list.

time elapse in loc(cycleSequence)== c2_2
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c3_1

70 5. Explanation Generation

Waiting list candidate found .
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c3_2
State was not added to the waiting list.

time elapse in loc(cycleSequence)== c3_1
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c4_1
Waiting list candidate found .
discrete post loc(cycleSequence)== init to loc(cycleSequence)== c4_2
Waiting list candidate found .
State was added to the waiting list.
State was added to the waiting list.

...

Listing 5.3: SpaceEx Console Output

The tree we can derive from this output starts in the node init performing a
time step, where c1_1, c1_2, . . . , c4_2 correspond to locations c1,1, c1,2, . . . ,
c4,2. Afterwards, all discrete transitions are checked. The transition from init to
c1,1 is added to the candidate list. There is no possible intersection of the state
after the time elapse with the guard of the transition to c1,2 as it is not added to
the candidate list. Afterwards, the state reached by the transition from init to
c1,1 is added to the waiting list. Thus, c1,1 is added as a successor node of init.
In the next step c1,1 is removed from the waiting list and is analyzed. After
the time elapse is performed, the transitions from c1,1 to c2,1 and c2,2 are both
added to candidate list and to the waiting list. Therefore, the node c1,1 has the
two successor nodes c2,1 and c2,2.

Similarly, the node c2,1 receives the two successor nodes c3,1 and c3,2 as both are
added to the waiting list. The waiting list now consists of c2,2,c3,1 and c3,2. The
computation of the successors of c2,2 detects only one candidate. However this
candidate is discarded as the state the automaton would result in has already
been reached. Therefore, the node c2,2 has no successors in the tree. The last
computation we consider is c3,1, where both transitions to c4,1 and c4,2 can be
taken and both resulting states are added to the waiting list. We omit the
remaining computations for the states for c3,2,c4,1 and c4,2 in the waiting list
and assume no new states are found. The resulting reachability tree without
the valuations is illustrated in Figure 5.2.

As we are trying to detect whether the locations associated with the final
PLC cycle are reachable, we consider the different location paths represented
in the tree. This tree contains the path init → c1,1 → c2,2, the path init →
c1,1 → c2,1 → c3,2, the path init → c1,1 → c2,1 → c3,1 → c4,1 and the path
init→ c1,1 → c2,1 → c3,1 → c4,2.

5. Explanation Generation 71

init c1,1

c2,1

c2,2

c3,1

c3,2

c4,1

c4,2

Figure 5.2: Reachability Tree

5.2.2 Flow* Reachability Tree

In order to construct a reachability tree from the Flow* output using the
current version, forbidden states have to be set for the analysis. Flow* provides
a counterexample, which contains a path from an initial state to a forbidden
state, if the forbidden state is reached. By defining all states as forbidden sates,
the Flow* counterexamples provide all reachable paths. In order to define such
forbidden states, they have to intersect with every visited state. This is simply
achieved by defining the forbidden states as the set of states where the time
t is t ≥ 0. Each of these paths represents a sequence of states that ends in a
forbidden state. As all reached states are forbidden, there are also a multiple
prefixes of a path included as for a path with length n all prefix paths with
length 1 to n − 1 are also part of the output. An exemplary counterexample
output file excerpt containing only the path information is shown in Listing 5.4.

...
computation path
{
singleInitLoc ;
}
...
computation path
{
singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 ;
}
...
computation path
{
singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 (11 ,

[8.9999389648e -01 , 1.1000061036 e +00]) -> cycle2_1 ;
}
...
computation path
{

72 5. Explanation Generation

singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 (11 ,
[8.9999389648e -01 , 1.1000061036 e +00]) -> cycle2_2 ;

}
...
computation path
{
singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 (11 ,

[8.9999389648e -01 , 1.1000061036 e +00]) -> cycle2_1 (37 , [6.9999389648e
-01 , 1.3000061036 e +00]) -> cycle3_1 ;

}
...
computation path
{
singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 (11 ,

[8.9999389648e -01 , 1.1000061036 e +00]) -> cycle2_2 (37 , [6.9999389648e
-01 , 1.3000061036 e +00]) -> cycle3_2 ;

}
...
computation path
{
singleInitLoc (7 , [0.0000000000 e+00 , 6.1035156251e -06]) -> cycle1_1 (11 ,

[8.9999389648e -01 , 1.1000061036 e +00]) -> cycle2_1 (37 , [6.9999389648e
-01 , 1.3000061036 e +00]) -> cycle3_1 (59 , [4.9999389648e -01 ,
9.0001220704e -01]) -> cycle4_1 ;

}
...

Listing 5.4: Flow* Counterexample Output

A computation path describes a reachable path, where l1(n, [a, b])− > l2 de-
scribes the jump numbered n from source location l1 to target location l2 while
the execution time is included in [a, b]. In the following we only consider
the reachable locations of each path. The counterexample file includes more
information about the variable values in each location, which is not required for
our transformation. We use the computation paths to construct a reachability
tree. We receive a single tree for the given counterexample file, as all paths
start in the singleInitLoc. In the following we refer to singleInitLoc as
init and to cycle1_1, . . . , cycle4_1 as c1,1, . . . , c4,1. The resulting location
tree for the example in Listing 5.4 is illustrated in Figure 5.3.

init c1,1

c2,1

c2,2

c3,1

c3,2

c4,1

Figure 5.3: Reachability Tree

5. Explanation Generation 73

The resulting reachability tree in Figure 5.3 contains two maximum location
paths, i.e. paths that start in the root node and end in a leaf node. There is
a path init → c1,1 → c2,2 → c3,2 of length four and a path init → c1,1 → c2,1 →
c3,1 → c4,1 of length five. We do not need to consider the shorter paths, as
they are prefixes of the two maximum paths, thus they provide only redundant
information. The constructed tree can be used for further analysis.

5.3 Explanation Generation

An explanation for a counterexample can be derived by analyzing the reachable
paths of the counterexample automaton, which have been computed in the
hybrid reachability analysis. In order to generate explanations, we consider
all paths starting in a root node and ending in a leaf node. For each of these
paths, we must determine the number of PLC cycles that have been visited.
If the last cycle is reachable, the counterexample is replicable. Otherwise, by
adding the successor of the last reachable cycle which has been reached, we
can use this information to construct a prefix sequence of the counterexample,
which is unreachable in the hybrid automaton, and generate an explanation.
As there are multiple locations that correspond to a single PLC cycle, we have
to consider the groupings for these locations as constructed in Section 3.7.1.
The automaton may stay in the same PLC but in different locations modeling
different conditional ODE systems. This is possible due to the construction of
copy transitions as presented in Section 3.7.2. These groups can be defined as
sets of locations. We consider the reachability tree given in Figure 5.4 for an
exemplary path analysis.

The illustrated reachability tree provides six different paths we must consider
for the explanation generation. The paths are derived by extracting all paths
starting in the root node(s) and ending in a leaf. In this case, there is only a
single root node init, thus all paths start with init. Furthermore, there are six
different leaf nodes, namely c3,3, c3,1, c3,2, c3,1, c4,1 and c4,2. The paths resulting
from the given reachability tree as explained in Section 2.5.3 for the explanation
generation are depicted in Equations (5.4) to (5.9). For now, we only consider
the locations for the explanation generation.

74 5. Explanation Generation

init

c1,1

c2,1 c2,2

c2,2 c2,3 c3,1 c3,2

c3,3 c2,1 c4,1 c4,2

c3,1 c3,2

Figure 5.4: Exemplary Reachability Tree

init→ c1,1 → c2,1 → c2,2 → c3,3 (5.4)
init→ c1,1 → c2,1 → c2,3 → c2,1 → c3,1 (5.5)
init→ c1,1 → c2,1 → c2,3 → c2,1 → c3,2 (5.6)
init→ c1,1 → c2,2 → c3,1 (5.7)
init→ c1,1 → c2,2 → c3,2 → c4,1 (5.8)
init→ c1,1 → c2,2 → c3,2 → c4,2 (5.9)

As mentioned before, we are only interested in the PLC cycles that have been
visited. The grouping of locations belonging to the same PLC cycle allows us to
compute these cycles. In this example we assume the groups C1 ∶= {c1,1, c1,2, c1,3},
C2 ∶= {c2,1, c2,2, c2,3}, C3 ∶= {c3,1, c3,2, c3,3} and C4 ∶= {c4,1, c4,2, c4,3} as represen-

5. Explanation Generation 75

tatives for the PLC cycles 1, 2, 3, and 4. Thus, three different locations for
each PLC cycle were created by adding the conditional ODEs as shown in
Section 3.7.1 as each conditional ODE system and their combined negation
result in a new location for each PLC cycle.

Determining which PLC cycles have been reached can be achieved by checking
the membership of each location in the path. Once at least one member ci,j for
j ∈ {1,2,3} of a set Ci has been reached in a path, the PLC cycle Ci has been
visited. The visited cycles are shown in Equations (5.10) to (5.15) for each path
in Equations (5.4) to (5.9).

C1 → C2 → C3 (5.10)
C1 → C2 → C3 (5.11)
C1 → C2 → C3 (5.12)
C1 → C2 → C3 (5.13)
C1 → C2 → C3 → C4 (5.14)
C1 → C2 → C3 → C4 (5.15)

The longest path in the reachability tree does not have to correspond to the
longest PLC cycle sequence as there might be several locations corresponding
to the same PLC cycle, which are reachable on the same path. In this example
the paths Equations (5.5) and (5.6) are the longest in the original reachability
tree, but only visit the PLC cycles C1, C2 and C3, while paths Equations (5.8)
and (5.9) are shorter in the original tree, but provide the longest cycle sequence
of C1, C2, C3 and C4.

The explanation generation only considers a longest cycle sequence as it rep-
resents the reachable cycles in the hybrid automaton. Due to the sequential
construction of this automaton, all shorter cycle sequences are prefixes of the
longest sequence. The longest cycle sequence C1 → C2 → C3 → C4, still repre-
sents a sequence which is replicable in the counterexample automaton. We add
the successor cycle C5 of the final cycle C4 in the longest sequence, if the cycle
corresponding to the last PLC cycle is not reached, thus we construct a sequence
C1 → C2 → C3 → C4 → C5 which is no longer replicable. C5 is not reachable
during the hybrid reachability analysis, thus adding the cycle C5 creates an
unreachable cycle sequence. Furthermore, this new sequence is the shortest cycle
sequence which can be used to construct an unreachable prefix sequence, since
all shorter sequences are still feasible as seen in Equations (5.10) to (5.15). Since
all shorter cycle sequences can be omitted, there are two different cases for the
longest cycle sequence, which must be handled by the explanation generation.

Considering a counterexample (Vars,Seqs) with sequence length n and the
longest reachable cycle sequence C1 → C2 → . . .→ Ck:

76 5. Explanation Generation

1. At least one location corresponding to the last PLC cycle n is reachable
in the counterexample automaton, i.e. k = n

2. No location corresponding to the last PLC cycle n is reachable in the
counterexample automaton, i.e. k < n

If the last cycle is reached in the hybrid automaton, the counterexample has
been validated in the hybrid model. Thus, the counterexample provided by the
bounded model checking is still a counterexample given the plant dynamics.
The BMC is informed about the result by sending it an empty explanation
(∅,∅), i.e., an explanation with empty sequences.

The second possible result is that the last cycle is not reached in any of the
paths, which are parsed from the reachability tree. As explained before, we only
need to consider the longest cycle sequences resulting from these paths. The
sequence describes, which cycles are reachable in the hybrid automaton and
as the last cycle has not been reached, the BMC counterexample can not be
fully traversed in the hybrid analysis. Assuming cycle k with k < n is the last
reachable PLC cycle, thus all incoming transitions of cycle k + 1 are never taken
during the hybrid analysis. Adding the unreachable PLC cycle k + 1 allows
us to construct prefix of the counterexample of length k + 1. This prefix is an
explanation, which can be used to provide a prefix sequence to the BMC, which
is unreachable in the hybrid model and can be excluded in further analysis.

In the example with Figure 5.4, the BMC counterexample would be validated,
if the counterexample only provided assignments for four cycles and thus
paths via the locations that correspond to cycle 4 cannot be prolonged further.
The reachability tree analysis then provides us two paths (meaning least one
path), which reach the last cycle C4. Given the BMC counterexample shown
in Equations (5.16) to (5.20) and the reachability tree in Figure 5.4, the
counterexample is validated, as the last cycle C4 is reachable.

infull ∶ (0,0,0,1) (5.16)
inmax ∶ (0,0,1,1) (5.17)
inmin ∶ (1,1,1,1) (5.18)

innonempty ∶ (1,1,1,1) (5.19)
outv ∶ (0,1,1,0) (5.20)

An explanation is generated for the reachability tree in Figure 5.4 and the
exemplary counterexample in Equations (5.21) to (5.25)

5. Explanation Generation 77

infull ∶ (0,0,0,0,0,0,1) (5.21)
inmax ∶ (0,0,1,1,0,1,1) (5.22)
inmin ∶ (1,1,1,1,1,1,1) (5.23)

innonempty ∶ (1,1,1,1,1,1,1) (5.24)
outv ∶ (0,1,1,0,0,1,1) (5.25)

As seen in Equations (5.10) to (5.15), the longest cycle sequence reaches C4.
Since C4 is not the last cycle in the original counterexample, it could not
be validated given the dynamic behaviour. Extending the sequence using
the next cylce, i.e., cycle C5, we can construct the explanation describing a
counterexample prefix of length 5, as this is the shortest sequence which is
unreachable in the hybrid model, shown in Equations (5.26) to (5.30).

infull ∶ (0,0,0,0,0) (5.26)
inmax ∶ (0,0,1,1,0) (5.27)
inmin ∶ (1,1,1,1,1) (5.28)

innonempty ∶ (1,1,1,1,1) (5.29)
outv ∶ (0,1,1,0,0) (5.30)

The bounded model checker is able to parse the files, evaluate the explanations
and uses them to exclude counterexamples with the prefix provided by the
explanations.

5.4 Explanation Processing

The bounded model checking uses logic formulas with respect to the given
background theory as presented in Section 2.3 to model the control flow and
uses SMT solving to determine the possible execution of the system. Due to the
control flow being modeled as logic formulas internally, the BMC can remember
the current state of the system by storing the corresponding formula. If a
counterexample is detected, the BMC stores the last states, i.e. the states before
the counterexample was found. By retaining the previous states, the analysis
can be extended at the appropriate iteration by excluding counterexamples and
be resumed instead of being restarted.

Afterwards, a new counterexample is passed to the hybrid analysis and an au-
tomaton is constructed, if a counterexample can be found. A hybrid reachability
analysis is performed and an explanation is generated. The explanations, which

78 5. Explanation Generation

are constructed from the hybrid reachability analysis, represent sequences that
do not describe a counterexample if the plant dynamics are added to the model.
If no new BMC counterexample is found, the model is safe.

Assuming, the BMC receives an explanation (Vars,Seqs) of equi-length se-
quences Seqs with length n with the variables vari ∈ Vars with i ∈ {1, . . . ,m}
as shown in Equations (5.1) to (5.3). Thus set of sequences defines sequences
of assignments for the discrete variables, that can not occur if the dynamic
behaviour is considered. These sequences represent prefixes of the sequences,
which the BMC can exclude. The stored BMC state is recalled and extended
by an exclusion formula to avoid the occurrence of the sequences of the given
explanation. The exclusion formula is build to exclude the sequence of variable
assignments provided by the explanation. Thereafter, the exclusion formula is
added in conjunction with the stored BMC state, thus preventing the BMC
analysis from reaching the discrete sequence provided by the explanation.

Considering the tank example presented in Section 2.2, which has been discussed
before, we have four input variables and one output variable. Each explanation
for the tank example are a sequence of assignments for sensors infull, inmax,
inmin and innonempty and valve outv. The expressiveness of an explanation
decreases with increasing length. If we compare the two explanations for
the tank system presented in Equations (5.31) to (5.35) and Equations (5.36)
to (5.40), the different formulas to exclude these sequences also show the different
expressiveness of the explanations.

infull ∶ (0,0,0) (5.31)
inmax ∶ (0,0,1) (5.32)
inmin ∶ (1,1,1) (5.33)

innonempty ∶ (1,1,1) (5.34)
outv ∶ (1,1,1) (5.35)

The first explanation given in Equations (5.31) to (5.35) excludes all sequences,
where the formula constructed by the bounded model checker ensures, that in
the variable assignments 0, 0, 0 for infull and 0, 0, 1 for inmax and 1, 1, 1 for
inmin, infar and outv can not occur for the cycles 1, 2 and 3, respectively. Thus,
this excludes all counterexamples beginning with this sequence.

infull ∶ (0) (5.36)
inmax ∶ (0) (5.37)
inmin ∶ (1) (5.38)

innonempty ∶ (1) (5.39)
outv ∶ (1) (5.40)

5. Explanation Generation 79

The explanation shown in Equations (5.36) to (5.40) excludes even more se-
quences. All sequences where 0 is assigned to infull and inmax and 1 is assigned
to inmin, innonempty and outv in the first cycle are no longer viable for the BMC
after the appropriate formula has been added.

Therefore, after each explanation processed by the BMC, the control flow is
extended by an exclusion formula. The BMC analysis is then resumed with the
new control flow model.

In the second case, when the BMC does not receive an explanation, the BMC
can stop its analysis, as the hybrid analysis has confirmed the counterexample.
Due to the undecidability of the hybrid reachability, we cannot consider the
model unsafe, as the analysis might have over-approximated the reachable states.
The result for the analysis is unknown as either an actual hybrid counterexample
has been detected or the hybrid analysis is too inaccurate.

5.5 Explanation Wildcards

Wildcards as introduced in Section 3.8 can also be used to improve the ex-
pressiveness of explanations. As shown in Section 5.3, the explanations we
derive from the hybrid analysis are prefixes of the given counterexamples. These
prefixes allow us to exclude counterexamples with the same initial sequences as
explained in Section 5.4.

The addition of wildcards to an explanation allows us to tell the BMC to
exclude specific variable assignments at specific cycles. Each wildcard should be
considered by using all possible assignments for the variable in the construction
of an exclusion formula as described in Section 5.4, as they can take any values
for the given data type. The explanations still retain their prefix property when
wildcards are used. The expressiveness of an explanation is increased with an
increasing amount of wildcards, as more counterexamples will be excluded.

As we only consider boolean wildcards, the expressiveness change of an ex-
planation for each occurrence of a wildcard assignment is that the set of
counterexample sequences which can be excluded is doubled. Assuming we have
an explanation for a system with a single variable invar with a single boolean
wildcard as shown in Equation (5.41), we exclude 2 prefixes instead of just 1.

invar ∶ (1,∗,0,1) (5.41)

The given explanation excludes the prefixes (1,0,0,1) and (1,1,0,1) for invar.
Each additional wildcard would double the amount of excludable prefixes, as the
prefixes with all possible assignments {0,1} for each wildcard can be excluded.

80 5. Explanation Generation

An exemplary explanation with wildcards for the tank example, which has been
presented in Section 2.2 is given in Equations (5.42) to (5.46).

infull ∶ (∗,0,∗,1,∗) (5.42)
inmax ∶ (∗,∗,∗,∗,∗) (5.43)
inmin ∶ (∗,∗,∗,∗,∗) (5.44)

innonempty ∶ (∗,∗,∗,∗,∗) (5.45)
outv ∶ (∗,∗,∗,∗,∗) (5.46)

The explanation results in the exclusion of all sequences, where infull is assigned
0 in the second cycle and 1 in the fourth cycle. Unfortunately, the wildcards
still do not allow us to exclude the occurrences of specific subsequences in the
discrete counterexamples, as the we can only define a wildcard for a specific cycle.
Considering the single variable system with variable invar, we can exclude an
exemplary subsequence (0, 1, 0) at the beginning by constructing the explanation
given in Equation (5.47).

invar ∶ (0,1,0) (5.47)

If we want to exclude the subsequence starting at any other position than the
first cycle, we have to construct new explanations as shown in Equations (5.48)
to (5.50) which represent the exclusion of the subsequence starting in cycle 2, 3
and 4.

invar ∶ (∗,0,1,0) (5.48)
invar ∶ (∗,∗,0,1,0) (5.49)
invar ∶ (∗,∗,∗,0,1,0) (5.50)

Currently the BMC is able to process explanation wildcards. However we still
require heuristics to determine when a wildcard can be added in an explanation.

5.6 Summary

In this chapter we have presented how the results from a hybrid reachability
analysis can be used to construct explanations, which are used to exclude
discrete counterexamples that are not counterexamples if the dynamic behaviour
is considered. Starting out with the analysis of the verification console output
of SpaceEx, we show how to construct a reachability tree. The console output
is used to determine, which states are added to the tree and which are omitted.
Additionally, the Flow* counterexample output is used to construct a reachability

5. Explanation Generation 81

tree. Each counterexample path of the Flow* counterexamples and its prefixes
represent a path from the root to a leaf in the tree. Examples are provided
for both verification tools. A method is introduced to generate an explanation
for an exemplary reachability tree. We discussed the expressiveness of these
explanations on the basis of exemplary explanations. The functionality of the
BMC is presented in respect to the processing of explanations. The BMC
remembers the previous states in order resume its analysis after an explanation
has been used to exclude specific subsequences from further analysis. Moreover,
we also provide a possibility to improve the expressiveness of explanations by
allowing wildcards. However, these wildcards still have some restrictions.

82 5. Explanation Generation

Chapter 6

Experimental Results

In this chapter, the presented verification approach is applied to two different
systems. The evaluations of the verifications are used to determine weaknesses
in the current algorithms as well as to show how the hybrid reachability affects
the results of the analysis. Moreover, special cases which might occur during
the analysis are discussed. A detailed analysis of the runtime of each system is
provided as well.

We present the models for the tank system and a new system describing a train
crossing in Section 6.1. In addition to the tank system as defined for our new
approach, we also provide a model for the entire system in order to compare the
analyses. The verification process of the different systems and problems which
arose during this process are discussed in Section 6.2. Finally, a runtime analysis
for the verification is performed in Section 6.3. We consider the two systems
as well as manually generated counterexample sequences of different lengths
for both systems in order to analyze the effects of increasing counterexample
lengths on the hybrid analysis. Furthermore, we provide some improvements
for the hybrid analysis.

6.1 Exemplary Systems

In this section we present two different systems which are controlled by PLCs.
The first system in Section 6.1.1 is the tank system which has been introduced
in Section 2.2. Furthermore, we introduce a new system in Section 6.1.2, which
models a train crossing. Gates have to be lowered if the train passes the crossing
and are raised if the train has left the crossing. We define these systems in the
following and show how to model their plant dynamics.

6.1.1 Tank System

The tank system has already been described in detail in the previous chapters
Chapter 2 and Chapter 4. We assume a tank with four water height sensors
and a valve, which controls the water level change in the tank. Furthermore,
there is a hole at the bottom of the tank, which allows water to leak out of the
tank. An illustration of this tank system is shown in Figure 6.1.

84 6. Experimental Results

T I
T

S0
full

S1
max

S2
min

S3
nonempty

V O
v

Figure 6.1: Tank System

The input parameters for the system consist of replacement rules for the discrete
variables, conditional ODEs and initial values. Furthermore, we have to define
a cycle time and configure the SpaceEx parameters appropriately. The PLC
program, which is analyzed by the bounded model checker is the same as
in Listing 2.1. The intermediate verification language models the discrete
behaviour of the tank system.

In the tank example, the replacement rules define the water levels at which each
sensor is activated. The dynamic links for the discrete boolean variables are
defined in Table 6.1.

Variable true false
infull h ≥ 20 h < 20
inmax h ≥ 15 h < 15
inmin h ≥ 5 h < 5

innonempty h ≥ 0 h < 0

Table 6.1: Variable Links

The conditional ODEs define the water flow according the the output variable
outv. For this analysis we use the conditional ODEs in Equations (6.1) and (6.2).

outv == 1 ∶ ḣ1 = 2, (6.1)
outv == 0 ∶ ḣ1 = −2 (6.2)

The initial values of h depend on the initial sensor assignments. There are five
different areas in the tank, which are described by the sensors. The conditional
initial values are depicted in Equations (6.3) to (6.7).

6. Experimental Results 85

infull ∶ h ∶= 25 (6.3)
¬infull ∧ inmax ∶ h ∶= 17 (6.4)
¬inmax ∧ inmin ∶ h ∶= 10 (6.5)

¬inmin ∧ innonempty ∶ h ∶= 4 (6.6)
¬innonempty ∶ h ∶= −1 (6.7)

The input files for the given input parameters are described in Chapter 4. We
assume a cycle time of exactly 1 and configure SpaceEx accordingly. The
configurations in Listing 6.1 show the SpaceEx parameters, which are used for
the hybrid reachability analysis.

system = system
forbidden = global_time < 0
output - variables = global_time ,h

scenario = supp
directions = box
sampling -time = 0.01
time - horizon = 1
iter -max = -1
output - format = GEN
verbosity = m
rel -err = 1.0e -12
abs -err = 1.0e -13

Listing 6.1: SpaceEx Parameters

The main component of the model is called system. The forbidden states have
to be assigned, but are simply deactivated by making them unreachable. In this
case we have a time variable global_time, which is always positive, thus setting
the forbidden states as all states where global_time is negative, defines states
which are never reached. The forbidden states are deactivated as SpaceEx only
returns state information restricted to the forbidden states if forbidden states
are reached. We use the LGG support function scenario with a sampling-time
of 0.01, i.e. a fixed step size of 0.01. The time-horizon of 1 is sufficient as we
have a cycle time of 1. Furthermore, the maximum iterations that are performed
by SpaceEx can be set as infinite due to the sequential structure, the conditional
ODE and cycle time restrictions of the automaton. The analysis will always
stop after a reasonable amount of time either to the time restrictions or the
transition guards.

86 6. Experimental Results

Tank System Full Automaton

We also consider a hybrid automaton modeling the tank system as a combination
of the entire discrete behaviour and all plant dynamics. We omit the assignments
for the discrete variables, as they can be modeled by the location and dynamic
guards. The hybrid automaton is illustrated in Figure 6.2.

on
t ≤ 1
ṫ == 1
ḣ == 2

t ≥ 1 ∧ h < 15

t ∶= 0
off
t ≤ 1
ṫ == 1
ḣ == −2

t ≥ 1 ∧ h ≥ 5

t ∶= 0

t ∶= 0
h ∶= 10

t ∶= 0
h ∶= 10

t ≥ 1 ∧ h ≥ 15
t ∶= 0

t ≥ 1 ∧ h < 5

t ∶= 0

Figure 6.2: Tank System Hybrid Automaton

The automaton contains two locations describing the state of the valve. In on
the valve is open and the water is rising ḣ == 2 and in off the valve is closed
and the water level is falling ḣ == −2. Furthermore, both locations have a cycle
timer t, which causes the system to stay in each location for the constant cycle
time of 1. This is accomplished by adding the invariant t ≤ 1 to all locations
and the guard t ≥ 1 to all transition guards, while time passes at a constant
value of ṫ == 1. As the system may only stay in the same location, considering
conditions over the water level h, after a PLC cycle has been executed, all
transition guards are extended accordingly.

The transition from on to off can only be taken if the inmax is active. As defined
in the replacement rules, this translates to the condition h ≥ 15. Similarly, the
guard of transition off to on is extended by h < 5 as it should only be taken,
if inmin is deactivated. The self loops of the locations are extended with the
guards h ≥ 5 and h < 15 respectively, thus not allowing the system to stay in on
if the inmax is active and forcing the system to leave off if the inmin sensor is
deactivated. We assume, that the system starts between inmin and inmax and
initialize h with an exemplary value of 10 or with the entire area [5,15).

The unsafe states for the system are defined as h < 0 ∨ h ≥ 20 as these are the
states, where infull is active or innonempty is not active. The unsafe states are
also derived from the replacement rules.

6. Experimental Results 87

6.1.2 Train Crossing

In the second example we apply our PLC program verification approach to a
model of a train crossing. The train tracks cross a street with a gate on each
side of the street to prevent cars from crossing. The example only considers the
behaviour of the train and the gates. The PLC controls the gates of the train
crossing by raising and lowering them according to the train position. When
the train is near the crossing, the gates start lowering. After the train has
passed the crossing, the gates open again. The schematic shown in Figure 6.3
illustrates the layout of the sensors and gates used by the controller.

S0
near

S1
close

S2
far

S3
reset

G0
open

Figure 6.3: Train Crossing

In the example, the sensors innear, inclose, infar and inreset are activated, if the
train passes over them, and are deactivated once the succeeding sensor on the
track is passed. The output variables outposmsb and outposlsb define different
areas of the track. Thus, the assignment of outposmsb ∶= 0 (most significant bit)
and outposlsb ∶= 0 (least significant bit), i.e., 00, defines the track between the
sensors innear and inclose. Furthermore, the assignments 01, 10 and 11 define
the track areas between inclose and infar, infar and inreset and inreset and innear,
respectively. The sensor inopen defines the state of the gates on both sides of the
crossing. Therefore, the condition inopen describes opened gates, while ¬inopen
describes closed gates.

The PLC program is given as an instruction list for the bounded model checker.
Assumptions in the program restrict the system in such a manner, that exactly
one of the position sensors (innear, inclose, infar and inreset) is active at any time.
The unsafe states for the system are where the sensor inopen is true, while inclose
is true. Furthermore, if inreset is active, the gates have to be closed (¬inopen)
for the system to be in a safe state.

88 6. Experimental Results

In addition to the discrete behaviour, we define two new variables p and g. The
continuous variable p describes the current position of the train, while g models
the angle of the train crossing gates. Thus, g = 0 defines fully closed gates and
g = 90 opened gates. There are two groups of dynamic links. The first group
connects the position sensors with the position p of the train, while the second
group describes the state of the gates and the corresponding dynamic conditions.
It is sufficient to model only the links for each activated position sensor as the
positon conditions for p do not intersect. The links for the position sensors are
shown in Figure 6.4.

Variable true
innear p ≥ 1 ∧ p < 4
inclose p ≥ 4 ∧ p < 6
infar p ≥ 6 ∧ p < 10
inreset p ≥ 10, p ∶= 0

Figure 6.4: Position Sensor Links

Two neighbouring sensors describe an area for the train position p. Thus, each
sensor stays active while the train is inside a specific area. If the train passed
sensor innear, its position should be p ∈ [1,4). The sensors inclose and infar
describe the train positions p ∈ [4,6) and p ∈ [6,10), respectively. All other
possible train positions p ≥ 10 are described by inreset as the sensor activation
resets the actual train position p to 0, thus allowing the train to travel back to
the first position sensor.

The train crossing gates have two states. They are either closed if the angle g
is g ≤ 10. All other values of g > 10 correspond to open gates. The replacement
rules for the inopen are defined in Figure 6.5.

Variable true false
inopen g > 10 g ≤ 10

Figure 6.5: Position Sensor Links

By combining the replacement rules of the gate sensor with the rules of the
position sensors, we have modeled all sensors of the train crossing system.
All the dynamic links are defined as described in Section 4.1.2. The link file
containing all replacement rules is defined in Listing 6.2.

6. Experimental Results 89

epsilon = 0.00001
in_reset == 1 <=> p >= 10 <=> p:=0
in_near == 1 <=> p >= 1 AND p < 4
in_close == 1 <=> p >= 4 AND p < 6
in_far == 1 <=> p >= 6 AND p < 10
in_open == 1 <=> g > 10
in_open == 0 <=> g <= 10

Listing 6.2: Train Crossing Link File

The different continuous behaviours of p and g are given by conditional ODEs.
The conditions of these ODEs depend on the output variables outposmsb and
outposlsb and the angle of the gates g. In order to model the dynamic behaviour,
we define six conditional ODEs as depicted in Equations (6.8) to (6.13).

outposmsb ∧ outposlsb ∶ ṗ == 1, ġ == 0 (6.8)
outposmsb ∧ ¬outposlsb ∧ g ≤ 90 ∶ ṗ == 1, ġ == 45 (6.9)
outposmsb ∧ ¬outposlsb ∧ g ≥ 90 ∶ ṗ == 1, ġ == 0 (6.10)

¬outposmsb ∧ outposlsb ∶ ṗ == 1, ġ == 0 (6.11)
¬outposmsb ∧ ¬outposlsb ∧ g ≥ 0 ∶ ṗ == 1, ġ == −45 (6.12)
¬outposmsb ∧ ¬outposlsb ∧ g ≤ 0 ∶ ṗ == 1, ġ == 0 (6.13)

As described before, the combination of the variable assignments of outposmsb
and outposlsb define the different areas of the tracks. The train always moves with
a constant speed of ṗ == 1 for each time unit. Thus, the train position change is
independent of the current variable assignments. The only changes of g occur,
if either the innear or the infar sensor has been passed. This results in either in
the assignment outposmsb ∶= 0 and outposlsb ∶= 0 or outposmsb ∶= 1 and outposlsb ∶= 0,
which model the opening and closing phases of the gates. Furthermore, the
changes of g are restricted by g itself. The angle described by g may never be
bigger than 90 or smaller than 0. These conditions result in the two conditional
ODEs for each of the output variable assignments. As the conditions have to
overlap the values 0 and 90 of g, we define the additional conditions g ≥ 90,
g ≤ 90, g ≥ 0 and g ≤ 0 in the conditional ODEs. The conditions have to overlap
for the hybrid reachability to be able to switch between the locations.

The initial values for p and g will be defined according to the position sensors
and the gate sensors, respectively. For p we can assume, that at least one
position sensor is active, as otherwise the train is not at any specified position.
We define the following conditional initial values as shown in Equations (6.14)
to (6.17) for p.

90 6. Experimental Results

innear ∶ g ∶= 0 (6.14)
inclose ∶ g ∶= 2 (6.15)
infar ∶ g ∶= 5 (6.16)
inreset ∶ g ∶= 7 (6.17)

The gate angle g is initialized according to the inopen sensor. The assignments
are shown in Equations (6.18) and (6.19).

inopen ∶ g ∶= 90 (6.18)
¬inopen ∶ g ∶= 0 (6.19)

The conditionial ODEs and conditional initial values are stored in an XML file
(Listing 6.3) as described in Section 4.1.1.

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

<addNegatedTerms >false </addNegatedTerms >
<condODE >

<cond > <![CDATA [out_posmsb AND out_poslsb]]></cond >
<equation >p’ == 1</equation >
<equation >g’ == 0</equation >

</condODE >
<condODE >

<cond > <![CDATA [out_posmsb AND ! out_poslsb AND g <= 90]] > </cond >
<equation >p’ == 1</equation >
<equation >g’ == 45 </equation >

</condODE >
<condODE >

<cond > <![CDATA [out_posmsb AND ! out_poslsb AND g >= 90]] > </cond >
<equation >p’ == 1</equation >
<equation >g’ == 0</equation >

</condODE >
<condODE >

<cond > <![CDATA [! out_posmsb AND out_poslsb]]></cond >
<equation >p’ == 1</equation >
<equation >g’ == 0</equation >

</condODE >
<condODE >

<cond > <![CDATA [! out_posmsb AND ! out_poslsb AND g >= 0]] > </cond >
<equation >p’ == 1</equation >
<equation >g’ == -45</equation >

</condODE >
<condODE >

<cond > <![CDATA [! out_posmsb AND ! out_poslsb AND g <= 0]] > </cond >
<equation >p’ == 1</equation >
<equation >g’ == 0</equation >

6. Experimental Results 91

</condODE >
<init >

<variable var = "p">
<condInit >

<cond > <![CDATA [in_reset]]></cond >
<value >0</value >

</condInit >
<condInit >

<cond > <![CDATA [in_near]]></cond >
<value >2</value >

</condInit >
<condInit >

<cond > <![CDATA [in_close]]></cond >
<value >5</value >

</condInit >
<condInit >

<cond > <![CDATA [in_far]]></cond >
<value >7</value >

</condInit >
</variable >
<variable var = "g">

<condInit >
<cond > <![CDATA [in_open]]></cond >
<value >90 </value >

</condInit >
<condInit >

<cond > <![CDATA [NOT in_open]]></cond >
<value >0</value >

</condInit >
</variable >

</init >
</condODEsys >

Listing 6.3: Conditional ODEs and Initial Values

Further configurations include a constant cycle time of 1. After the given system
has been transformed into an hybrid automaton as described in Chapter 3, we
use SpaceEx to perform a hybrid reachability analysis.

6.2 Analysis Execution

In this section we present some analyses we have performed on the tank system
as presented in Section 6.1.1 and the train crossing as introduced in Section 6.1.2.
We discuss the results of the verification of the tank system in Section 6.2.1.
Furthermore, we discuss problems which may occur due to over-approximation
in the hybrid reachability analysis. In Section 6.2.2, we present the verification
of the train crossing example. We show how Zeno behaviour affects the results
of the hybrid analysis and how to avoid these problems.

92 6. Experimental Results

6.2.1 Tank System Analysis

For the tank system presented in Section 6.1.1, we discuss the analysis of
10 PLC cycles in Section 6.2.1 and show how an exemplary counterexample,
which is generated during the BMC analysis, is refuted due to the discrete not
corresponding the dynamic behaviour. Furthermore, in Section 6.2.1 we show
how over-approximation during the hybrid reachability analysis might cause
the hybrid analysis to falsely terminate the verification. The last system as we
present and analyze in Section 6.2.1 contains an error in the control program,
which causes the verification to fail.

Tank System 10 Cycles

Considering the path length 10 , i.e. the number of cycles which are analyzed,
during the BMC analysis, the verification of the system returns the result safe.
As the BMC analysis constructs the counterexamples with increasing length,
we know that if a path with length n has been generated as a counterexample,
all path with length k < n are safe. We require this restriction as the BMC only
allows us to bound the search depth in the CFA and not the actual amount of
analyzed PLC cycles.

The entire analysis for a verification of the tank system with at most 10
PLC cycle executions requires 264 iterations. An iteration consists of an
execution of the BMC, a counterexample generation, the hybrid analysis of the
counterexample and an explanation generation. Furthermore, it includes the
exclusion of counterexamples according to the generated explanation during
subsequent BMC iterations. After 264 iterations, all discrete counterexamples
of length 10 have been refuted due to the hybrid system behaving differently.

We show how the hybrid analysis refutes the counterexamples provided by the
BMC, by considering an exemplary counterexample which is generated during
the analysis. The counterexample is depicted in Equations (6.20) to (6.24).

infull ∶ (0,0,0,0,0,0,0,0,0,1) (6.20)
inmax ∶ (0,0,0,0,0,0,0,0,0,1) (6.21)
inmin ∶ (1,1,1,0,0,0,1,1,1,1) (6.22)

innonempty ∶ (1,1,1,1,1,1,1,1,1,1) (6.23)
outv ∶ (0,0,0,0,1,1,1,1,1,1) (6.24)

In this counterexample, the discrete analysis has found an unsafe cycle sequence,
where the tank is overflowing, i.e., infull is active in a cycle. If we now model

6. Experimental Results 93

the dynamic behaviour according the the sensor activity and the given plant
dynamics, the result shows, that this cycle sequence is not possible. Figure 6.6
illustrates the discrete and dynamic behaviour for the given counterexample.

Cycle

Sensor

outv

innonempty

inmin

inmax

infull

1 2 3 4 5 6 7 8 9 10

1

1

1

1

1

0

0

0

0

0

h

Cycle
1 2 3 4 5 6 7 8 9 10

0

5

15

20

Figure 6.6: Discrete And Dynamic Behaviour

The diagrams in Figure 6.6 show, that the dynamic behaviour after cycle 9
differs from the discrete behaviour as marked by the red dots. When entering
cycle 10 the sensors inmax and infull are defined as true by the counterexample,
however the value of h is h < 15. Thus, when the counterexample automaton
tries to enter the locations corresponding to 10th PLC cycle, the analysis stops,

94 6. Experimental Results

as the replacement rule inmax ⇔ h ≥ 15 is applied to all incoming transitions of
the cycle 10 locations. Furthermore, infull ⇔ h ≥ 20 are also applied to the same
transitions. Either of these two guards stops the hybrid reachability analysis
from reaching the last PLC cycle. The explanation, which is generated is shown
in Equations (6.25) to (6.29).

infull ∶ (0,0,0,0,0,0,0,0,0) (6.25)
inmax ∶ (0,0,0,0,0,0,0,0,0) (6.26)
inmin ∶ (1,1,1,0,0,0,1,1,1) (6.27)

innonempty ∶ (1,1,1,1,1,1,1,1,1) (6.28)
outv ∶ (0,0,0,0,1,1,1,1,1) (6.29)

Currently, there are still some issues with the BMC analysis, which do not allow
us to analyze larger counterexamples. The runtime as well as the memory usage
increases drastically during the analysis of longer execution paths. The runtime
and memory usage increases with increasing counterexample path length. In
Section 6.3.1 we show the increase in runtime and memory usage for longer
cycle sequences as measured during the analysis.

Additionally we consider the analysis, where we modify the conditional initial
values to represent all possible values for each area of the tank. The analysis is
performed for the conditional initial values shown in Equations (6.30) to (6.34).

infull ∶ h ∶= [20,50] (6.30)
¬infull ∧ inmax ∶ h ∶= [15,20) (6.31)
¬inmax ∧ inmin ∶ h ∶= [5,15) (6.32)

¬inmin ∧ innonempty ∶ h ∶= [0,5) (6.33)
¬innonempty ∶ h ∶= [−30,0) (6.34)

The new conditional initial values affect the number of iterations required
to verify the tank system. The analysis performs 2174 iterations to verify
10 PLC cycles. This increase in iterations occurs since more states are now
reachable during the hybrid reachability analysis and thus less counterexamples
are excluded during each iteration.

Tank System Approximation Problem

Considering slightly adapted plant dynamics for the tank system, we show
a problem which might occur due to over-approximation during the hybrid

6. Experimental Results 95

reachability analysis. The conditional ODE systems are changed, so that the
water drains faster from the tank when the valve is closed. The new conditional
ODE systems are shown in Equations (6.35) and (6.36).

outv == 1 ∶ ḣ1 = 2, (6.35)
outv == 0 ∶ ḣ1 = −3 (6.36)

If the valve outv is closed, the water decreases by 3 for each time unit. We
perform an analysis on the system with all other plant dynamics as described
in Section 6.1.1. If more than 10 cycles are analyzed, the BMC generates a
counterexample which should not be replicable by the hybrid analysis, but
the last cycle locations are reachable. This problem occurs due to the over-
approximation in the hybrid reachability analysis. The counterexample, where
this problem occurs is depicted in Equations (6.37) to (6.41).

infull ∶ (0,0,0,0,0,0,0,0,0,0,0) (6.37)
inmax ∶ (0,0,0,1,1,1,0,0,0,0,0) (6.38)
inmin ∶ (1,1,1,1,1,1,1,1,1,0,0) (6.39)

innonempty ∶ (1,1,1,1,1,1,1,1,1,1,0) (6.40)
outv ∶ (1,1,1,1,0,0,0,0,0,0,1) (6.41)

If we compare the discrete with the dynamic behaviour, we can see that the last
cycle is not reachable, as all input sensors are deactivated. Thus, considering
the replacement rules in Table 6.1, the applied rules result in the guard h < 0 for
the incoming transitions of the locations corresponding to the last PLC cycle.
Figure 6.7 shows that the discrete behaviour cannot occur as the continuous
variables behave differently.

After the execution of the 10th cycle, the value of h is at exactly 0, thus h < 0
is not satisfied. However, due to over-approximation, h < 0 may be satisfiable
during the hybrid reachability analysis. In SpaceEx such problems might occur,
if we use the LGG or STC scenario, which over-approximate the reachable values
of h as shown in Figure 6.8, which shows the reachable values of h computed
by the LGG scenario. As the hybrid automaton produced by the automaton
generation is a linear hybrid automaton, we can also apply the PHAVer scenario.
The scenario computes exact values for h and as a consequence the system does
not reach the last cycle after the reachable values of h have been computed
exactly as shown in Figure 6.9.

96 6. Experimental Results

Cycle

Sensor

outv

innonempty

inmin

inmax

infull

1 2 3 4 5 6 7 8 9 10 11

1

1

1

1

1

0

0

0

0

0

h

Cycle
1 2 3 4 5 6 7 8 9 10 11

0

5

15

20

Figure 6.7: Discrete And Dynamic Behaviour

As Figure 6.8 shows, the over-approximation causes h to assume values smaller
than 0 in the 10th cycle. This allows the system to reach the last cycle, which
should not be possible. In such cases, either the parameters have to be set more
precisely or PHAVer can be applied, if the resulting model is a linear hybrid
automaton. As shown in Figure 6.9 the exact computation of h performed by
the PHAVer scenario, does not reach the last cycle. Thus, the analysis might
falsely confirm the counterexample given in Equations (6.37) to (6.41) if the
hybrid reachability analysis is too imprecise.

6. Experimental Results 97

Figure 6.8: LGG Over-Approximation Figure 6.9: PHAVer Exact Computation

Tank System Failure

In this section we analyze a faulty control program for the tank system presented
in Section 6.1.1. The problem consist of the valve outv not being opened when
the water level falls below sensor inmin. We still consider the modified conditional
ODE systems as presented in Equations (6.35) and (6.36). The problem in the
tank system control program allows the tank to run dry.

After 87 iterations, the BMC finds a counterexample of length 5, which can also
occur during the hybrid analysis. The counterexample consists of a sequence
of the sensors level falling below inmin after two cycles and then falling below
innonempty after two more cycles, thus reaching a state where innonempty is not
active. The counterexample is shown in Equations (6.42) to (6.46).

infull ∶ (0,0,0,0,0) (6.42)
inmax ∶ (0,0,0,0,0) (6.43)
inmin ∶ (1,1,0,0,0) (6.44)

innonempty ∶ (1,1,1,1,0) (6.45)
outv ∶ (0,0,0,0,0) (6.46)

Comparing the discrete behaviour with the precise dynamic behaviour allows
us to show, that the counterexample is also a counterexample, which can
actually occur in the hybrid system. Thus, the counterexample is a hybrid
counterexample for the tank system. The comparison of the discrete behaviour
and plant dynamics is illustrated in Figure 6.10.

98 6. Experimental Results

Cycle

Sensor

outv

innonempty

inmin

inmax

infull

1 2 3 4 5

1

1

1

1

1

0

0

0

0

0

h

Cycle
1 2 3 4 5

0

5

15

20

Figure 6.10: Discrete And Dynamic Behaviour

6. Experimental Results 99

The value of h falls below 0 in cycle 4, thus the sensor assignment of ¬innonempty
corresponds to the dynamic behaviour. We can not generalize that if a coun-
terexample is confirmed by the hybrid automaton, that the system is unsafe, as
the unsafe states may only be reachable due to over-approximation.

Considering the analysis with adapted conditional initial values as presented in
Equations (6.30) to (6.34), the analysis requires only 81 iterations and finds a
possible counterexample with length 4 as shown in Equations (6.47) to (6.51).

infull ∶ (0,0,0,0) (6.47)
inmax ∶ (0,0,0,0) (6.48)
inmin ∶ (1,0,0,0) (6.49)

innonempty ∶ (1,1,1,0) (6.50)
outv ∶ (0,0,0,0) (6.51)

More shorter counterexamples are checked due to the increase of reachable
states in the hybrid analysis. Due to h being initialized with [5,15), a shorter
counterexample is found, where h = 5 and the system only requires 4 cycles to
reach values below 0.

6.2.2 Train System Analysis

In this section we discuss the analysis of the train crossing example. In Sec-
tion 6.2.2 we show why Zeno behaviour becomes a problem in the hybrid
automata generated from the counterexamples of the train crossing example.
Furthermore, we provide an analysis of all cycle sequences up to length 8 in
Section 6.2.2. In addition, we show an exemplary counterexample of this analysis
and the comparison of the discrete and dynamic behaviour.

Train System Zeno Behaviour

The analysis of counterexamples of the train crossing revealed a problem with
the current configurations of the verification tool. Zeno behaviour can occur
due to dynamic behaviour of the gates appearing in the conditional ODE
system conditions. There are two cases, where such behaviour is a problem
for a train crossing counterexample. These cases are when the gates are fully
closed g = 0 or completely opened g = 90 in a PLC cycle and the train is in
the area 00 or 10 respectively. Thus, either both conditional ODE systems for
00 in Equations (6.12) and (6.13) or the conditional ODE systems for 10 in
Equations (6.9) and (6.10) are satisfied allowing the hybrid reachability analysis

100 6. Experimental Results

to switch between the corresponding locations after each time step in a PLC
cycle using the copy transitions, which connect the locations.

This is possible as g = 0 and g = 90 with the areas 00 or 10 satisfy the intersection
of the conditions of the conditional ODE systems and the value of g cannot
change due to the invariants provided by the conditions of the conditional
ODE systems and defined flows. Furthermore, the area cannot change in
the PLC cycle as it is defined by discrete variables, which can only change by
reaching a successor cycle. Figure 6.11 represents an excerpt of a counterexample
automaton, where the gate is fully closed, i.e. g = 0, in a PLC cycle i and the
train is in the area 00.

ci,5
t ≤ ui ∧ g ≤ 0∧
¬outposmsb ∧
¬outposlsb
ġ == 0
ṗ == 1

ci,6
t ≤ ui ∧ g ≥ 0∧
¬outposmsb ∧
¬outposlsb
ġ == −45
ṗ == 1

Figure 6.11: Closed Gates (g = 0) at 00 (outposmsb = 0 and outposlsb = 0)

If during the execution of the cycle i the area is 00 and g = 0 the hybrid
reachability can switch between location ci,5 and ci,6 after each time elapse
while t ≤ ui. With our current configuration for the verification tool such Zeno
behaviour leads to extreme over-approximations, thus many of the computed
reachable states are not actually reachable in the system. This behaviour
becomes a problem for the counterexample given in Equations (6.52) to (6.58).

innear ∶ (0,1,1,1,0) (6.52)
inclose ∶ (0,0,0,0,0) (6.53)
infar ∶ (0,0,0,0,0) (6.54)
inreset ∶ (1,0,0,0,1) (6.55)
inopen ∶ (1,1,1,0,0) (6.56)

outposmsb ∶ (1,0,0,0,0) (6.57)
outposlsb ∶ (1,0,0,0,1) (6.58)

6. Experimental Results 101

The guard p > 10 is added, as inreset = 1, to the transitions leading to the
last cycle locations should not be satisfiable, as the p evolves constantly with
ṗ == 1, thus should be exactly 4 after the execution of 4 PLC cycles with initial
assignment p = 0. However, the Zeno behaviour causes the hybrid reachability
analysis to over-approximate p as shown in Figure 6.12 and Figure 6.13.

Figure 6.12: Evolution of p - LGG,
Fixed Time Step 0.1, 45 iterations

Figure 6.13: Evolution of p - LGG,
Fixed Time Step 0.01, 90 iterations

Thus it is possible for the train to jump to the inreset sensor without passing
inclose and infar, which should not be able to happen. Unfortunately, reducing
the step size, does not fix the impreciseness resulting from the Zeno behaviour.
Furthermore, we consider different bounds on the iterations in all following
SpaceEx executions as we require more iterations if the parameters change. In
order to verify models exhibiting Zeno behaviour, we have to employ other
approaches to reduce the over-approximation.

If we consider a counterexample of an entire round trip of the train, we have
exactly two occurrences of this behaviour. The first occurrence is when the gates
are completely closed after entering the area 00 and the second occurrence is once
the gates are fully opened again while the train is in area 10. A counterexample
describing a round trip is given in Equations (6.59) to (6.65).

102 6. Experimental Results

innear ∶ (0,1,1,1,0,0,0,0,0,0,0) (6.59)
inclose ∶ (0,0,0,0,1,1,0,0,0,0,0) (6.60)
infar ∶ (0,0,0,0,0,0,1,1,1,1,0) (6.61)
inreset ∶ (1,0,0,0,0,0,0,0,0,0,1) (6.62)
inopen ∶ (1,1,1,0,0,0,0,1,1,1,1) (6.63)

outposmsb ∶ (1,0,0,0,0,0,1,1,1,1,1) (6.64)
outposlsb ∶ (1,0,0,0,1,1,0,0,0,0,1) (6.65)

The train starts out at inreset and reaches the innear in the next PLC cycle.
The train is then in 00, where Zeno behaviour occurs due to the gates closing
and being completely closed as described previously. Afterwards, the train
passes sensors inclose and infar. Once the train is in area 10, the second case
of Zeno behaviour occurs in the constructed counterexample automaton. This
Zeno behaviour leads to a heavy over-approximation of the train position p.
Figure 6.14 and Figure 6.15 show the reachable values for p and g.

Figure 6.14: Evolution of p - LGG,
Fixed Time Step 0.1, 45 iterations

Figure 6.15: Evolution of g - LGG,
Fixed Time Step 0.1, 45 iterations

As we can see, during cycle 3 and 4 where the gate is fully closed g = 0 and
cycle 8 where the gate is completely opened g = 90, the value of p is heavily
over-approximated due to the occuring Zeno behaviour. SpaceEx offers us some
configurations to compute more precise approximations of the convex hulls
which are used to represent the reachable values of p.

6. Experimental Results 103

Firstly, we can set the clustering parameter, which iteratively replaces a group
of sets of a flowpipe with a single convex set. The parameter is defined as a
percentage, where 0 percent means that no groups are clustered and at a 100
percent all groups are clustered into a single set. As the clustering step creates
a certain number of convex sets, each of these sets results in a new flowpipe
during the next time elapse. This might increase the number of iterations needed
to reach the last PLC cycle location immensely, but provides a more precise
approximation of the reachable states. The default value for the clustering is
30. The aggregation setting determines whether SpaceEx over-approximates
these sets by constructing their convex hull. Configuring these parameters
appropriately, we can avoid the heavy over-approximation of p with time step
size 0.01 as seen in Figure 6.16 and Figure 6.17.

Figure 6.16: Evolution of p - LGG,
Fixed Time Step 0.01, 90 iterations (no
aggregation, clustering 25)

Figure 6.17: Evolution of p - LGG,
Fixed Time Step 0.01, 150 iterations (no
aggregation, clustering 0)

The analysis with clustering 25 and no set aggregation computes a more precise
result, but is still inaccurate as seen in Figure 6.16. In Figure 6.17, the analysis
does not even reach the cycles after 6 as the iterations are set too low. Computing
more iterations for a clustering of 0 and no aggregation, results in extremely
long computation times. Thus, defining a clustering of 0 while the aggregation is
turned off computes a precise set of reachable states for the analysis, but is not
a sensible solution due to the high computational time as shown in Table 6.2.
For the analysis to be meaningful, we have determined a compromise for the
clustering at five percent, while the aggregation is turned off and performing 50
iterations for counterexamples up to length 10.

104 6. Experimental Results

Another possibility to fix the Zeno behaviour problem is to improve the counterex-
ample automaton. If we consider the conditional ODE system (Equation (6.12))
describing the gates closing while the train is in area 00 and the conditional
ODE system (Equation (6.13)) as the state where the gates are closed and stay
closed in area 00, the system should not be able to switch back from the location
where the movement of the gates has stopped to the location where the gates
are closing. As once the gates are fully closed, the system should no longer
be trying to close the gates, we try to remove this possibility. If we remove
the copy transitions, which allow this switch back to the closing gate location,
the Zeno behaviour is no longer a problem. Analogoulsy, this can be done for
the case of a fully opened gate g = 90. The results of the SpaceEx analysis for
this new model are shown in Figure 6.18 and Figure 6.19 with clustering set to
default and set aggregation turned on.

Figure 6.18: Evolution of p in the Mod-
ified Model - LGG, Fixed Time Step 0.1,
45 iterations

Figure 6.19: Evolution of p in the Mod-
ified Model - LGG, Fixed Time Step 0.01,
45 iterations

The original time step size 0.1 for the modified model still produces imprecise
results as shown in Figure 6.18. Computing the hybrid reachability for a smaller
time step size 0.01, provides us with a good result of the reachable values of p.

Another possibility is to use the PHAVer scenario since the over-approximation
due to the Zeno behaviour does not occur, as PHAVer computes the precise
values for p and g. This solution is applicable as the automaton resulting from
the train crossing counterexample is a linear hybrid automaton. In systems
with non-linear dynamics, PHAVer can not be applied. As there is no more
Zeno behavior during the reachability analysis, we do not need to restrict the

6. Experimental Results 105

number of iterations. Figure 6.20 and Figure 6.21 shows the computation of p
and g for the PHAVer scenario on the original model.

Figure 6.20: Evolution of p - PHAVer Figure 6.21: Evolution of g - PHAVer

Reconfiguring SpaceEx is the easiest solution, but increases the computational
time of SpaceEx. The modification of the model is the most time efficient
solution, but requires information about which copy transitions should be
omitted and are not applicable if the system should be able to switch back
to the original location. Table 6.2 shows the runtimes of the original heavily
over-approximating analysis, the analysis with modified parameters and the
analysis of the modified model.

Component Time Step Iterations Runtime (s)
Original Model 0.1 45 2.580
Original Model 0.01 90 22.010

Modified Parameters (25) 0.01 90 14.230
Modified Parameters (0) 0.01 150 153.580

Modified Model 0.1 45 1.920
Modified Model 0.01 45 4.840

PHAVer - Original Model − − 0.064

Table 6.2: The runtime is given with millisecond accuracy for the Original Model
and parameters, the model with Modified Parameters for clustering 0 and 25 and
the Modified Model. PHAVer considers the analysis of the original model using the
SpaceEx PHAVer scenario

106 6. Experimental Results

Train System 8 Cycles

In this section we analyze 8 cycles of the train crossing example. Due to the
occurring Zeno behaviour as described in Section 6.2.2 we use the LGG scenario
with appropriate parameters. The SpaceEx iterations can be restricted to 50
with no set aggregation and clustering at 5. These parameters allow us to
perform an efficient analysis, which is precise enough to yield meaningful results.
The current control program of the train crossing makes assumptions about the
settings of sensors innear, inclose, infar and inreset. Thus, during each PLC cycle
the program assumes, that only a single sensor may be active at any given time.

The analysis requires 194 to analyze the system with 8 cycles. Similar to the
tank example, the memory usage of the BMC is a problem causing the test
system to run out of memory. In the following we show, how the discrete and
dynamic behaviour are used to refute counterexamples. We consider the discrete
counterexample of length 8 in Equations (6.66) to (6.72), which is generated
during the analysis.

innear ∶ (0,1,1,1,0,0,0,0) (6.66)
inclose ∶ (0,0,0,0,1,1,0,0) (6.67)
infar ∶ (0,0,0,0,0,0,1,0) (6.68)
inreset ∶ (1,0,0,0,0,0,0,1) (6.69)
inopen ∶ (1,1,1,1,0,0,0,0) (6.70)

outposmsb ∶ (1,1,0,0,0,0,0,1) (6.71)
outposlsb ∶ (1,1,0,0,0,1,1,0) (6.72)

Equations (6.66) to (6.72) is a counterexample as the train has passed the inreset
sensor while the gates are still closed (¬inopen). We now compare the discrete
behaviour with the dynamic behaviour of p and g in Figure 6.22.

The analysis reveals, that cycle 8 is not reachable, as p = 7 at the end of cycle
7 and the guard of the incoming edges of the last location group contains the
guard p ≥ 10 of the replacement rule inreset ⇔ p ≥ 10 ⇔ p ∶= 0 as marked by
the red dots. Thus the last cycle is not reachable in the hybrid system. The
generated explanation has length 7 and is shown in Equations (6.73) to (6.79).

6. Experimental Results 107

Cycle

Sensor

outlosmsb

outposmsb

inopen

inreset

infar

inclose

innear

1 2 3 4 5 6 7 8

1

0
1

0

1

0
1

0
1

0
1

0
1

0

h,g

Cycle
1 2 3 4 5 6 7 80

6

4

10,90

Figure 6.22: Discrete And Dynamic Behaviour

108 6. Experimental Results

innear ∶ (0,1,1,1,0,0,0) (6.73)
inclose ∶ (0,0,0,0,1,1,0) (6.74)
infar ∶ (0,0,0,0,0,0,1) (6.75)
inreset ∶ (1,0,0,0,0,0,0) (6.76)
inopen ∶ (1,1,1,1,0,0,0) (6.77)

outposmsb ∶ (1,1,0,0,0,0,0) (6.78)
outposlsb ∶ (1,1,0,0,0,1,1) (6.79)

As mentioned before, there are currently some issues with the memory usage of
the BMC analysis. Thus, the analysis has a similar build up in runtime and
memory as the tank example presented in Section 6.3.1.

6.3 Runtime Analysis

After verifying different models for the tank system and the train crossing
example as presented in Section 6.1.1 and Section 6.1.2, we evaluate the recorded
runtimes. The resulting runtimes allow us to see, which components require
the most time. Thus, the runtime analysis allows us to determine, which
components can increase the speed of the analysis the most if they are improved.
All measurements have been recorded using the system specified in Table 6.3

Processor Intel(R) Core(TM) i7-2600k, 4x 3.40GHz
Memory (RAM) 16 GB
Operating System VMWare - Virtual Machine

Ubuntu 14.04 LTS (64-Bit)

Table 6.3: System Specifications

During the execution of the analysis, all console outputs of the BMC and
the hybrid analysis except for an iteration counter have been disabled. All
measurements have been taken with millisecond accuracy and the average
values have been rounded up to the next millisecond. The total time describes
the overall time required by each component considering all iterations. The
average time is an average time for each component in a single iteration.
Furthermore, min and max time provide us with shortest and longest runtime

6. Experimental Results 109

of each component considering one iteration. In Section 6.3.1, we present the
runtimes resulting from different tank system analyses. In addition, we provide
runtime analyses for the train crossing example in Section 6.3.2.

6.3.1 Tank System Runtime

In this section we consider the runtime of the analysis of the tank system.
Firstly, the analysis of 10 PLC cycles is shown and discussed. We present how
the runtime and the memory usage of the analysis behaves with increasing
counterexample length in Section 6.3.1. Afterwards, we analyze the runtime
of the tank system with the faulty control program, i.e. the program which
never opens the valve in Section 6.3.1. We also provide the runtime of the
automaton modeling the entire tank system in Section 6.3.1 as a comparison.
Finally, we show how different cycle lengths affect the hybrid analysis, i.e. the
automaton generation, hybrid reachability analysis and explanation generation
in Section 6.3.1.

Tank System 10 Cycles Runtime

In this section we consider the runtime of the analysis of 10 PLC cycles of the
tank system. The analysis stops after 264 iterations, i.e. executions of the BMC
and hybrid analysis. During the verification of the tank example, we have also
recorded various runtimes for the different steps during the analysis. These
measurements allowed us to determine possible weaknesses, i.e. time expensive
code segments, in hybrid analysis. We can use these information to improve the
analysis in the future. The runtime of the entire analysis of the tank system for
a path length of 10 as presented in Section 6.2.1 is given in Table 6.4.

Component Total (s) Average (s) Min (s) Max (s)
Full Analysis 3414.879 12.935 3.227 61.668
BMC Analysis 2417.496 9.157 0.431 58.227
Hybrid Analysis 997.383 3.276 1.934 3.776

Table 6.4: Total is the runtime of a component considering all 264 iterations, while
Average, Min and Max are runtimes for a single iteration. Full Analysis is the overall
analysis consisting of the BMC and Hybrid Analysis

As the Table 6.4 shows, the runtime for the BMC is getting increasingly worse
for longer cycle sequences. Initially, the BMC requires less than a second, while
during the later iterations it requires more than 60 seconds for a single analysis.

110 6. Experimental Results

Analyzing the runtime of each iteration in detail, we have detected an significant
increase in the runtime once the amount of cycles in the produced counterex-
amples changes. This increase causes the test machine to run out of memory.
Table 6.5 shows the increase in the runtime and memory usage.

Cycles Avg. Runtime (s) Avg. Memory (MB)
2 3.112 15.800
3 3.765 17,447
4 4.127 18.555
5 4.783 21.140
6 5.133 34.334
7 6.278 42.554
8 9.778 57.930
9 19.003 140.990
10 57.336 375.668
11 183.222 1162.240
12 881.344 3596.228

Table 6.5: Average runtimes and memory usage for the iterations of the analysis
have been given considering the length of the counterexamples generated by the BMC.

As we can see in Table 6.5, the analysis requires increasingly more time and
memory if the amount of cycles in the counterexample increases. Due to this
memory problem, the generation of BMC examples is currently restricted to 11
cycles as the memory of the test system might run out otherwise.

Table 6.4 shows that the increase results in the BMC analysis, as the hybrid
analysis always stays between 1.934 and 3.776 seconds. The runtime of the
BMC analysis however ranges from 0.431 to 58.227 seconds. These runtime
increases occur once the cycle length increases.

Considering the analysis with the conditional initial values as presented in
Equations (6.30) to (6.34), the runtime increases as 2174 iterations have to
be performed. The runtime of the hybrid analysis in each iteration is affected
by the new initial values. While analyzing longer counterexamples, hybrid
reachability analysis requires more time. The total runtime of the analysis is
shown in Table 6.6.

The increase in iteration results from more states being reachable during the
hybrid reachability analysis, thus less counterexamples being excluded during
each iteration. Furthermore, the runtime of the hybrid reachability analysis in
each iteration increases due to the increased initial states.

6. Experimental Results 111

Component Total (s) Average (s) Min (s) Max (s)
Full Analysis 44985.961 20.693 3.547 65.231
BMC Analysis 35221.418 16.201 0.431 58.657
Hybrid Analysis 9764.543 4.491 2.349 8.086

Table 6.6: Total is the runtime of a component considering all 2174 iterations, while
Average, Min and Max are runtimes for a single iteration. Full Analysis is the overall
analysis consisting of the BMC and Hybrid Analysis with modified initial values

Tank System Failure Runtime

In this section we consider the runtime of the tank system, which fails due to
the valve not opening. The table depicted in Table 6.7 shows us the different
runtimes for several components of the analysis, which finished after 87 iterations,
i.e. 87 BMC and hybrid analysis executions.

Component Total (s) Average (s) Min (s) Max (s)
Full Analysis 265.889 3.056 2.772 4.775
BMC Analysis 35.420 0.407 0.357 0.664
Hybrid Analysis 230.469 2.649 2.157 3.273

Table 6.7: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. Full Analysis is the overall
analysis consisting of the BMC and Hybrid Analysis

The times required for the iterations consisting of a BMC analysis and the
hybrid analysis are described in the component Full Analysis. The time it
requires the BMC to determine a counterexample is given in BMC Analysis.
The times for the component Hybrid Analysis are the recorded times of all
executions of our hybrid approach, omitting the computation time of the all
BMC verifications. If omit the time the SFC Verification requires to initialize
the analysis by parsing configuration files, the runtimes for the major hybrid
analysis components are shown in Table 6.8.

Component Total (s) Average (s) Min (s) Max (s)
Automaton Generation 136.841 1.573 1.238 2.051
Reachability Analysis 26.970 0.310 0.188 0.567
Generate Explanation 0.396 0.004 0.003 0.016

Table 6.8: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. The presented components
are the major hybrid analysis steps

112 6. Experimental Results

The three components describe the Automaton Generation as presented in
Chapter 3 the Reachability Analysis performed by SpacexEx and the Explanation
Generation as introduced in Chapter 5. As the table shows us, the Automaton
Generation requires the most time. Thus, we split the generation into smaller
components as shown in Table 6.9.

Component Total (s) Average (s) Min (s) Max (s)
Convert Sequence 39.304 0.451 0.324 0.809
Apply Tool Chain 64.753 0.745 0.643 0.925

Write SpaceEx Model 29.530 0.339 0.180 0.433

Table 6.9: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. The presented components
are the model generation steps for the hybrid model

Convert Sequence is the transformation of the BMC counterexample into a PLC
cycle automaton as described in Section 3.1, the extension with PLC cycle times
and the application of replacement rules. Furthermore, Apply Tool Chain is the
execution of the toolchain presented in Section 3.7 and Write SpaceEx Model
is the component which writes the model files for SpaceEx. As we can see, all
three components have high runtimes for small counterexamples. The time of
Write SpaceEx Model depends on the size of the model as it uses a XML writer
to write the model of the XML. A possible solution to improve the time of this
component is to reduce the number of transitions and locations, thus reducing
the amount of automaton components the writer has to write. We break down
the Convert Sequence and Apply Tool Chain component further in Table 6.10
and Table 6.11.

Component Total (s) Average (s) Min (s) Max (s)
Initial States 0.174 0.002 0.001 0.006
New Location 0.402 0.001 < 0.001 0.012

Construct Interpretation 0.006 < 0.001 < 0.001 0.001
Dynamic Condition Check 37.647 0.209 0.087 0.790

Add Transitions 0.054 < 0.001 < 0.001 0.001

Table 6.10: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. The presented components
the stops of the conversion of a counterexample into a PLC cycle automaton

The component which requires most of the time is the Dynamic Condition
Check, which is the SMTInterpol satisfiability check of the replacement rule

6. Experimental Results 113

conditions. Currently, we transform the logic formulas, which are a data
structure provided by the SFC Verification architecture, into conjunctive normal
form to be able to parse them more easily before asserting the terms using the
SMTInterpol API. We might be able to improve the transformation by parsing
the formulas directly without transformation, thus omitting the transformation
into conjunctive normal form.

Component Total (s) Average (s) Min (s) Max (s)
Add Dynamic Behavior 9.269 0.106 0.053 0.153
Add Copy Transitions 0.022 0.003 0.001 0.003
Single Initial Location 42.400 0.487 0.455 0.716
Transform Assignments 0.062 < 0.001 < 0.001 0.008
Guard Disjunction Split 6.924 0.079 0.045 0.155

Invariant Disjunction Split 3.345 0.038 0.020 0.067
Delete Unreachable 0.807 0.009 0.004 0.018

Table 6.11: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. The presented components
are the different tools executed in the toolchain

The broken down runtime analysis of the toolchain reveals, that the construction
of the single initial location (SIL) and the conditional initial values in Single
Initial Location is the problem. On further analysis, we have discovered that the
problem is the negation generation of the predecessor conditions as described in
Section 3.7.3. However, we can achieve a big performance boost by defining the
conditions of the conditional initial values with their predecessor negations and
disabling the automatic generation. The comparison of the two approaches is
shown in Table 6.12.

Component Total (s) Average (s) Min (s) Max (s)
SIL Tool 42.400 0.487 0.455 0.716

SIL Tool (no Negation) 7.663 0.089 0.012 0.317

Table 6.12: Total is the runtime of a component considering all 87 iterations, while
Average, Min and Max are runtimes for a single iteration. SIL Tool and SIL Tool (no
Negation) are the tool to construct the single initial location for the the conditional
initial value with and without generating the predecessor negation

Considering the runtime of the analysis with modified initial values as presented
in Equations (6.30) to (6.34), the runtime of the analysis is higher even though
less and shorter counterexamples are analyzed since the hybrid analysis requires

114 6. Experimental Results

more time due to the increase in reachable states. The runtime for the failed
analysis with the modified initial values is shown in Table 6.13.

Component Total (s) Average (s) Min (s) Max (s)
Full Analysis 295.327 3.656 2.472 5.104
BMC Analysis 40.420 0.499 0.311 0.588
Hybrid Analysis 254.907 3.147 2.157 4.273

Table 6.13: Total is the runtime of a component considering all 81 iterations, while
Average, Min and Max are runtimes for a single iteration. Full Analysis is the overall
analysis consisting of the BMC and Hybrid Analysis with modified initial values

Tank System Full Automaton Runtimes

In this section we consider a hybrid automaton modeling the entire tank system,
i.e. its discrete and dynamic behaviour. Unfortunately, for small systems like
the tank system it is more efficient to model the entire composition of discrete
and dynamic behaviour. A model for the tank system has been presented in
Section 6.1.1. As we only require a single hybrid reachability analysis to verify
the system for a specific amount of PLC cycles. As there are two initial states
and only two paths which can be taken, verifying n cycle executions requires
2n iterations. Figure 6.23 and Figure 6.24 shows the execution of 24 iterations
for the PHAver and LGG Support Function scenario.

Figure 6.23: PHAVer - Full System Figure 6.24: LGG - Full System

6. Experimental Results 115

Comparing the runtime of verifying the hybrid automaton with the approach
presented in this thesis shows, that for the tank system, constructing a hybrid
automaton as proposed in Section 6.1.1 is the better solution to verify the
system. The runtime of the analysis for different cycle lengths and the PHAVer
and LGG scenario is shown in Table 6.14.

XXXXXXXXXXXXScenario
Cycles 10 (s) 50 (s) 100 (s) 500 (s) 1000 (s)

PHAVer 0.10 0.13 0.20 1.53 5.04
LGG (0.1) 0.21 0.96 2.70 47.15 178.13
LGG (0.01) 0.64 2.33 5.84 59.82 212.42

Table 6.14: The runtimes presented are for a specific amount of PLC cycles and
SpaceEx Scenarios. For the LGG scenario, we use the fixed time step sizes of 0.1 and
0.01.

Each hybrid reachability analysis verifies the given system as no forbidden states
are reached. The values of h stay in 2 ≤ h ≤ 18 even when the reachable values
are over-approximated. The runtimes of the verifications are currently still
distinctly better than of the BMC analysis as presented in Section 6.3.1.

Tank System Counterexample Runtimes

In addition to the BMC analysis, we have performed a runtime analysis on
counterexample sequences with different lengths for the tank example. The
analyzed sequence lengths are 10, 50, 100, 500 and 1000. The measurements
represent averages over 10 different counterexamples for each sequence length.
Furthermore, the sequences are constructed in such a way, that the analysis
reaches the last cycles. Table 6.15 shows the measured times for the tank system
counterexamples for length 10, 50, 100, 500 and 1000.

Table 6.15 shows, that the runtime of the automaton construction, explanation
generation as well as the hybrid reachability analysis approximately increases
linearly. Considering the constructed hybrid automata, we show how the cycle
length affects the number of automaton components in Table 6.16.

The components increase linearly with increasing amount of PLC cycles. We also
consider the system without copy transitions as the conditions of the conditional
ODE systems only contain discrete variables, thus allowing us to omit the copy
transitions between the conditional ODE locations.

116 6. Experimental Results

``````````````̀Component
Cycles 10 (s) 50 (s) 100 (s) 500 (s) 1000 (s)

HA Generation
Convert Sequence 2.763 8.221 12.613 29.847 49.315
Apply Toolchain 1.177 1.885 2.075 9.554 12.215

SpaceEx Model Writer 1.862 3.559 6.230 16.202 28.014
SpaceEx Analysis

LGG (0.1) 0.211 0.955 1.883 8.476 18.233
LGG (0.01) 2.387 13.101 23.341 115.432 283.114
PHAVer 0.101 0.305 0.477 2.664 5.246

Explanations
Generate Explanation 0.047 0.071 0.108 0.256 0.455

Table 6.15: The measured runtimes are averages of the computation of 10 coun-
terexamples for the tank system of length 10, 50, 100, 500 and 1000, respectively. The
runtimes are given for the different components of the automaton generation as well
as the explanation generation. Furthermore, it provides the SpaceEx execution times
for the LGG scenario with time step size 0.1 and 0.01 and the PHAVer scenario.

Cycles Locations Transitions(NC) Variables
10 21 66(46) 7
50 101 306(206) 7
100 201 606(406) 7
500 1001 3006(2006) 7
1000 2001 6006(4006) 7

Table 6.16: The table provides information about the number of components in the
generated hybrid automaton of the tank system. The number of locations, transitions
with the generation of copy transitions (and without the generation of copy transitions)
as well as the amount of variables.



6. Experimental Results 117

6.3.2 Train System Runtime

In this section, we consider the runtime of the train crossing example as
introduced in Section 6.1.2. Firstly, we analyze the analysis of 8 PLC cycles in
Section 6.3.2. In addition, we have performed a runtime analysis of the hybrid
analysis on several sequences for the train crossing example in Section 6.3.2.

Train System 8 Cycles Runtimes

In this section we analyze the runtime of the verification of 8 PLC cycles of
the train crossing. The analysis terminates after 194 iterations, i.e. executions
of the BMC and hybrid analysis. The runtime analysis of the verification as
presented in Section 6.2.2 is given in Table 6.17.

Component Total (s) Average (s) Min (s) Max (s)
Full Analysis 11642.315 59.920 4.557 252.844
BMC Analysis 9885.594 50.957 0.752 233.114
Hybrid Analysis 1756.721 9.055 3.063 15.967

Table 6.17: Total is the runtime of a component considering all 194 iterations, while
Average, Min and Max are runtimes for a single iteration. Full Analysis is the overall
analysis consisting of the BMC and Hybrid Analysis

As the Table 6.17 shows, that longer cycle sequences require more time in the
BMC analysis. At the beginning of the analysis, the BMC requires less than a
second to generate a counterexample, while later iterations require more than 4
minutes to find a counterexample.

Train System Counterexample Runtimes

Similar to the runtime analysis of the counterexamples for the tank system
provided in Section 6.3.1, we consider counterexamples with different lengths
for the train crossing. The analyzed counterexamples have the lengths are 10,
50, 100, 500 and 1000. All measurements are averages over the analysis of 10
train crossing counterexamples for each length, where the last cycle is reachable
during the hybrid reachability analysis. Table 6.18 shows the measured times
for the train counterexamples.



118 6. Experimental Results

``````````````̀Component
Cycles 10 (s) 50 (s) 100 (s) 500 (s) 1000 (s)

HA Generation
Convert Sequence 1.622 4.252 8.090 22.275 34.335
Apply Toolchain 2.302 2.242 5.197 15.871 35.261

SpaceEx Model Writer 5.622 14.072 23.915 90.647 178.725
SpaceEx Analysis

PHAVer 0.511 2.231 4.030 23.714 49.113
Explanations
Generate Explanation 0.052 0.078 0.111 0.293 0.516

Table 6.18: The measured runtimes are averages of the computation of 10 coun-
terexamples for the train crossing of length 10, 50, 100, 500 and 1000, respectively.
The runtimes are given for the different components of the automaton generation as
well as the explanation generation. Furthermore, it provides the SpaceEx execution
times for the PHAVer scenario.

We only provide runtimes for the PHAVer scenario as due to the Zeno behaviour
occuring in the train example as described in Section 6.2.2, causes the LGG
scenario to require many iterations to reach the last cycle. For 10 cycles
we require about 50 iterations for the LGG analysis, while 50 cycles already
requires about 600 iterations. Similarly to the tank example the runtime for
the construction of the automaton increases approximately linearly to the
counterexample length. In addition to the runtimes, we provide the amount of
hybrid automaton components for the counterexamples in Table 6.19.

Cycles Locations Transitions Variables
10 61 672 10
50 301 3312 10
100 601 6612 10
500 3001 33012 10
1000 6001 66012 10

Table 6.19: The table provides information about the number of components in the
generated hybrid automaton of the train crossing. The number of locations, transitions
with the generation of copy transitions as well as the amount of variables.

The amount of components increases linearly, while the runtime of the automaton
and explanation generation approximately increases linearly in respect to the
number of PLC cycles contained in the counterexamples.

6. Experimental Results 119

6.3.3 Improvements

We have several possibilities to improve the hybrid analysis in respect to its
runtime and the generation of the hybrid automaton. In this section we discuss
approaches to reduce the complexity of the automaton as well as the runtime
of the hybrid analysis.

The first possibility is to configure the verification tools SpaceEx and Flow*
as presented in Section 2.5.1 and Section 2.5.2 with coarser parameters. This
approach has to be used cautiously, as parameters, which are too rough, might
lead to meaningless results. For example configuring a iteration count for the
discrete and time steps, which is too low to reach the last group of locations
in the counterexample automaton, does not verify the counterexamples with
dynamic behaviour properly. If the plant dynamics are linear, i.e. the automaton
resulting from a counterexample is a linear hybrid automaton, the PHAVer
scenario can be used to compute precise results efficiently.

As we have seen in the examples evaluated in Section 6.1.1 and Section 6.1.2,
if we define the conditions of the conditional ODE systems so they cover the
entire domain of their variables, we can omit the negated condition of all
conditional ODEs. The usual construction which adds the conditional ODE
systems to the counterexample automaton is presented in Section 3.5. As all
other conditions cover the domain, their negation would result in an unsatisfiable
formula. Constructing the negated condition for the conditional ODEs seen in
Equations (6.8) to (6.13) results an elaborate formula, which is unsatisfiable.
We are able to reduce the runtime of the automaton generation by omitting
this construction. This can be accomplished by adding a new tag to the XML
containing the conditional ODEs as prsented in Section 4.1.1. The new tag is
inserted inside the <condODEsys> tag as shown in Listing 6.4

<?xml version ="1.0" encoding ="UTF -8"?>
<condODEsys >

<addNegatedTerms >false </addNegatedTerms >
...

</condODEsys >

Listing 6.4: Add Negated Terms

The new tag <addNegatedTerms> allows us to specify whether the negation of
the conditional ODEs is going to be added in a new location as described in
Section 3.5 (true) or if it is going to be omitted (false). The default setting for
this configuration, if the <addNegatedTerms> tag is not set, is true.

In certain systems we can also omit the copy transitions as explained in Sec-
tion 3.7.2. If the conditions of the conditional ODE systems only contain discrete

120 6. Experimental Results

variables in their conditions, we can omit the copy transitions, as the values
of the discrete variables can only change if a new cycle is reached. The tank
example in Section 6.1.1 is such a system, as the conditions of the conditional
ODEs only consist of discrete variables in this case outv. This approach reduces
the number of transitions. The number of transitions depends on the number
of PLC cycles n and the amount of conditional ODE systems m. Assuming we
generate the negation for the conditional ODE systems the number of transitions
is m ⋅ (m + 1) ⋅ n as the (m + 1)th location is generated for the negation. All
these locations have m transitions to all other locations in the cycle and there
are n cycle locations.

6.4 Summary

In this chapter we presented two different PLC controlled plants. The first
system is a tank system, which we define for the BMC analysis and plant
dynamics. Moreover, the entire system is modeled as a single hybrid automaton.
The train crossing models a train, which passes a street crossing where gates
are raised and lowered. The analysis of the tank system contains a full analysis
bounded by the amounts of PLC cycles and a comparison of the discrete and
dynamic behaviour, a discussion of the problems caused by over-approximation
and the analysis which is repeated for a faulty tank system control program.
For the train system a similar analysis is performed. The system is analyzed
for a specific amount of PLC cycles where the discrete and dynamic behaviour
is compared. Furthermore, we recorded the runtimes of these analyses. We
evaluate these runtimes to determine weaknesses in the algorithms. Additionally,
we determine the runtime of the hybrid automaton representing the entire tank
system as a comparison to our new approach and analyze the performance of
the hybrid analysis for counterexamples of different lengths for the tank and
train example. Afterwards, we introduce possible improvements, which can be
used to analyze the systems more efficiently.

Chapter 7

Conclusion and Future Work

The proposed novel approach for the verification of PLC-controlled plants
provides an automated verification process. The verification works iteratively
by performing a bounded model checking analysis, an automaton construction
and a hybrid reachability analysis during each iteration. The initial input
control program is analyzed using bounded model checking. Either the bounded
model checking ascertains that the model derived from the program is safe or it
produces a counterexample and stores the current state of the BMC analysis.
This counterexample contains a path consisting of the execution of PLC scan
cycles and their discrete input and output variable assignments.

The counterexamples of the BMC are used to construct hybrid automata,
reducing the combination of discrete and hybrid behaviour to the paths described
by the counterexamples. The plant dynamics defined by conditional ODE
systems, conditional initial values and replacement rules are added to this
automaton. Afterwards, the model describing the discrete counterexample path
as well as the dynamic behaviour of the plant can be verified using a third-party
tool as SpaceEx or Flow* to perform a hybrid reachability analysis. If the
execution of the discrete path is replicable considering the dynamic behaviour,
i.e., a location associated with the last PLC cycle is reached, the result is
unknown as we cannot falsify a model due to the over-approximation in the
hybrid reachability analysis. However, if the dynamic behaviour prohibits the
hybrid reachability analysis from reaching any location associated with the last
cycle, an explanation is constructed. In this case, the counterexample generated
by the BMC is not a counterexample if the plant dynamics are considered. The
explanation is then used by the BMC to exclude the given counterexample
and counterexamples with the same prefix. Thereafter, the BMC analysis is
resumed and the next iteration is started. This process is continued until either
the hybrid analysis confirms a BMC counterexample or the system is proven to
be safe by the BMC analysis.

The counterexample automaton generation extends the path of executed PLC
scan cycles into an automaton representing a possible path which can occur
during the discrete analysis performed by the BMC while considering the plant
dynamics. Because we do not combine the entire discrete behaviour with the
plant dynamics, we avoid the state-space explosion which might arise in larger
systems. During the work on the new verification approach we have recognized
which parameters and properties affect the runtime of the analysis the most.
As each iteration contains the execution of a bounded model checker, the

122 7. Conclusion and Future Work

automaton generation and a hybrid reachability analysis, we try to exclude as
many counterexamples as possible during each iteration. Thus, reducing the
iterations needed to verify the system. The presented method should be applied
on larger models as for smaller models the runtime might be higher compared
to the combination of the entire discrete and dynamic behaviour.

The evaluation of the discussed examples has revealed problems concerning
the automaton construction. We have shown how to avoid the problems which
occur due the creation of logic formula negations while extending the automaton
with the conditional ODE systems and conditional initial values. In both cases,
we can define the conditions covering the entire domain, avoiding the negation
construction. This solution strongly reduces the automaton construction time.
Zeno behaviour has proven to be a problem in some models as it causes heavy
over-approximations of some variables. We have presented solutions to reduces
this over-approximation and to eliminate the Zeno behaviour in certain models.

The runtime of the entire analysis becomes increasingly worse for longer cycle
sequences. Unfortunately, the memory usage of the BMC analysis also increases
up to the point where the test machine runs out of memory. The required
time for the hybrid analysis however does not increase as badly as the runtime
of the BMC analysis. During the hybrid reachability analysis, we have also
ascertained that with increasing amount of PLC cycles, the parameters of
the hybrid reachability analysis have to be adapted to perform more precise
verifications. Otherwise, the analysis may over-approximate too much and
may reach states, which are actually unreachable. A future goal is to develop
heuristics to adapt the parameters according to the system and the number of
PLC cycles which need to be analyzed.

In the future, the analysis should provide full support for integer values in the
BMC counterexamples as well as integer wildcards. This extension allows to
model more complex systems as well as improve upon the represented systems.
The position of the train in the train crossing example could be modeled as an
integer instead of two boolean variables.

Another major future goal is to provide explanations, which exclude more
counterexamples in an iteration. We have already presented some improvements
by allowing wildcards in the explanations. However, we still require heuristics
to construct appropriate explanations using wildcards. Furthermore, the expla-
nations are currently prefixes of counterexamples. Another improvement would
be to allow explanations describing subsequences which should be excluded
during the BMC execution.

The exemplary verifications we have conducted showed that in some systems
the hybrid reachability analysis might over-approximate heavily due to Zeno

7. Conclusion and Future Work 123

behaviour. The analysis reaches values for the continuous variables which are not
reachable in the actual system and may confirm counterexamples with dynamic
behaviour which actually does not correspond to the plant dynamics. We have
proposed solutions to handle such behaviour. These solutions also contain a
transformation of the model, which requires new information to decide how the
model is going to be modified. Such a transformation is shown for the train
system, where the Zeno behaviour occurs due to the analysis switching between
the locations where the gate is staying closed and where it is closing even though
the gate is fully closed already. In the transformation, copy transitions between
the locations are removed as it is not sensible for the hybrid model to return to
the closing state and to try closing an already closed gate.

The runtime analysis of the verification approach has provided information
about the weaknesses of the current algorithms. Some of these problems could
be solved by improving the used model. As previously mentioned the negation
generation can be easily avoided. The runtime analysis of the counterexamples
with different lengths showed that the runtime for the hybrid analysis increases
linearly according to the counterexample length.

In conclusion, the new approach provides a promising reduction of the size of
the hybrid models by combining a discrete and hybrid verification. The hybrid
reachability analysis is reduced to a single discrete path which is extended with
the plant dynamics in each iteration avoiding a possible state space explosion
in larger system. Thus, in the future the approach should allow us to analyze
large PLC controlled systems efficiently.

124 7. Conclusion and Future Work

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, et al.
The Algorithmic Analysis of Hybrid Systems. Theoretical Computer
Science, 138:3–34, 1995.
(cited on pages 2, 13, 16 and 17)

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strich-
man, and Yunshan Zhu. Bounded Model Checking. volume 58 of
Advances in Computers, pages 117 – 148. Elsevier, 2003.
(cited on page 1)

[BCMP98] Luciano Baresi, Stefania Carmeli, Antonello Monti, and Mauro
Pezzé:. PLC Programming Languages: A Formal Approach. Asso-
ciazione Nazionale Italiana Per L’Automazione, 1998.
(cited on pages 1, 6)

[BM98] Martin Berz and Kyoko Makino. Verified Integration of ODEs and
Flows Using Differential Algebraic Methods on High-Order Taylor
Models. Reliable Computing, volume 4:pages 361–369, 1998.
(cited on page 20)

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.
(cited on page 25)

[CAS12] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor
Model Flowpipe Construction for Non-linear Hybrid Systems. In
Proc. of the 33rd IEEE Real-Time Systems Symposium (RTSS’12),
pages 183–192. IEEE Computer Society, 2012.
(cited on page 20)

[CAS13] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*:
An Analyzer for Non-linear Hybrid Systems. In Natasha Sharygina
and Helmut Veith, editors, Computer Aided Verification, volume
8044 of Lecture Notes in Computer Science, pages 258–263. Springer
Berlin Heidelberg, 2013.
(cited on pages 2, 3, 17 and 20)

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol:
An Interpolating SMT Solver. In SPIN, pages 248–254, 2012.
(cited on pages 3, 25)

www.SMT-LIB.org

[CK03] Edmund Clarke and Daniel Kroening. Hardware Verification Using
ANSI-C Programs As a Reference. In Proceedings of the 2003 Asia
and South Pacific Design Automation Conference, ASP-DAC ’03,
pages 308–311, New York, NY, USA, 2003. ACM.
(cited on page 10)

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 1997.
(cited on page 10)

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages
337–340, Berlin, Heidelberg, 2008. Springer-Verlag.
(cited on page 11)

[ELS05] Sebastian Engell, Sven Lohmann, and Olaf Stursberg. Verification
of Embedded Supervisory Controllers Considering Hybrid Plant
Dynamics. In International Journal of Foundations of Computer
Science, volume 15, pages 307–312, 2005.
(cited on page 1)

[FLGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-
ton, et al. SpaceEx: Scalable Verification of Hybrid Systems. In
Shaz Qadeer Ganesh Gopalakrishnan, editor, Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV), LNCS.
Springer, 2011.
(cited on pages 2, 3 and 17)

[Fre05] Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems
Past HyTech. In Manfred Morari and Lothar Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of Lecture Notes
in Computer Science, pages 258–273. Springer Berlin Heidelberg,
2005.
(cited on page 17)

[GG09] Colas Guernic and Antoine Girard. Reachability Analysis of Hybrid
Systems Using Support Functions. In Proceedings of the 21st
International Conference on Computer Aided Verification, CAV ’09,
pages 540–554, Berlin, Heidelberg, 2009. Springer-Verlag.
(cited on page 18)

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliv-
eras, and Cesare Tinelli. DPLL(T): Fast Decision Procedures. In

Rajeev Alur and DoronA. Peled, editors, Computer Aided Verifi-
cation, volume 3114 of Lecture Notes in Computer Science, pages
175–188. Springer Berlin Heidelberg, 2004.
(cited on page 25)

[Gou09] Brian Gough. GNU Scientific Library Reference Manual - Third
Edition. Network Theory Ltd., 3rd edition, 2009.
(cited on page 20)

[HG98] Z. Doulgeri Hassapis G., I. Kotini. Validation of a SFC Software
Specification by Using Hybrid Automata. In Proc. of INCOM’98,
pages 65-70. Pergamon, 1998.
(cited on page 1)

[IEC07] An Open Source IEC 61131-3 Integrated Development Environment,
volume 1, 2007.
(cited on page 7)

[JP00] Michael Joswig and Konrad Polthier. JavaView JVX Format. http:
//www.eg-models.de/formats/Format_Jvx.html, 2000.
(cited on page 19)

[Lat02] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.
(cited on page 8)

[MT00] Robert Maier and Nick Tufillaro. Gnu Plotutils. http://www.gnu.
org/software/plotutils/, 2000.
(cited on page 19)

[NA12] Johanna Nellen and Erika Ábrahàm. Hybrid Sequential Function
Charts. In Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV), Kaiser-
slautern, Germany, March 5-7, 2012, pages 109–120, 2012.
(cited on pages 23, 24)

[NA14] Johanna Nellen and Erika Abraham. A CEGAR Approach for
the Reachability Analysis of PLC-Controlled Chemical Plants. In
Proc. of the 2nd IEEE International Workshop on Formal Methods
Integration (FMi’14). IEEE Computer Society Press, 2014.
(cited on pages 1, 22)

[Pol06] Konrad Polthier. Javaview. http://www.javaview.de, 2006.
(cited on page 19)

http://www.eg-models.de/formats/Format_Jvx.html
http://www.eg-models.de/formats/Format_Jvx.html
http://www.gnu.org/software/plotutils/
http://www.gnu.org/software/plotutils/
http://www.javaview.de

[SC10] Olivier Lebeltel Scott Cotton, Goran Frehse. The SpaceEx Model-
ing Language. http://spaceex.imag.fr/sites/default/files/
spaceex_modeling_language_0.pdf, 2010.
(cited on pages 17, 24)

http://spaceex.imag.fr/sites/default/files/spaceex_modeling_language_0.pdf
http://spaceex.imag.fr/sites/default/files/spaceex_modeling_language_0.pdf

	Title Page
	Declaration of Academic Integrity
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Programmable Logic Controllers
	2.2 Tank System
	2.3 Bounded Model Checking
	2.3.1 Intermediate Verification Language
	2.3.2 Bounded Model Checking Algorithm
	2.3.3 Bounded Model Checking Counterexample

	2.4 Hybrid Automata
	2.5 Hybrid Automaton Reachability
	2.5.1 SpaceEx
	2.5.2 Flow*
	2.5.3 Reachable Paths

	2.6 SFC Verification Tool
	2.6.1 Conditional Ordinary Differential Equations
	2.6.2 SFC Verification

	2.7 SMTInterpol
	2.8 Summary

	3 Hybrid Model
	3.1 PLC Cycle Automaton
	3.2 Generate Counterexample Automaton
	3.3 PLC Cycle Times
	3.4 Discrete/Dynamic Linking
	3.4.1 Replacement Rules
	3.4.2 Transition Dynamics

	3.5 Adding Conditional ODEs
	3.6 Conditional Initial Values
	3.7 Automaton Toolchain
	3.7.1 Adding Dynamic Behavior
	3.7.2 Copy Transitions
	3.7.3 Single Initial Location
	3.7.4 Interval and Set Assignments
	3.7.5 Additional Tools

	3.8 Wildcard Values
	3.8.1 Counterexample Wildcards

	3.9 Summary

	4 Hybrid Counterexample Analysis
	4.1 Input Parameters
	4.1.1 Dynamic Behavior
	4.1.2 Link File
	4.1.3 Properties

	4.2 Reachability Analysis
	4.2.1 Time Parameters
	4.2.2 Iteration Parameters

	4.3 Summary

	5 Explanation Generation
	5.1 Explanations
	5.2 Reachable Paths
	5.2.1 SpaceEx Reachability Tree
	5.2.2 Flow* Reachability Tree

	5.3 Explanation Generation
	5.4 Explanation Processing
	5.5 Explanation Wildcards
	5.6 Summary

	6 Experimental Results
	6.1 Exemplary Systems
	6.1.1 Tank System
	6.1.2 Train Crossing

	6.2 Analysis Execution
	6.2.1 Tank System Analysis
	6.2.2 Train System Analysis

	6.3 Runtime Analysis
	6.3.1 Tank System Runtime
	6.3.2 Train System Runtime
	6.3.3 Improvements

	6.4 Summary

	7 Conclusion and Future Work
	Bibliography

