
Task 1: Convex polytopes
Basic setup of convex polytopes

In this task you will implement a new state set representation for reachability analysis of linear hybrid

systems: Convex polytopes. This task is dedicated to provide a basic implementation of bounded, non-

degenerate convex polyhedra.

Due date: Friday, 18th December 2015.

Present your implementation in a short presentation (∼ 20 minutes) along with your ideas towards the

next task(s).

Tasks

1. Create the basic datastructure to be able to represent a d-dimensional convex polytope. Make sure

to provide convenient constructors and all required getters, setters and print methods, as you did

for the �rst task. Despite from the empty constructor, you should be able to construct a convex

polytope at least from

• a vector of points (std::vector<hypro::Point<Number> >),

• a vector of hyperplanes (std::vector<hypro::Hyperplane<Number> >),

• a matrix A and a vector b such that Ax ≤ b holds. Use the types hypro::matrix_t<Number>

and hypro::vector_t<Number> for your parameters.

• another convex Polytope (hypro::Polytope<Number>),

• by a static function Empty(std::size_t dimension), which constructs an empty convex poly-

tope of the required dimension.

Extend the provided test �le PTermPolytopeTest.cpp to verify your implementation.

2. Extend your implementation by adding implementations for all operations required for reachability

analysis of hybrid systems, which includes:

• conv(·
⋃
·) - union. As convex polytopes are not closed under union, it is required to compute

the convex hull (conv(..)) of the union of two boxes.

• ·
⋂
· - intersection. To verify a �owpipe segment against the invariant of the current location,

it is required to compute the intersection of the invariant and the segment and test it for

emptiness.

• empty(·) - emptiness. As stated before, this is needed to verify the segment lies inside the

invariant of the current location.

1

• A(·) - linear transformation. To create a �owpipe we can encode the linear dynamics inside a

location of a linear hybrid automaton into a linear transformation. Consecutive application of

this linear transformation allows us to compute a �owpipe.

• Minkowski(·, ·) - Minkowski sum. The Minkowski sum is the set-equivalent to a sum and is

needed for the over-approximation of the initial set to cover the dynamics inside the current

location.

Make sure to verify your implementation against the tests in the provided test �le and extend the

tests where needed.

3. Provide additional methods:

• std::size_t dimension() const � returns the dimension of the current object.

• Number supremum() const � returns supu∈U ||u||∞, the supremum regarding the in�nity norm

of the current polytope.

• void print() const � a print method to std::cout.

• friend ostream& operator� (ostream& out, const PTermPolytope<Number>& _in) � an out-

put operator which can be used with any output-stream (e.g. std::cout).

Hints and additional information

• We have prepared an empty folder src/lib/representations/PTermPolytope where you should

put your implementation.

• We will try to provide an exemplary reachability analysis algorithm which requires the implementa-

tion of the previously mentioned methods (we will announce when the algorithm is available).

2

