
Master of Science Thesis

Using SAT Solvers for Industrial
Combinatorial Problems

Matthias Volk

November 26, 2015

LuFG Theory of Hybrid Systems
RWTH Aachen University

rules
L1 IMPL B1

L2 IMPL (B1 OR B2 OR B3)

T4 IMPL (C2 ANDD5)

G1 IMPL (L2 ORH7)

...

options
C4

G1

T2

H2

...

SAT UNSAT

Supervisors:
Prof. Dr. Erika Ábrahám

Prof. Dr. Jürgen Giesl

Advisor:
Dipl. Inform. Florian Corzilius

Abstract

SAT solving is the task of checking whether a given propositional logic formula has a solution,
i. e., if there exists an assignment to all Boolean variables s. t. the whole formula is satis�ed. As
a lot of problems can be easily encoded into propositional logic, SAT solving is a general purpose
approach which can be used in many di�erent areas.

In this thesis we consider the application of SAT technologies to the area of product con�gura-
tions in a manufacturing company. The main challenge here is the diversity of the manufactured
products. Each product has di�erent features which each have several options. By choosing options
we can construct a custom product. However, it must be ensured that this product can be built.
This is handled by checking whether a certain set of rules constraining the product and its options
is satis�ed. As a SAT solver is predestined for solving this task we used our own solver SMT-RAT
for improving the performance of the product validity checks in the manufacturing company.

Alongside the order checking, i. e., if a given product can be built, two additional tasks were
tackled. First the realizability checking searches for those options which can never be chosen and
therefore indicate inconsistencies in the set of internal rules. We solve this task by generating
lemmas inside our solver which give the reason for certain variable assignments and therefore
state those variables which cannot be satis�ed.

Last the variance generation handles the development of new components. For a set of combi-
nations of options we have to identify those combinations which are realizable according to the
internal rules and those which are not possible. Then for the realizable combinations new compo-
nents need to be developed. We handled this task by solving the All-SAT problem where we search
not for only one but all possible solutions to a problem.

v

Acknowledgements
I would like to especially thank Christian J. who was our main contact on the part of the company.
It was a great experience and joy collaborating on this project and working together on integrating
our implementations. Furthermore a great thank to you and your wife for the great hospitality I
received during my visits at the company.

I also would like to thank my Advisor Florian Corzilius for the help with my thesis and the
implementation, Gereon Kremer for insights into SMT-RAT and especially helping me to �nd bugs
in there via delta debugging, Prof. Erika Ábrahám for enabling this cooperation, and for the support
of her and the whole THS group during this project.

Eidessta�liche Versicherung
Matthias Volk

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem Titel “Using
SAT Solvers for Industrial Combinatorial Problems” selbständig und ohne unzulässige fremde Hilfe
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für
den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die
schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Matthias Volk
Aachen, den 26. November 2015

Belehrung:
§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu
drei Jahren oder mit Geldstrafe bestraft.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Stra�osigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Matthias Volk
Aachen, den 26. November 2015

Contents

1 Introduction 1
1.1 History of satis�ability solving . 1
1.2 Special problem cases . 1

2 Propositional logic 3
2.1 Syntax and semantics . 3
2.2 Conjunctive normal form . 4
2.3 Tseitin’s encoding . 4

3 Problem statement 7
3.1 Application �eld: A manufacturing company . 7
3.2 SAT encoding . 7
3.3 Prospect: Satis�ability modulo theories . 9
3.4 Objectives . 10

3.4.1 Order checking . 10
3.4.2 Realizability checking . 11
3.4.3 VarGen checking . 12

4 SAT solving 13
4.1 Enumeration . 13
4.2 Resolution . 13
4.3 DPLL . 14

4.3.1 Boolean constraint propagation . 16
4.3.2 Enumeration . 16
4.3.3 Con�ict analysis . 17
4.3.4 Complete example . 18

5 Incremental SAT solving 21
5.1 Interfaces . 21
5.2 Order checking . 22

6 Lemma generation 23
6.1 Naive algorithm . 23
6.2 Improved algorithm . 23
6.3 Final algorithm . 24

6.3.1 Complete example . 28

7 All-SAT 31
7.1 Naive algorithm . 31
7.2 All-SAT . 32

7.2.1 Final algorithm . 32
7.2.2 Complete example . 32

8 Implementation 35
8.1 Architecture . 35
8.2 SMT-RAT . 35

9 Evaluation 37
9.1 Order checking . 37
9.2 PCC checking . 38
9.3 VarGen checking . 38

viii Contents

10 Conclusion and future work 41
10.1 Conclusion . 41
10.2 Future work . 41

Bibliography 43

1 Introduction

In this thesis we will apply SAT solving techniques to product con�guration problems in a manu-
facturing company. Due to protecting business secrets, the name of the company we worked with
along with speci�c details will not be disclosed.

1.1 History of satisfiability solving
The satis�ability (SAT) problem is the task to decide whether there exists a satisfying solution
to a propositional logic formula. A propositional logic formula is built from Boolean variables
and the common logical operations negation, conjunction and disjunction. A solution for such a
propositional logic formula assigns every Boolean variable a truth value true or false, such that
the whole formula evaluates to true. If such a solution can be found, the formula is satis�able,
otherwise it is unsatis�able.

There are two main methods of solving the SAT problem: enumeration and resolution. The �rst
method enumerates all possible variable assignments and checks each of them for satis�ability.
This works well for satis�able formulas, but in case of unsatis�ability all possible assignments
have to be checked, leading to an exponential time consumption.

The second approach tries to �nd a proof for unsatis�ability by applying the resolution inference
rule. This could take exponentially many possible resolution steps as well, whereas possibly a
subset of them could already prove unsatis�ability.

Work on SAT solvers started with the introduction of theDavis-Putnam algorithm [DP60] in 1960,
which uses resolution. It was re�ned in 1962 with the famous Davis-Putnam-Loveland-Logemann
(DPLL) framework [DLL62], combining enumeration, propagation and resolution. Afterwards, res-
olution was further improved by Robinson [Rob65] in 1965.

Later another famous theoretical breakthrough showed the NP-completeness of the SAT problem
and was done independently by Cook [Coo71] and Levin [Lev73].

An alternative approach to DPLL are stochastic solvers which were led for many years by GSAT
and WALKSAT [SLM92]. These solvers assign random values to variables and then check for satis-
�ability. If the formula is not yet satis�ed the solver �ips a variable and checks again.

Another approach is the use of Binary Decision Diagrams (BDD), a canonical graph-based date
structure representing Boolean formulas, which were introduced in 1959 [Lee59] and further de-
veloped by Akers [Ake78] and Bryant [Bry86].

During the last decades a lot of progress has happend in the research area of SAT solving with
extensions to SAT Modulo theories (SMT) solving, where propositional logic is extended to theories,
e. g., linear and non-linear real arithmetics. Furthermore, the improved performance of SAT and
SMT solvers led to an easier application of solving technologies in the industry.

In the last 20 years a lot of di�erent solvers emerged, beginning with the solver GRASP [MSS96]
which was the fastest SAT solver from 1996 to 2000. Using the knowledge of previous solvers
and improving upon the original DPLL framework other solvers such as Chaff [Mos+01],
BerkMin [GN07] and MiniSat [ES03] were developed.

A good indicator of the current status in SAT and SMT solving is the annual SAT competi-
tion [Bel+14] with SMT solvers such as Yices [Dut14], CVC4 [Bar+11], MathSAT [Cim+13],
Z3 [DMB08] and our own solver SMT-RAT [Cor+15b].

1.2 Special problem cases
SAT and SMT solving are applied in a lot of �elds: from bounded model checking [Bie+99] and
model checking of parametric probabilistic systems [Deh+15] over automated termination analy-
sis [Fuh+07] and planning [KS92] to package management in software distributions [Tuc+07].

2 Chapter 1. Introduction

In the industry especially the problem of product con�gurations is important where it must be
ensured that a product speci�ed by certain con�guration options is producible. Here a set of rules
is given constraining the di�erent product types and their options. When choosing several options
for a product, the task is now to determine, whether such a con�guration is possible, i. e., if it is
satis�able for the given rules.

Previous work in this area already used SAT solvers [SKK00] [SKK01], BDDs [MA04] or method-
ologies from arti�cial intelligence [Fal+11] to accomplish this task. In our setting we will use SAT
solvers as well, mainly our own solver SMT-RAT. This gives us the opportunity to implement
custom algorithm in the solver tailored to our speci�c tasks.

Beside the product con�guration we also have to check the realizability of all options. For every
possible option we have to ensure that it can be chosen in at least one realizable con�guration.
Otherwise this option is unrealizable and indicates inconsistencies in the set of rules. We solve this
task by generating lemmas in the solver, stating the reason for certain variable assignments.

Finally we have the task of variance generation (VarGen). Here for a given set of options we have
to determine those combinations of options which lead to realizable con�gurations, i. e., whose
propositional encoding along with the corresponding rules is satis�able. This problem is also
known as All-SAT, where we do not search for only one solution to a SAT problem but for all
solutions. Work on All-SAT has already be done in [GSY04] or [Yu+14].

Using an SMT solver instead of a plain SAT solver also gives us the opportunity to extend our
used logic later on to a more expressive one. A prospect on this will be stated in Section 3.3 on
page 9.

The outline of the thesis is as follows. We start by giving a short introduction into Boolean logic
in Chapter 2. In Chapter 3 we introduce the three tasks given to us in detail. Before explaining
our approaches for the three problems we give an introduction into SAT solving, especially the
DPLL framework, in Chapter 4. Chapter 5 explains the bene�t of incremental SAT solving for
the product con�guration problem. In Chapter 6 we describe the generation of lemmas to help
solving the realizability problem. The VarGen task is solved in Chapter 7 with use of All-SAT. In
Chapter 8 we discuss our implementation and its integration within the company. The evaluation
of our algorithms is described in Chapter 9. We conclude in Chapter 10 and give an outlook into
possible future work.

2 Propositional logic

2.1 Syntax and semantics
Propositional logic formulas are constructed from Boolean variables with standard operations as
conjunction, disjunction or negation. The formal syntax of propositional logic formulas is as follows.

De�nition 2.1 (Propositional logic). The syntax of formulas in propositional logic is de�ned by
the following rules:

atom : Boolean identifier Boolean variable
| true | false Boolean constants

formula : atom atom
| (¬formula) negation
| (formula ∧ formula) conjunction
| (formula ∨ formula) disjunction N

Other “syntactic sugar” can be expressed by using these operators. For example we can write
the operator “implies” as

(a⇒ b) := ((¬a) ∨ b)

The operator “if and only if (i�)” can be written as

(a⇔ b) := ((a⇒ b) ∧ (b⇒ a))

For better readability we often omit brackets and use the inherent binding of operators: ¬, ∧, ∨,
⇒,⇔ have decreasing binding strength, i. e., ¬ binds stronger than ∧, etc.

We introduce some further notions of variable assignments and satis�ability. For a propositional
logic formula ϕ let V ar(ϕ) denote the set of Boolean variables appearing in ϕ. Let B denote the
Boolean domain {false,true} which we also see alternatively as binary domain {0, 1}.

De�nition 2.2 (Assignment). For a propositional logic formula ϕ an assignment is a partial func-
tion V ar(ϕ)⇀ B mapping the variables of ϕ to elements of B.

An assignment to ϕ is full if all variables of ϕ are assigned and partial otherwise. N

De�nition 2.3 (Satis�ability, validity, contradiction). A formula ϕ is satis�able if there exists a full
assignment for it that evaluates ϕ to true.

A formula ϕ is a contradiction if it is not satis�able.
A formula ϕ is valid, i. e., a tautology, if it evaluates to true under all full assignments. N

Lemma 2.1 (Validity). A formula ϕ is valid if and only if ¬ϕ is a contradiction.

Some important rules for transforming propositional logic formulas are De Morgan’s rules and
the distributive laws.

De�nition 2.4 (De Morgan’s rules).

¬(a ∨ b) ≡ (¬a ∧ ¬b)
¬(a ∧ b) ≡ (¬a ∨ ¬b)

where ≡ denotes equivalence w. r. t. the set of satisfying assignments. N

4 Chapter 2. Propositional logic

De�nition 2.5 (Distributive laws).

a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c) N

Using these rules we can see that the operator ∨ is not necessarily needed in De�nition 2.1 as it
can be expressed as a ∨ b ≡ ¬(¬a ∧ ¬b).

2.2 Conjunctive normal form
To better handle propositional logic, several normal forms exist introducing a standard way of
expressing propositional logic formulas. The base case in all these normal forms are literals.

De�nition 2.6 (Literal, clause). A literal is either an atom a or its negation ¬a. A literal is negative
if it is a negated atom and positive otherwise.

A clause is a disjunction of literals, i. e., has the form∨
k

lk N

The normal form which is usually used as input to SAT solvers is the conjunctive normal form
(CNF).

De�nition 2.7 (CNF). A formula is in conjunctive normal form if it is a conjunction of clauses, i. e.,
it is of the form∧

i

(
∨
j

lij)

where lij is the j-th literal in the i-th clause. N

We now can use this form in our tool. For example checking satis�ability of a formula in CNF
reduces to checking that at least one literal in every clause is satis�ed.

Theorem 2.2 (Transformation into CNF). Every propositional logic formula can be transformed into
an equivalent formula in CNF.

Proof. The transformation follows several steps:

1. Transform all syntactic sugar like⇒ into their corresponding formulas expressed by ∧,∨,¬.

2. Repeatedly apply De Morgan’s rules (see De�nition 2.4) to move all negation inwards.

3. Use the distributive laws (see De�nition 2.5) to move ∨ inwards over ∧.

However, this approach comes with a main disadvantage: Because of the application of the
distributive laws the size of the formula can grow exponentially during the transformation.

Example 2.1 (Exponentially growth during distributive laws). Consider the following formula
with n clauses:

(a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (an ∧ bn)

Applying the distributive laws leads to a formula with 2n clauses:

(a1∨a2∨· · ·∨an)∧(b1∨a2∨· · ·∨an)∧(a1∨b1∨· · ·∨an)∧· · ·∧(b1∨b2∨· · ·∨an)∧(b1∨b2∨· · ·∨bn)�

2.3 Tseitin’s encoding
To avoid the exponential growth in the CNF transformation we use Tseitin’s encoding [Tse68] which
bounds the growth of the formula linearly. However, this transformation also introduces n new

2.3. Tseitin’s encoding 5

variables, where n is the number of logical gates in the formula. The value of every newly in-
troduced variable is constrained to be equal to the represented gate. This is best illustrated by an
example.

Example 2.2 (Tseitin’s encoding). Consider the formula

a⇒ (b ∧ ¬c)

We introduce a new variable for every logical gate:

t1 for ⇒ , t2 for ∧ and t3 for ¬

This is illustrated in the syntax derivation tree in Figure 2.1.

⇒

a ∧

b ¬

c

[t1]

[t2]

[t3]

Figure 2.1: Derivation tree in Tseitin’s encoding.

Next we constrain the value of these variables according to their gate:

t1 ⇔ (a⇒ t2) (2.1)
t2 ⇔ (b ∧ t3) (2.2)
t3 ⇔ (¬c) (2.3)

Equation (2.1) can be rewritten in CNF as

t1 ⇔ (a⇒ t2)

≡(¬t1 ∨ ¬a ∨ t2) ∧ (a ∨ t1) ∧ (t1 ∨ ¬t2)

Rewriting the other two formulas in CNF and asserting the topmost operator t1 we get the �nal
CNF formula with 9 clauses and 3 new variables:

t1 ∧ (t1 ⇔ (a⇒ t2)) ∧ (t2 ⇔ (b ∧ t3)) ∧ (t3 ⇔ (¬c))
≡ t1 ∧ (¬t1 ∨ ¬a ∨ t2) ∧ (a ∨ t1) ∧ (t1 ∨ ¬t2) ∧ (¬t2 ∨ b) ∧ (¬t2 ∨ t3) ∧ (¬b ∨ ¬t3 ∨ t2)
∧ (¬t3 ∨ ¬c) ∧ (c ∨ t3) �

Using Tseitin’s encoding a propositional logic formula is transformed into an equisatis�able CNF.

De�nition 2.8 (Equisatis�ability). Two formulas ϕ1 and ϕ2 are equisatis�able i�

ϕ1 is satis�able ⇔ ϕ2 is satis�able N

Thus, Tseitin’s encoding does not change the satis�ability of the formula while only having a
linear growth in the size of the formula. From now on we assume that every given propositional
logic formula is in CNF.

3 Problem statement

In this chapter we introduce the task and corresponding problem statements given to us from the
manufacturing company.

3.1 Application field: A manufacturing company

For capital goods the main challenge is the fact that every product is unique. In contrast to con-
sumer goods where there exists a set of default product con�gurations on which some features can
be added or modi�ed, in our context every product is constructed on its own. This o�ers greater
�exibility in constructing the best product for a given requirement but also leads to the challenge
of determining whether chosen components �t together and make a realizable product. Thus, our
main task is to check whether a given product con�guration is realizable.

3.2 SAT encoding

To formalize the realizability of a product con�guration a set of rules is introduced which formalize
the constraints on the interaction of the di�erent components.

For example consider batteries and battery holders. If the battery holder has a certain length it
might only �t one battery or it might �t two batteries consecutively but only if the batteries are
not too long. This can be expressed in a rule.

Example 3.1 (Rules for batteries). For the di�erent battery con�gurations we introduce three
options B1, B2 and B3. Let B1 indicate that we have one small battery, B2 indicates one long
battery and B3 indicates two small batteries in series.

Additionally we have two options concerning the length of the battery holder L1 and L2 where
L1 indicates a small battery holder and L2 a larger battery holder.

Using these sets of variables we now can establish some rules for constraining the batteries to
the space of the battery holder.

For example the small battery holder can only have one small battery:

L1 IMPL B1

where A IMPL B represents the implication A⇒ B.
The slightly larger battery holder can have up to one large battery or two small batteries:

L2 IMPL (B1 OR B2 OR B3) �

In the existing solution the rules constitute the so called PCC (Product Con�guration Constraints)
for each product type. Here for every available feature, e. g., batteries, the di�erent options for this
feature are listed, e. g., one small battery, two large batteries, etc. These indicate an exactly-one
relationship, i. e., for every feature exactly one of the options has to be taken.

Example 3.2 (Encoding features and options). Assume we have the feature “battery” from Exam-
ple 3.1 encoded as F1 with its three optionsB1,B2 andB3. Then the intuitive encoding of “exactly
one” (∃!) would look as follows.

∃!Opt ∈ F1. Opt ∧ ∀Opt ′ ∈ F1 \ {Opt}. ¬Opt ′

However, we cannot express this directly in propositional logic. Therefore we split this constraint
into two di�erent constraints which both have to be satis�ed simultaneously.

8 Chapter 3. Problem statement

1. “At least one”:

B1 ∨B2 ∨B3

2. “Not more than one”:

¬(B1 ∧B2) ∧ ¬(B1 ∧B3) ∧ ¬(B2 ∧B3)

≡(¬B1 ∨ ¬B2) ∧ (¬B1 ∨ ¬B3) ∧ (¬B2 ∨ ¬B3)

�

In general “exactly one” over a set of options O1, . . . , On can be encoded as:

(
∨

1≤i≤n

Oi) ∧ (
∧

1≤i<n
i<k≤n

(¬Oi ∨ ¬Ok))

Besides encoding options for features there are also additional rules capturing the relationships
between di�erent options, e. g., options excluding each other.

Example 3.3 (Rules for feature). Consider the following PCC rule.

P1 F1 Seq2 O2 W 15
01

The �rst entry P1 indicates the product type which is also the name of the current PCC, the second
entry F1 indicates the feature and the third entry Seq2 stands for the so called sequence number.
The fourth entry speci�es the optionO2 and the �fth entryW 15

01 encodes the �rst week of the year
2015, the week from which on this option can be chosen.

All other options for this feature are encoded similarly. The main di�erence is the di�erent
option in the fourth entry. �

Further on the PCC includes the rules characterizing the interaction between di�erent features
and/or options. These rules can be appended to the existing option as:

P1 F1 Seq2 O2 W 15
01 IMPL O3

This indicates that choosing option O2 also implies selecting option O3. Using EXCL we can ex-
clude options:

P1 F1 Seq2 O2 W 15
01 EXCL O5

where A EXCL B stands for the exclusion A ⇒ ¬B. As choosing option O2 excludes option O5

this option O5 cannot be selected anymore.
All options after an IMPL or EXCL are combined with AND.

Example 3.4 (Rules AND). Consider the rule

P1 F1 Seq2 O2 W 15
01 IMPL O3, O4

This translates to

O2 ⇒ O3 ∧O4 �

There can be rules with the same option on the left-hand side and the same sequence number.
This indicates that all rows corresponding to this option should be combined with OR.

Example 3.5 (Rules: OR). Consider the following rules:

P1 F1 Seq2 O2 W 15
01 IMPL O3, O4

P1 F1 Seq2 O2 W 15
01 IMPL O6, O7

This translates to

O2 ⇒ (O3 ∧O4) ∨ (O6 ∧O7) �

3.3. Prospect: Satis�ability modulo theories 9

If the rules have the same option on the left-hand side but di�erent sequence numbers, the rules
do not hold at the same time. Here we consider the week in the �fth entry which indicates the
beginning week of a rule. The start week of a higher sequence number is the end week of a lower
sequence number, i. e., the rule of the lower sequence number is not valid anymore.

Example 3.6 (Rules: E�ectivity date). Consider the following rules:

P1 F1 Seq2 O2 W 15
01 IMPL O3, O4

P1 F1 Seq3 O2 W 15
21 IMPL O6, O7

This translates to the following rules with e�ectivity intervals:

O2 ⇒ (O3 ∧O4) is valid in [01/15, 21/15)

O2 ⇒ (O6 ∧O7) is valid in [21/15,∞) �

These e�ectivity intervals cannot directly be encoded in propositional logic. Thus, for every
e�ectivity interval [W k

l ,W
m
n) we introduce a new Boolean variable W l/k

n/m which is true, if the
current week is in the encoded interval.

Example 3.7 (Encoding of e�ectivity dates). Consider the rules from Example 3.6. When encoding
these rules we introduce two new Boolean variables W 01/15

21/15 and W 21/15
∞ . Using these we can

encode the rules as follows.

W
01/15
21/15 ⇒ (O2 ⇒ (O3 ∧O4))

W 21/15
∞ ⇒ (O2 ⇒ (O6 ∧O7))

In the preprocessing we then would set these variables to capture the current week. If the current
week is 13/15 we would make the following assignment beforehand:

{W 01/15
21/15 ,¬W

21/15
∞ }

Therefore the second rule is already satis�ed and does not in�uence the SAT solving, i. e., it behaves
as if not active. �

The current implementation consists of several 100 di�erent PCCs which each have approxi-
mately 700-1500 rules. All in all we have to deal with 210,000 rules in our context.

As one can see the rules in the PCC are already similar to propositional logic formulas. Never-
theless the existing algorithm for determining the realizability of a product con�guration does not
use the advantages of state-of-the-art SAT solving but is a custom algorithm. Therefore our �rst
important task was to transform these rules into propositional logic and then to solve the problems
using SAT solving. This will allow to have a better maintainable set of rules and the availability of
highly tested and very e�cient SAT solving algorithms to choose from for tackling the three main
problems as explained in Section 3.4.

3.3 Prospect: Satisfiability modulo theories
Before stating the main problems we will give a short outlook on a possible future extension of the
current rules into a more expressive logic such as satis�ability modulo theories (SMT).
Satis�ability modulo theories (SMT) is an extension on propositional logic where some of the

Boolean variables are replaced by predicates of a certain theory, e. g., equality logic or linear arith-
metic.

An SMT solver uses a SAT solver as core decision engine [NOT05]. First every predicate of a
theory is replaced by a new Boolean variable. As the formula is now in propositional logic we can
solve it with a SAT solver. If the formula is satis�able we get an assignment for each variable. We
invoke a so called theory solver to check the consistency of the set of predicates whose correspond-
ing Boolean variables are assigned to true and, in case the input formula contains also negated
(in)equalities, the negations of those constraints, whose Boolean variables are assigned to false.

In our context the theory of linear real arithmetic (LRA) would be most helpful. LRA covers linear
equalities and inequalities over the real numbers.

10 Chapter 3. Problem statement

Example 3.8 (LRA). An example LRA formula is:

((2x1 + 3x2 = 4x3) ∨ (x2 − 4x3 ≥ 0)) ∧ ¬(3x1 + 2x2 < x3) �

LRA is more expressive than propositional logic but its conjunctive quanti�er-free fragment
can still be solved e�ciently. The common algorithm for checking a set of linear equalities and
inequalities is based on the �rst phase of the Simplex method [Dan63] which can be adapted to
work in an SMT solver [DDM06a][DDM06b].

Using LRA can be more intuitive for human interactions than formulas in propositional logic,
uses much less variables and the encoding of the problems described in Section 3.4 might be solved
more e�ciently than the propositional encoding.

Our previous Example 3.1 on page 7 could be expressed as an SMT formula with the use of LRA.

Example 3.9 (Rules for batteries in SMT). Now the battery holder spaces are expressed as con-
stants l1 and l2 and the length of every battery is expressed as constants b1 and b2 with b1 being
the length of a small battery and b2 the length of a long battery. We use the real-valued variables
nbi counting the number of batteries of type bi.

Then our rules would be the following linear inequalities which have to be satis�ed:

(l = l1 ∨ l = l2) ∧ (nb1 · b1 + nb2 · b2 ≤ l)

The left-hand-side of each inequality determines the required length for the chosen battery holder.
Comparing it with the actual length of the battery holders we can determine whether the con�g-
uration is producible. In general the sum b of the length of batteries must not be greater than the
length l of the battery holder:

(
∨
i

l = li) ∧ (
∑
j

nbj · bj ≤ l) �

We see that we need fewer variables and especially fewer rules in our example when using SMT
instead of SAT. In case of SAT we have to check all combinations of options and their possible
dependencies which then might have to be captured in the rules. This has to be done on a fairly
technical level and therefore is fault-prone. In SMT we can formulate the dependencies on a more
intuitive level and only need one rule. Then the dependencies between the options are implicitly
encoded in the SMT rule and do not have to be stated explicitly anymore. This leads to greater
maintainability. If a battery length changes, only the value of one constant has to be changed
whereas with the previous SAT encoding every rule considering batteries has to be rewritten by
an expert.

3.4 Objectives

We now explain our three main tasks given to us from the company: order checking, realizability
checking and VarGen.

3.4.1 Order checking

The �rst problem is the previously mentioned problem to determine whether a certain product
con�guration is producible, i. e., consistent with a given set of rules. Here we get the PCC of the
product type, a list of chosen options and the delivery date as input. The output is the answer if
the chosen con�guration is realizable.

As seen before we can transform the whole set of rules given in the PCC into propositional logic.
Using these rules and asserting all the given options we can solve the problem with a state-of-the-
art SAT solver as it is only requires satis�ability checking.

Example 3.10 (Order checking). In the following, for better understanding we will not list the
concrete PCC rules but a part of the already transformed propositional logic formula without the

3.4. Objectives 11

e�ectivity date and the feature encoding. Then the input PCC looks as follows:

O1 ⇒ O2 ∧O3

O5 ⇒ ¬O2

O4 ⇒ O1

The list of chosen options is O3, O4, O5.
We �nd out that this order is unrealizable. Choosing option O4 leads to choosing option O1

which implies taking option O2. But as option O5 forbids taking option O2 we have reached a
contradiction. �

Details on this process can be found in Chapter 5 on page 21.
Solving this problem on its own only takes 10 − 500 milliseconds but the main challenge here

is bulk checking. Due to rule modi�cations, every weekend all orders in the foreseeable future
have to be checked which can lead to 50,000 checks. At the moment this bulk check takes up to 6
hours, but as the PCCs become more complex in the future this time consumption might increase
drastically. Furthermore if an error occurs during these checks, some corrections on the PCCs
might be necessary and all checks will have to be done all over again. Therefore the checking
of one order has to be as fast as possible as otherwise this could amount to a huge delay when
checking all orders.

3.4.2 Realizability checking
The second problem is the realizability check for PCCs. The PCCs are constantly changing due
to input from the engineers as features and options change. Therefore it is necessary to check the
validity of the given rules to avoid contradictions. In particular every option for each feature must
be selectable in at least one consistent con�guration, i. e., there should be no option which cannot
be chosen. The realizability check gets a PCC as input and returns a list of those options which can
never be chosen due to con�icts in the PCC. The objective here is to �x the problems with those
options to �nally get an empty list as all options are realizable.

This problem can be solved by using lemmas.
De�nition 3.1 (Lemma). A lemma is a valid propositional logic formula which only contains
variables already used in previous clauses. N

Hence, building the conjunction of a formula with a lemma does not e�ect the satis�ability of
the formula.

As part of this thesis, we elaborated an algorithm on top of state-of-the-art SAT solving that
generates lemmas. This algorithm is explained in detail in Chapter 6 on page 23.

In our context the generated lemmas state the reason for assigning certain values to variables
and are implications of the form

Reason⇒ variable (3.1)

or

Reason⇒ ¬variable (3.2)

where Reason is a subset of the set of clauses given as input in CNF. The �rst lemma in Equa-
tion (3.1) indicates that in all satisfying assignments variable has the value true whereas the
second lemma in Equation (3.2) indicates the value false.

We use these lemmas to compute those options which cannot be chosen and therefore are not
realizable.
Example 3.11 (Realizability checking). Consider the following PCC:

O1 ⇒ O2 ∧O3

O5 ⇒ ¬O4

O1

O5

12 Chapter 3. Problem statement

The realizability check would give us the following lemmas:

(O1)⇒ O1

(O5)⇒ O5

(¬O1 ∨O2) ∧ (O1)⇒ O2

(¬O1 ∨O3) ∧ (O1)⇒ O3

(¬O5 ∨ ¬O4) ∧ (O5)⇒¬O4

Hence, the optionO4 is not realizable whereas the optionsO1,O2,O3 andO5 have to be chosen
in all con�gurations. �

3.4.3 VarGen checking
The third problem is the so called VarGen (Variance Generation) check. The problem to solve here
is to �nd the correct amount of hard- and software components which have to be designed for
the production of some realizable solutions. Correct amount in this context means that there is no
under- or over-engineering, i. e., all needed components are designed but no unnecessary ones.

We get as input a set of features of a speci�c PCC. The task now is to compute all combinations
of realizable options which are consistent with the PCC. These combinations then have to be engi-
neered. For example we have the option of having a dash cam and another option of having a GPS
navigation system. In case of choosing both dash cam and navigation system it would be better to
integrate both systems into one component instead of having two separate devices. The solution
of the VarGen check would indicate which combinations of options are possible. This helps the
engineer identifying the components which have to be developed and which components are not
realizable. In our case the engineer would have to design a component combining a dash cam with
a navigation system in addition to a standalone dash cam and a single navigation system.

The VarGen checking can be reduced to the problem ofAll-SAT. Instead of giving one satis�able
solution as is common for SAT solving the task of All-SAT is to compute all satis�able solutions for
a problem. In our case we gain all possible combinations of all options which satisfy the rules in
the current PCC. If we restrict ourselves to certain relevant variables, e. g., dash cam and navigation
system, we can solve the given VarGen task by computing the All-SAT solution.

Example 3.12 (VarGen checking). Consider the following PCC:

O1 ⇒ O2 ∧O3

The given options are O1, O2. The All-SAT check would yield the following solutions:

{{O1, O2}, {¬O1, O2}, {¬O1,¬O2}}

Here we see that of all four possible combinations of O1 and O2 the combination O1 ∧¬O2 is not
possible. Therefore we would not have to consider this combinations in the following steps. �

A detailed explanation on this topic can be found in Chapter 7 on page 31.

4 SAT solving
In this chapter we introduce the SAT solving algorithm which is used to solve our problems stated
in Chapter 3 on page 7. The SAT solver gets a propositional logic formula in CNF as input and tries
to �nd a satisfying assignment, i. e., an assignment for all occurring variables to Boolean values
which satis�es the input CNF. If such an assignment cannot be found the given formula is unsatis-
�able and an unsatis�able core is returned, i. e., a subset of the clauses in the formula which is still
unsatis�able. This allows the user to �nd an explanation why the given formula is not satis�able.

Typically SAT solvers are used as so called black boxes where it is not relevant to know the exact
way the black box solves the problems. But as we like to extend the existing algorithm to better
suit our needs we have to understand the SAT solving process in greater detail. Thus, this chapter
gives an introduction to the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for SAT solving
[DLL62].

We consider the following running example during this chapter.

Example 4.1 (Problem). Consider the following formula in CNF with 4 variables x1, . . . , x4 and
5 clauses c1, . . . , c5:

c1 : (x1 ∨ x2 ∨ x4)
c2 : (x2 ∨ ¬x4)
c3 : (x3 ∨ x4)
c4 : (x3 ∨ ¬x4)
c5 : (x1 ∨ x2)

We are interested in a solution to the problem:

c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 �

4.1 Enumeration
One of the oldest methods of solving SAT problems is enumeration. As the name indicates, enumer-
ation is some sort of brute-force approach where all possible assignments of variables are tested
one after the other. This process can be visualized with the help of a binary tree. In this tree the
nodes correspond to (partial) assignments of the variables. The tree is constructed according to a
variable ordering, i. e., the levels in the tree correspond to the di�erent variables sorted by their
ordering. The leafs indicate the satis�ability of the formulas considering the assignment of the
variables along the path to this leaf. An illustration is given by the example in Figure 4.1.

Example 4.2 (Binary tree). As visualized in Figure 4.1 our problem is satis�able, it even has �ve
di�erent satisfying assignments indicated by the leafs with value 1. �

By constructing the binary tree we enumerate all the di�erent variable assignments. If we en-
counter a satis�able assignment we can stop and return satis�able (SAT). Otherwise the problem
is unsatis�able (UNSAT).

This idea of enumeration is later used in the DPLL framework as well. There it occurs during
the decisions for variables.

4.2 Resolution
An alternative solving method to enumeration is resolution which can be applied to a set of clauses.
Thus, here we need a formula in CNF whereas enumeration works for general propositional logic
formulas.

14 Chapter 4. SAT solving

x1

x2

x3

x4

1

1

1

0

1

x4

0

1

0

0

0

1

x3

x4

0

1

1

0

1

x4

0

1

0

0

0

0

1

x2

x3

x4

1

1

1

0

1

x4

0

1

0

0

0

1

x3

x4

0

1

0

0

1

x4

0

1

0

0

0

0

0

Figure 4.1: Binary tree for Example 4.1 with variable ordering x1 > x2 > x3 > x4.

De�nition 4.1 (Resolution). The binary resolution can be described by the following inference
rule:

(a1 ∨ · · · ∨ an ∨ β) (b1 ∨ · · · ∨ bm ∨ ¬β)
(a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm)

with a1, . . . , an, b1, . . . , bm being literals and β a variable.
If we have two resolving clauses (a1∨· · ·∨an∨β) and (b1∨· · ·∨ bm∨¬β) where the resolution

variable β is positive in one clause and negative in the other we can apply the resolution rule and
get the resolvent clause (a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm). N

This resolution rule can be used for computing the unsatis�ability of a CNF formula.

Theorem 4.1 (Resolution for unsatis�ability). A CNF formula is unsatis�able i� there exists a �nite
series of binary resolution steps which derive the empty clause ().

Proof. see [Rob65]

Thus, resolution is refutation-complete, i. e., if a CNF formula is unsatis�able we can always
derive the empty clause and therefore prove its unsatis�ability.

Example 4.3 (Resolution). Consider the given formula in CNF:

c1 : (x1 ∨ x2 ∨ x4)
c2 : (x2 ∨ ¬x4)
c3 : (x1 ∨ ¬x2)
c4 : (¬x1)

Using resolution we get the derivation in Figure 4.2. We start with the clauses on the top level and
repeatedly apply the resolution rule. The predecessors of a node indicate the resolving clauses and
the node indicates the resolvent clause. As we can derive the empty clause the given formula is
unsatis�able. �

Since for each clause set, the number of clauses derivable by resolution is �nite, resolution gives
us a complete decision procedure.

4.3 DPLL
The following explanation of the DPLL framework is based on [KS08].

Combining enumeration and resolution we get the DPLL algorithm [DLL62]. Here we use enu-
meration for assigning variables and trying to �nd a satis�able assignment. In case of a con�ict,

4.3. DPLL 15

(x1 ∨ x2 ∨ x4) (x2 ∨ ¬x4) (x1 ∨ ¬x2) (¬x1)

(x1 ∨ x2)

(x1)

()

Figure 4.2: Derivation tree of the empty clause for Example 4.3

we use resolution to derive a clause which excludes similar con�icting assignments in the further
search.

First we give an overview of the DPLL algorithm as shown in Algorithm 1 before explaining the
concrete steps in detail.

Algorithm 1 DPLL algorithm
Input: propositional CNF formula ϕ
Output: SAT if ϕ is satis�able, UNSAT otherwise

DPLL_SAT(ϕ)
begin

con�ict = BCP() (1)

if con�ict 6= null then (2)

return UNSAT (3)

end if (4)

while true do (5)

if ¬DECIDE() then (6)

return SAT (7)

end if (8)

con�ict = BCP() (9)

while con�ict 6= null do (10)

(backtrack-level, con�ict′) := ANALYZE_CONFLICT(con�ict) (11)

if backtrack-level < 0 then (12)

return UNSAT (13)

else (14)

BACKTRACK(backtrack-level) (15)

end if (16)

con�ict = BCP() (17)

end while (18)

end while (19)

end

The �rst step in the DPLL algorithm checks the consequences of unary clauses which directly
imply assignments (Line 1). The function BCP() is described in Algorithm 2 below. If we already
encounter a con�ict we return UNSAT (Line 3).

Otherwise, in the main loop (Lines 5 to 19) we �rst apply enumeration and try to assign a value to
a yet unassigned variable (Line 6). If all variables are already assigned, DECIDE() returns false
and we have found a satisfying assignment. Then we can return SAT (Line 7). Otherwise, the
consequences of the assignment are checked (Line 9) and, in case of a con�ict, the con�ict gets
analyzed (Line 11). The con�ict analysis procedure, discussed in Section 4.3.3 on page 17, might
detect unsatis�ability (Line 13). Otherwise we propagate the changes from the possible con�ict
(Line 17) and �nally perform a new enumeration step.

16 Chapter 4. SAT solving

4.3.1 Boolean constraint propagation
After one decision we might have implications which determine the values of other variables in
all satisfying extensions of the current partial assignment. These conclusions can be achieved by
analyzing the clauses.

De�nition 4.2 (States of a clause under an assignment). A clause is in one of four states under an
assignment:

• A clause is satis�ed if one or more of its literals are assigned and satis�ed.

• A clause is con�icting if all of its literals are assigned and not satis�ed.

• A clause is unit if it is not satis�ed and all but one literals are assigned.

• A clause is unresolved otherwise. N

One can easily see that unit clauses induce a variable assignment to satisfy this clause. This is
called the unit clause rule.

De�nition 4.3 (Unit clause rule). Let C be a unit clause and l its unassigned literal. Then l is
implied by C under the current assignment and we denote C as the antecedent clause of l

Antecedent(l) = C N

The algorithm of Boolean Constraint Propagation (BCP) is given in Algorithm 2. It repeatedly
tries to apply the unit clause rule to assign all implied variables (Lines 6 to 13). It stops as soon as
the assignment makes a clause con�icting and returns this clause (Line 3), or if there are no unit
clauses under the current assignment it returns null (Line 15).

Algorithm 2 BCP algorithm
Input:
Output: con�icting clause if one exists, null otherwise

BCP()
begin

while true do (1)

if existsConflictingClause() then (2)

return getConflictingClause() (3)

end if (4)

if existsUnitClause() then (5)

clause = firstUnitClause() (6)

lit = unassignedLiteral(clause) (7)

var = variable(lit) (8)

if negated(lit) then (9)

assign(var, false) (10)

else (11)

assign(var, true) (12)

end if (13)

else (14)

return null (15)

end if (16)

end while (17)

end

4.3.2 Enumeration
The enumeration in the DPLL algorithm (Algorithm 1) takes places in the function DECIDE()
(Line 6). DECIDE() choses a variable according to some heuristic and assigns either the value true

4.3. DPLL 17

or false. Possible heuristics for selecting a variable and a value can be found in [MS99], e. g., dy-
namic largest individual sum (DLIS) which chooses the literal that satis�es the largest number of
currently unsatis�ed clauses, or variable state independent decaying sum (VSIDS). VSIDS [Mos+01]
introduces a counter for every literal which is incremented when this literal occurs in a newly
added clause. Periodically all counters are decreased.

Additionally each decision is associated with a decision level. Intuitively the decision level is the
depth in the binary decision tree. Decision levels improve the backtracking capabilities as we can
undo previous decision up to a speci�c level but keep the remaining decisions instead of discarding
all previous decisions.

4.3.3 Conflict analysis
A con�ict with a con�icting clause c occurs during BCP if every literal in clause c is assigned
the value false. We now know that at least one of the previous decisions lead to this clause
being unsatis�ed. Therefore we have to undo at least one assignment. This can be done by a two-
stage approach. First we compute a so called con�ict clause which captures a variable assignment
responsible for the current con�ict. Secondly we backtrack to a lower decision level and undo all
decisions at higher decision levels.

The algorithm ANALYZE_CONFLICT() is given in Algorithm 3.

Algorithm 3 Con�ict analysis algorithm
Input: cl: con�icting clause
Output: pair (backtrack level, asserting con�ict clause)

ANALYZE_CONFLICT(cl)
begin

dl = getCurrentDecisionLevel() (1)

while (dl > 0 ∧ cl is not asserting) ∨ (dl == 0 ∧ cl 6= ()) do (2)

l = last assigned literal in cl (3)

a = antecedent(l) (4)

cl = resolvent(cl, a, variable(lit)) (5)

end while (6)

addClause(cl) (7)

if |cl| == 1 then (8)

return (0, cl) (9)

else if |cl| == 0 then (10)

return (-1, cl) (11)

else (12)

bt = second largest decision level in cl (13)

return (bt, cl) (14)

end if (15)

end

We apply the resolution rule as explained in Section 4.2 on page 13 on the current clause and the
antecedent of the last assigned literal in the clause and get the next clause (Lines 3 to 5). This is
repeated until we either get an asserting clause or, if we are on decision level 0, we gain the empty
clause (). Then we add this con�ict clause to the set of all clauses (Line 7).

Next we determine the corresponding backtrack level. The rule here is to backtrack to the second
most recent decision level in the con�ict clause (Line 13), i. e., the highest level in the clause other
than the current decision level. If all literals are assigned at the same decision level, the remaining
clause has only one literal and the backtrack level is set to 0 (Line 9). If we are already on decision
level 0 we cannot backtrack anymore and have found proof for the unsatis�ability by resolving the
empty clause. This is indicated by a negative backtrack level (Line 11).

As the con�ict clause is derived from the existing clauses, adding it to the clause set does not
a�ect satis�ability. It is merely learned as it excludes a partial assignment which led to the current
con�ict. Thereby we ensure that similar con�icts do not occur during the further search. Further
on we might exclude some more con�icting assignments which were not yet considered. In an
intuitive way the solver uses con�ict clauses to “learn from its mistakes”.

18 Chapter 4. SAT solving

In the DPLL algorithm in Algorithm 1 on page 15 a negative backtrack-level indicates that the
con�ict does not arise from previous decisions but from inherent variable assignments and there-
fore the formula is UNSAT (Line 13 on page 15).

Otherwise, after learning the con�ict clause we try to undo some recent decisions. However, we
do not want to backtrack too far as we would have to redo some work. The concrete backtrack-
level is returned from ANALYZE_CONFLICT() (Line 11 on page 15). By backtracking to a certain
backtrack-level (Line 15 on page 15) we undo all decisions taken after this level. Further on all
corresponding implications from these decisions are erased as well.

It is important to recognize that after backtracking, the asserting con�ict clause is unit, i. e., it
leads to a new implication, which again needs to be propagated (Line 17 on page 15).

4.3.4 Complete example

We conclude this chapter by giving a complete run of the DPLL algorithm on the previous problem
of Example 4.1 on page 13. The clauses were:

c1 : (x1 ∨ x2 ∨ x4)
c2 : (x2 ∨ ¬x4)
c3 : (x3 ∨ x4)
c4 : (x3 ∨ ¬x4)
c5 : (x1 ∨ x2)

Example 4.4 (Complete DPLL run). Initially, there are no assignments made at decision level 0.
Assume that the heuristic in DECIDE() chooses to assign x1 to false. This �rst assignment
indicates the �rst decision at decision level 1 written as

¬x1@1

Then clause c5 becomes a unit clause. Using the unit clause rule we deduce a new variable assign-
ment x2 = true written as:

x2@1

Now clauses c1, c2 and c5 are satis�ed.
Next we set the assignment for the following variable x3 as:

¬x3@2

Now clauses c3 and c4 are unit clauses. First we consider clause c3 in BCP and get the following
assignment:

x4@2

However, the clause c4 is now con�icting as x3 and¬x4 are both false. Our next step is to resolve
this con�ict. We get the following con�ict clause c6 from the con�ict analysis as the resolvent of
c3 and c4:

c6 = (x3)

As the only decision level in the con�ict clause is 2, which is the current decision level, we backtrack
to the lowest level 0, i. e., all decisions are erased. Now, c6 implies the assignment

x3@0

Then the clauses c3 and c4 are satis�ed.
Our next decision is

¬x1@1

4.3. DPLL 19

This leads to clause c5 being a unit clause and the assignment

x2@1

Now all clauses are satis�ed and the CNF formula is satis�able. Making a further decision for the
remaining variable x4 as

¬x4@2

we get a satisfying assignment as

{¬x1, x2, x3,¬x4} �

5 Incremental SAT solving

After introducing the general idea behind SAT solving we now come to the actual solving of our
three main problems. Here we start with the order checking as explained in Section 3.4.1 on page 10.

As stated previously for order checking we get an order with its chosen options and a corre-
sponding PCC. We encode the options and the PCC as propositional logic formulas and solve them
with a SAT solver. The solver gives us the answer whether the order is satis�able or unsatis�able.

We could be content with this approach as we can solve our problem. Nevertheless there is
room for improving and accelerating the solving process. Our main approach here is to exploit
incrementality in SAT solving.

A solver is incremental if it reuses results from the previous checks when checking again after
removing and adding clauses.

The �rst check is performed on a set of clauses C. Afterwards this problem is changed by re-
moving clausesR and adding clauses A which leads to the new set of problem clauses

C′ = (C \ R) ∪ A.

The check on C′ now reuses results from the check on C instead of discarding them and starting
anew.

Using the incrementality of the SAT solver we can take advantage of the previous computations
as we do not have to discard them completely when changing the formulas to solve. Instead the
solver tries to preserve as much useful gained knowledge as possible, i. e., activities of variables for
decision heuristics, certain con�ict clauses, etc.. This helps accelerating the solving process as the
incremental solving is faster than multiple isolated checks.

5.1 Interfaces
The incrementality in the SAT solver is achieved by calling the interfaces as proposed in the SMT-
LIB �le format [BST10]. Here we mainly use the commands push and popwhich work on a stack.
Calling push introduces a new layer on the stack on which all newly added formulas are put.
Calling pop then removes all formulas up to the highest push layer.

Example 5.1 (Push and pop). A visualization of push and pop is shown in Figure 5.1.

push

c1

...

cm

push

d1

...

dl

push

c1

...

cm

push

c1

...

cm

push

e1

...

ek

Figure 5.1: Push and pop

The left one is the stack after adding clauses c1, . . . , cm, calling push and then adding additional
clauses d1, . . . , dl. The middle stack is after calling pop. The right stack is after calling push again
and adding new clauses e1, . . . , ek . �

22 Chapter 5. Incremental SAT solving

5.2 Order checking
Incrementality is bene�cially for bulk checking. Each order is based on a product type, i. e., a
PCC. As some orders share the same PCC we sort the orders by their corresponding PCC and start
by loading the �rst PCC. Now for every order we call push and then add the options from the
order as new clauses. After solving the problem we call pop and thus only remove those clauses
corresponding to the options of the order. The clauses for the PCC remain untouched and all gained
knowledge about them remains in the solver, e. g., transformed input in CNF, unary learnt clauses,
accumulated values for the decision heuristic. Next we consider another order and add its options
again. This process is repeated for all orders.

Example 5.2 (Order checking). The work�ow for order checking is visualized in Figure 5.2.

push

PCC

push

order1opt1

...

order1optm

push

PCC

push

PCC

push

order2opt1

...

order2optk

Figure 5.2: Work�ow of order checking

As explained before the PCC is kept whereas the orders change during the process. �

The incrementality gives us speed improvements as we do not have to load the PCC for every
order but each PCC only once during the bulk checking. Further on we keep possible knowledge of
the speci�c PCC during the solving process which might again improve the solving performance.

6 Lemma generation

We now come to the second problem: the realizability check as stated in Section 3.4.2 on page 11.
Here we check whether every option in the given PCC can be taken, i. e., every option is realizable,
and whether there are options which always have to be taken.

6.1 Naive algorithm

The naive approach to this problem can be seen in Algorithm 4. Here we �rst add the given PCC
(Line 4). Then each option is added (Line 7) and checked successively (Line 8). If the solver states
that the PCC along with the current option is satis�able, this option is realizable, otherwise it
cannot be taken and is added to the list of unrealizable options (Line 9).

Algorithm 4 Naive algorithm for realizability check
Input: PCC

options in PCC
Output: list of all unrealizable options

REALIZABILITY_NAIVE(PCC, options)
begin

optionsUnrealizable = ∅ (1)

PCCCNF = ToCNF(PCC) (2)

push() (3)

add(PCCCNF) (4)

for each optioni ∈ options do (5)

push() (6)

add(optioni) (7)

if check() = UNSAT then (8)

optionsUnrealizable = optionsUnrealizable ∪ {optioni} (9)

end if (10)

pop() (11)

end for (12)

pop() (13)

return optionsUnrealizable (14)

end

In this solution we have to assert every option, call the check routine and then evaluate the
result of the solver in an external wrapper. This work�ow is shown in Figure 6.1.

6.2 Improved algorithm

The above approach su�ces to solve the realizability problem, but we still can improve the time
consumption.

The �rst improvement to the naive approach does not only use the UNSAT result of the solver but
also the SAT result. In case of SAT in Line 8 we know that every chosen option in the satisfying
assignment is realizable. Hence, we do not need to check these options anymore as we already
know their realizability.

24 Chapter 6. Lemma generation

Wrapper

PCC
...

options

option1

...

optionn

1. add(PCCCNF)

2. add(option1)

3. check()

4. SAT/UNSAT

5. remove(option1)

6. add(option2)

7. check()

...

SAT solver

Figure 6.1: Naive work�ow for the realizability check

Example 6.1 (Satisfying assignment). Consider the following clauses:

c1 : (x1 ∨ x2)
c2 : (x2 ∨ ¬x4)
c3 : (x3 ∨ x4)
c4 : (¬x1)

We get the following satisfying assignment after the solving:

{¬x1, x2, x3, x4}

Now we know that not only variable x2 but also x3 and x4 are satis�able and therefore these
variables do not need to be considered anymore. �

The improved algorithm can be seen in Algorithm 5, especially the added part in Lines 11 to 15
dealing with the SAT case.

6.3 Final algorithm
If we use the solver as a “black box” we do not have much room for improvement and a lot of
communication has to happen between the solver and the wrapper. But we want to decrease the
amount of communication between the two programs and autonomously compute as much as
possible in the solver. Now we bene�t from our own solver SMT-RAT as we can implement the
needed behavior in the solver and therefore use the solver as a “white box” where we know how
the solving takes places.

The �nal algorithm for solving the realizability abstracts from the speci�c setting of options to a
more general approach of so called relevant variables. In SMT-RAT we can add and remove those
relevant variables which then can be used for certain tasks depending on the used solver modules.
In our case the relevant variables state those variables which should be used for the realizability
check, i. e., the corresponding options.

The �nal algorithm makes use of lemmas (see De�nition 3.1 on page 11). Lemmas represent
inherent knowledge of the added formulas and do not change the satis�ability of the formulas. In
the context of incrementality lemmas are used to remember gained information which then help
to accelerate future checks.

In our setting, we use lemmas for encoding the reasons for speci�c variable assignments. Instead
of only returning the set of unrealizable variables we return each variable with its corresponding
reason implying the speci�c assignment. This helps the engineer identifying the reasons for the
unrealizability of certain options and therefore improves the process of writing and modifying the
set of rules.

6.3. Final algorithm 25

Algorithm 5 Improved algorithm for realizability check
Input: PCC

options in PCC
Output: list of all unrealizable options

REALIZABILITY_IMPROVED(PCC, options)
begin

optionsUnrealizable = ∅ (1)

PCCCNF = ToCNF(PCC) (2)

push() (3)

add(PCCCNF) (4)

for each optioni ∈ options do (5)

push() (6)

add(optioni) (7)

if check() = UNSAT then (8)

optionsUnrealizable = optionsUnrealizable ∪ {optioni} (9)

else (10)

for each var ∈ assignment do (11)

if var = true then (12)

options = options \ {var} (13)

end if (14)

end for (15)

end if (16)

pop() (17)

end for (18)

pop() (19)

return optionsUnrealizable (20)

end

In our problem case we generate lemmas during the solving process to capture implications of
variable values. For each variable assignment at decision level 0, we remember which clauses are
responsible for this assignment and store this reason implying the variable assignment as a lemma:

reason⇒ variable or
reason⇒ ¬variable

Example 6.2 (Lemma generation at decision level 0). Assume we have the clauses from Exam-
ple 6.1 on page 23. We then compute the following lemmas:

c4 : (¬x1)⇒ ¬x1
c1 : (x1 ∨ x2) ∧ c4 : (¬x1)⇒ x2 �

We restrict ourselves to assignments at decision level 0 before any decisions have taken place.
All later lemmas additionally depend on the current variable decisions and therefore are not valid
globally but only under these variable assignments.

However, using these lemmas does not su�ce for solving the realizability as in general we do
not capture all variables at decision level 0. Hence, we use the previous mentioned approach of
successively assigning the remaining variables and checking the satis�ability. As we do this whole
procedure inside the SMT-RAT solver we avoid most of the previous communications.

The �nal algorithm is based on the DPLL algorithm (see Algorithm 1 on page 15) and is stated
in Algorithm 6.

As in the original DPLL algorithm we start by calling the BCP() algorithm in Line 2. If a con�ict
already occurred at decision level 0 the CNF formula ϕ is UNSAT and we return the reason for this
unsatis�ability as a lemma (Line 4). The function leaves() collects all clauses responsible for the
given con�ict clause and is explained later.

Otherwise, we perform the computation of lemmas similar to the improved algorithm of Algo-
rithm 5. We iterate over all relevant variables (Line 6) and in each iteration we assign the �rst

26 Chapter 6. Lemma generation

Algorithm 6 DPLL algorithm for realizability
Input: propositional CNF formula ϕ

relevantVariables: set of all variables of interest
Output: set of lemmas indicating variable values

DPLL_REALIZABILITY(ϕ, relevantVariables)
begin

lemmas = ∅ (1)

con�ict = BCP() (2)

if con�ict 6= null then (3)

return {leaves(con�ict)⇒ false} (4)

end if (5)

while relevantVariables 6= ∅ do (6)

varCheck = relevantVariables.first() (7)

relevantVariables = relevantVariables \ {varCheck} (8)

done = false (9)

while ¬done do (10)

if ¬DECIDE_REALIZABILITY(varCheck) then // SAT (11)

for each var ∈ assignment do (12)

if var = true then (13)

relevantVariables = relevantVariables \ {var} (14)

end if (15)

end for (16)

done = true (17)

else (18)

con�ict = BCP() (19)

while con�ict 6= null do (20)

(backtrack-level, con�ict′) = ANALYZE_CONFLICT(con�ict) (21)

if backtrack-level < 0 then // UNSAT (22)

return {leaves(con�ict′)⇒ false} (23)

else (24)

BACKTRACK(backtrack-level) (25)

end if (26)

con�ict = BCP() (27)

end while (28)

end if (29)

end while (30)

BACKTRACK(0) (31)

end while (32)

for each lit ∈ assignment do (33)

lemmas = lemmas ∪ {leaves((lit))⇒lit} (34)

end for (35)

return lemmas (36)

end

6.3. Final algorithm 27

variable to the value true. This in done in the modi�ed function DECIDE_REALIZABILITY()
(Line 11). The corresponding algorithm is stated in Algorithm 7.

Algorithm 7 Decision algorithm for realizability
Input: prioritized variable var
Output: false if all variables are already assigned, true otherwise

DECIDE_REALIZABILITY(var)
begin

if var == unassigned then (1)

decisionLevel++ (2)

var = true (3)

return true (4)

else (5)

return DECIDE() (6)

end if (7)

end

The function DECIDE_REALIZABILITY() gets a variable as input and tries to assign this vari-
able before any other variable. If the prioritized variable is currently not assigned we increase the
decision level (Line 2) and assign this variable to true (Line 3). If the variable is already assigned
we call the original decision procedure for all other variables (Line 6).

After assigning the current variable in Algorithm 6, we remove it from the relevant variables to
ensures termination of the loop in Line 6 and perform a regular DPLL solving. After the solving
the current assignment is reset by backtracking to decision level 0 (Line 31) so we can restart the
solving in an initial state again. Especially the previously assigned variable is reset as we do not
consider it anymore.

If the result of the DPLL solving is SAT (Lines 14 to 17), we remove all satis�ed variables from
the set of all relevant variables.

The interesting part happens, if we �nd a con�ict. If the current decision level is 0, the con�ict
is independent of the current variable we assigned at decision level 1. This indicates that the given
CNF formula is already unsatis�able and we return the corresponding reason as a lemma (Line 23).

If the decision level is higher than 0 we backtrack as seen in the original algorithm. However, as
we add the con�ict clause to the set of all clauses, we can analyze those clauses later.

In particular, if the con�ict occurs at decision level 1, this indicates that the assignment of the
current relevant variable to true implies a con�ict and this variable is not realizable. After back-
tracking the resulting asserting con�ict clause implies a new assignment at decision level 0 of the
relevant variable to false which captures the unrealizability of this variable.

After considering all relevant variables we additionally generate lemmas for all variable assign-
ments at decision level 0 (Lines 33 to 35). As we backtracked before, decision level 0 is ensured and
all assignments occurring are independent of variable decisions. The reason for each variable as-
signment is given by the unit clause which became unit because of possible previous assignments
to variables in the same clause. Therefore we have to consider all input clauses responsible for
making this clause unit.

This is done by the function leaves(). As we gained the given clause by performing resolution
on clauses, we can collect the leaves of the resolution tree for the clause and get all input clauses
which are responsible for the given clause. These clauses are the reason for the variable assignment
and are added as a new lemma (Line 34). As explained before, the unrealizable variables are assigned
to false at decision level 0 and therefore are captured by these lemmas.

The algorithms ends with returning all computed lemmas (Line 36).
Using the function leaves() we are able to give a reason why a formula is UNSAT as seen in

Line 23. This reason is called unsatis�able core [ZM03].
De�nition 6.1 (Unsatis�able core). An unsatis�able core of an unsatis�able formula in CNF is any
unsatis�able subset of the original set of clauses. N

An unsatis�able core should be as small as possible and allows for a better understanding why
the formulas are unsatis�able. Instead of considering all formulas only a small portion must be
analyzed and is su�cient on its own to prove unsatis�ability.

28 Chapter 6. Lemma generation

In case of unsatis�ability in our realizability check we construct a new lemma with an unsatis-
�able core as a reason for the unsatis�ability.

Example 6.3 (Unsatisfying assignment). Consider the following clauses:

c1 : (¬x1 ∨ ¬x2)
c2 : (x2 ∨ ¬x4)
c3 : (x3 ∨ x4)
c4 : (x1)

Assume we asserted x2 which yields the result unsatis�able. Then an unsatis�able core is:

{(x2), c4 = (x1), c1 = (¬x1 ∨ ¬x2)} �

As stated before, the lemma generation is not only necessary for our realizability check, but can
be useful in general by improving the solving performance. On the other hand this lemma gen-
eration takes additional computation time, therefore it must be activated implicitly in SMT-RAT.
This is done by setting a so called LemmaLevel which indicates the degree to which we want to
compute additional lemmas.

6.3.1 Complete example
We conclude this chapter by giving an example of a realizability check.

Example 6.4 (Realizability check). Consider the given clauses:

c1 : (x1 ∨ x2)
c2 : (x2 ∨ ¬x4)
c3 : (¬x3 ∨ x4)
c4 : (¬x1)
c5 : (¬x3 ∨ ¬x4)

We start the realizability check with the list of relevant variables {x3, x4} and �rst assert variable
x3. Then the result is UNSAT with the following unsatis�able core.

{(x3), c3 = (¬x3 ∨ x4), c5 = (¬x3 ∨ ¬x4)}

Performing resolution we get the following con�ict clause:

c6 : (¬x3)

This clause is added to the set of clauses.
Next we consider the remaining variable x4 which yields the satisfying assignment:

{¬x1, x2,¬x3, x4}

As all relevant variables are checked we now compute the lemmas for decision level 0. The remain-
ing variable assignments are:

{¬x1, x2,¬x3}

The �rst variable assignment ¬x1 was implied by unit clause c4 and yields the lemma:

c4 ⇒ ¬x1

Variable x2 has the resolution tree depicted in Figure 6.2. Therefore the assignment for variable x2
is implied by clauses c1 and c4. The corresponding lemma is:

(c1 ∧ c4)⇒ x2

6.3. Final algorithm 29

x2

c4 : (¬x1) c1 : (x1 ∨ x2)

Figure 6.2: Resolution tree for x2

As seen before the variable assignment ¬x3 was implied by the con�ict clause c6 which was gained
by con�ict resolution on clauses c3 and c5. Therefore the corresponding lemma is:

(c3 ∧ c5)⇒ ¬x3

The algorithm terminates with the returned lemmas:

c4 ⇒ ¬x1
(c1 ∧ c4)⇒ x2

(c3 ∧ c5)⇒ ¬x3

Analyzing the lemmas in the wrapper we could extract the information that options x1 and x3 are
not realizable. Further on, option x2 has to be chosen in all con�gurations. �

7 All-SAT

Last we consider the third problem: the VarGen check as introduced in Section 3.4.3 on page 12.
Here we get a list of options and a list of PCCs as input and for each PCC we have to compute
those combinations of options which are possible in this PCC.

7.1 Naive algorithm

The naive approach of solving this problem is to try all possible combinations of options and check
each of them for satis�ability.

Example 7.1 (All combinations). Assume we have the options x1, x2, x3. Then all possible com-
binations would be:

{{ x1, x2, x3}, { x1, x2,¬x3},
{ x1,¬x2, x3}, { x1,¬x2,¬x3},
{¬x1, x2, x3}, {¬x1, x2,¬x3},
{¬x1,¬x2, x3}, {¬x1,¬x2,¬x3} } �

This approach of iterating over all combinations is formalized in Algorithm 8.

Algorithm 8 Naive algorithm for VarGen check
Input: PCC

options
Output: set of all realizable combinations of options

VARGEN_NAIVE(PCC, options)
begin

possibleOptions = ∅ (1)

PCCCNF = ToCNF(PCC) (2)

push() (3)

add(PCCCNF) (4)

combinations = 2options
(5)

for each combinationi ∈ combinations do (6)

push() (7)

for each optionj ∈ options do (8)

if optionj ∈ combinationi then (9)

assign(optionj) (10)

else (11)

assign(¬ optionj) (12)

end if (13)

end for (14)

if check() = SAT then (15)

possibleOptions = possibleOptions ∪ {combinationi} (16)

end if (17)

pop() (18)

end for (19)

pop() (20)

return possibleOptions (21)

end

32 Chapter 7. All-SAT

As before we start by adding thePCC (Line 4). Next we compute a list of all possible combinations
of options (Line 5) and iterate over all those combinations (Line 6). For each combination its options
are added (Lines 8 to 14) and then we check the satis�ability (Line 15). If the result is SAT, we have
found another possible combination of options (Line 16).

7.2 All-SAT
It is easy to see that the above approach lacks in performance as we need 2#options checks which is
exponential in the number of given options. We want to solve the whole problem in one solver call
instead of iteratively communicating each tuple of options and checking it. Therefore we can make
use of the solver SMT-RAT and extend it to support the computation of all satisfying assignments
for a given set of Boolean variables.

Our problem of computing all possible combinations is similar to the problem of computing all
satisfying solutions for given formulas. This problem is called All-SAT.
De�nition 7.1 (All-SAT). The task of All-SAT is to �nd all satisfying solutions to a given SAT
problem. N

By extending the solver SMT-RAT to solve the All-SAT problem we can solve the VarGen check
as well. But we are not interested in all assigned variables but only in some relevant variables.
Therefore we can improve our solving to focus on these variables.

7.2.1 Final algorithm
The implemented algorithm for All-SAT is based on the DPLL algorithm (see Algorithm 1 on
page 15) and is outlined in Algorithm 9. Here we once again use the relevant variables which
now capture those variables constituting the possible combinations.

We start by solving the SAT problem as usual. If the problem is UNSAT immediately, we are done
(Line 4). Otherwise, if the solver �nds a satisfying assignment (Line 9), we project this assignment
to the set of relevant variables (Line 10) to only keep those variables, we are interested in. Next
we have to ensure that we do not �nd the current solution again in a later run. This is assured by
constructing an excluding clause (Lines 12 to 20) which is a negation of the current assignment.
This clause is similar to the con�ict clauses in the original DPLL algorithm and excludes the current
solution from all future checks.

After �nding a solution we continue solving to �nd another solution. If we do not �nd any
further solution, i. e., the result is UNSAT and we return the set of all solutions (Line 27).

Using this approach we can compute all possible combinations for a given PCC and a set of
options. Applying this All-SAT algorithm iteratively for all PCCs we solve the VarGen problem.

7.2.2 Complete example
This chapter concludes with a complete example of a VarGen check.
Example 7.2 (VarGen check). Let {x2, x4} be the relevant variables and the given clauses are:

c1 : (x1 ∨ x2)
c2 : (x2 ∨ ¬x4)
c3 : (¬x3 ∨ x4)

The �rst satisfying assignment is:

{x1, x2,¬x3, x4}

which gives the �rst solution:

{x2, x4}

The corresponding excluding clause is:

c4 : (¬x2 ∨ ¬x4)

7.2. All-SAT 33

Algorithm 9 DPLL algorithm for All-SAT
Input: propositional CNF formula ϕ

relevantVariables: set of Boolean variables which are relevant for All-SAT
Output: all satisfying assignments of the relevant variables

DPLL_ALL_SAT(ϕ, relevantVariables)
begin

solutions = ∅ (1)

con�ict = BCP() (2)

if con�ict 6= null then (3)

return ∅ (4)

end if (5)

while true do (6)

done = false (7)

while ¬done do (8)

if ¬DECIDE() then // SAT (9)

solution = assignment|relevantVariables (10)

solutions = solutions ∪ {solution} (11)

excludeClause = false (12)

for each var ∈ relevantVariables do (13)

if var = true then (14)

excludeClause = excludeClause ∨ ¬ var (15)

else (16)

excludeClause = excludeClause ∨ var (17)

end if (18)

end for (19)

ϕ = ϕ ∪ excludeClause (20)

done = true (21)

else (22)

con�ict = BCP() (23)

while con�ict 6= null do (24)

(backtrack-level, con�ict′) := ANALYZE_CONFLICT(con�ict) (25)

if backtrack-level < 0 then // UNSAT (26)

return solutions (27)

else (28)

BACKTRACK(backtrack-level) (29)

end if (30)

con�ict = BCP() (31)

end while (32)

end if (33)

end while (34)

BACKTRACK(0) (35)

end while (36)

end

34 Chapter 7. All-SAT

Then we search for another solution and get the satisfying assignment:

{x1, x2,¬x3,¬x4}

The next solution is:

{x2,¬x4}

We add the excluding clause:

c5 : (¬x2 ∨ x4)

Searching for another solution we �nd the assignment:

{x1,¬x2,¬x3,¬x4}

Therefore the third solution is:

{¬x2,¬x4}

This implies the excluding clause:

c6 : (x2 ∨ x4)

Now the solver does not �nd further solutions. Therefore we return all three solutions:

{{x2, x4}, {x2,¬x4}, {¬x2,¬x4}}

Furthermore, we can see that the combination {¬x2, x4} is not possible, because it contradicts the
clause c2 : (x2 ∨ ¬x4). �

8 Implementation
In this chapter we describe how we implemented the previously described algorithms. We start by
giving an overview of the used architecture.

8.1 Architecture
The used architecture is visualized in Figure 8.1.

ProdVal

Front end

GUI

SQL

...

Back end

Convert

Binding

SMT-RAT

...

API
...

SAT
...

Figure 8.1: Architecture

The architecture consists of two main parts. The �rst part is called ProdVal (Product Validator)
and contains all code related to input data from the company, e. g., the PCCs and their proposi-
tional encoding. The second part is our solver SMT-RAT [Cor+15a] [Cor+15b] [Cor+12] which
performs the actual solving. Our implementation also o�ers the possibility to exchange the solver
to use for example Z3 [Mic15] [DMB08]. However, using SMT-RAT we bene�t from our custom
implementations for realizability and VarGen check which are not available in Z3.

We start by explaining the ProdVal tool. This tool is written in C# and is divided into a front
end and a back end. The front end was developed by the company. It handles the web-based GUI
(see Figure 8.2) and the storage of the PCCs in a database. All user interaction is handled here and
only the concrete tasks are forwarded to the back end. The back end gets the PCC rules, the current
task and possibly additional data as input from the front end and then has to solve the given task
by using a SAT solver. We can choose from two possible back ends: the company back end using
Z3 and our back end using SMT-RAT.

In our back end we start by converting the given PCC rules into the SMT-LIB format [BST10].
This transformation was explained in detail in Section 3.2 on page 7. Particularly, we have to encode
the validity period of the rules as explained in Example 3.7 on page 9 and the relationship of exactly
one for features as seen in Example 3.2 on page 7.

After encoding all rules we communicate them to the solver SMT-RAT.

8.2 SMT-RAT
For SAT solving we use our own solver SMT-RAT. SMT-RAT consists of multiple modules which
can be used according to a user-de�ned strategy to solve SMT problems. In our case we restrict
ourselves to SAT problems and therefore mostly use the so called SATModule. This module is
based on the solver MiniSat [ES03]. The custom changes necessary for lemma generation and

36 Chapter 8. Implementation

Figure 8.2: A screenshot of the GUI

All-SAT were all implemented in this module. Furthermore, we increase the solving performance
by �rst applying the PreprocessingModule which simpli�es the input formula.

When starting with the project the main problem in the implementation was the multi platform
compatibility. Previously SMT-RAT was developed only for Linux but for the usage in the com-
pany the solver also must be running on Windows. Thus, porting SMT-RAT to Windowswas the
�rst and very time consuming task.

On Linux we use the library GMP [Gra15] for numeric operations, but it does not work on
Windows. Luckily onWindowswe can use the libraryMPIR [GH15] which is a fork of GMP. Addi-
tionally, a lot of problems on Windows relate to the compiler of Microsoft Visual Studio
which does not fully support the C++ standard in version 11. We solved these problems by distin-
guishing between the di�erent compilers and changing parts of the source code depending on the
used compiler.

For integration with ProdVal we de�ned a custom API for SMT-RAT and included the solver
as a dynamic-link library (DLL) which can be called from C#. The main commands for a SMT
solver (adding and removing formulas, push, pop, check) are available here. The data exchange
is mostly done via string representation as this is most �exible and does not depend on custom data
structures which are not available in all used programming languages. Rules can be added in their
usual encoding as A IMPL B and are transformed into CNF in SMT-RAT.

In SMT-RAT the order check can be solved by simply calling check which returns if the given
set of rules and asserted options is satis�able.

As explained in Chapter 6 on page 23 the lemma generation can be activated with setting the
LemmaLevel to ADVANCED to only use this time consuming calculation when needed, e. g., in
the realizability check. With addRelevantVariable() all variables we are interested in can
be set. After checking the PCC, the solver can return the impliedVariables which contain all
relevant variables which either never can be satis�ed or are always satis�ed.

Last when calling allModels() after a check the solver computes all satisfying solutions
consisting of the relevant variables instead of returning just one solution. This helps solving the
VarGen task.

9 Evaluation
We compared our approach with SMT-RAT to the second similar implementation from the com-
pany which uses Z3 as a solver. Unfortunately it was not possible to compare our results to the
currently used solution which is not based on SAT solver technology. But as the approach with Z3
already performs better than the existing solution, this indicates that a replacement of the current
software is bene�cial.

All evaluations were executed on an Intel(R) Core(TM) i5-4200U CPU with 1.60 GHz,
12 GB RAM and Windows 8.

9.1 Order checking
First we evaluate the order checking which is a simple SAT checking. Here we got a sample from
the company with 103 di�erent orders, where 6 of them were unsatis�able. Due to business secrets
it was not possible to perform the check on the actual data of up to 50,000 orders.

The results can be seen in Table 9.1.

Sorted Solver Load. Prep. Check Total

7
SMT-RAT 10.01 28.18 4.42 32.60
Z3 9.57 23.48 4.53 28.01

3
SMT-RAT 9.85 12.82 4.45 17.26
Z3 9.67 24.11 4.48 28.60

Table 9.1: Order checking

The �rst column indicates whether the orders were presorted and the second column states the
used solver SMT-RAT or Z3. The column Load. indicates the time in seconds need for loading
the rules from the database, the column Prep. indicates the time needed for preparation including
the loading time, i. e., transforming the PCC rules, adding constraints for “exactly-one” and the
e�ectivity dates. The column Check speci�es the time needed for the actual SAT checking and the
last column Total denotes the total time needed for performing the order checking task.

As can be seen Z3 performs a little better than SMT-RAT on the order checking. This is due
to the fact that the preparation takes more time in SMT-RAT as the internal data structures in
SMT-RAT might be too complex when only considering propositional logic instead of more ex-
pressive logics. Nevertheless SMT-RAT performs in the same order of magnitude than Z3 and
therefore is competitive.

The interesting part happens when presorting the orders according to their corresponding prod-
uct type, i. e., their PCC. Before we needed to load the same PCC multiple times, because their
corresponding orders were scattered in the list of all orders. But after sorting the orders every
PCC only has to be loaded once and all orders based on this PCC can be checked consecutively.
Hence, between orders with the same PCC we only have to pop the previous options and their
e�ectivity dates and push the next options with the new dates. However, we do not have to load
the PCC again and save a lot of time. As can be seen, applying the presorting cuts the needed time
for checking with SMT-RAT in half, because the preparation time decreases drastically and the
presorting only takes 10 milliseconds.

The implementation with Z3 does not bene�t from this, because there the PCCs have to be
reloaded nevertheless. This is due to the fact that the implementation does not encode the e�ectiv-
ity dates but instead �lters the PCC beforehand. That means every rule not e�ective for the given
date is discarded. This approach decreases the amount of rules communicated to the SAT solver,
but on the other hand the same PCC must be reloaded for each di�erent date.

Thus, using our approach of encoding the e�ectivity dates into propositional logic combined
with presorting of the orders leads to the best result. Projecting these samples to the order checking

38 Chapter 9. Evaluation

with up to 50,000 examples we might only need approximately 2.5 hours for checking all orders
instead of 6 hours with the current implementation.

9.2 PCC checking
Next we evaluate the realizability task which we solved with lemma generation. Here we set the
week 49/15 and checked all 368 PCCs for their realizable options.

The results can be seen in Table 9.2.

Future Solver Load. Prep. Check Total

7
SMT-RAT 30.40 54.13 190.70 244.83
Z3 29.18 112.82 206.11 318.93

3
SMT-RAT 30.33 53.50 267.25 320.75
Z3 29.24 142.90 300.58 443.78

Table 9.2: Realizability checking

On the realizability check SMT-RAT performs better than Z3 especially the preparation only
takes half the time in comparison to Z3 indicating that our preprocessing of the rules is faster.
Further on, the generation of the lemmas decreases the checking time as well. In contrast, the
implementation with Z3 uses the naive approach of asserting every option and checking its satis�-
ability consecutively. Using lemmas also o�ers the additional possibility to easily get those options
which always have to be taken. This computation is not possible with the other approach.

As seen previously with the order checking, the encoding of the e�ectivity dates gives our ap-
proach an advantage when checking for di�erent dates. Therefore the last two rows in the table
deal with the realizability check for future dates. Here not only the current date, which we set to
33/15, is considered but also all future dates where some rules change. As we encode the dates
already in SMT-RAT this does not change the time for preparation and only the time for checking
increases as we have to perform the lemma generation for di�erent dates. In contrast the imple-
mentation with Z3 has to reload PCCs for di�erent dates, leading to an increase in the preparation
time. As before the checking also takes less time due to the lemmas. In total SMT-RAT only needs
75% of the time of Z3 for the realizability check.

9.3 VarGen checking
Last we consider the VarGen checking which we solved with the use of All-SAT. Here we con-
sidered 8 di�erent components each consisting of a set of PCCs and several sets of options to
combine. Then each combination of options is checked for each PCC.

The results are shown in Table 9.3. We can see that the total time for each components when
using SMT-RAT is nearly half of the time when using Z3. This is primarily due to the fact that the
time for checking is mostly one third compared to Z3. Therefore using the approach of All-SAT in
contrast to checking each combination individually decreases the time for checking drastically. Es-
pecially when considering combinations which are not possible our approach can exclude multiple
unsatis�able combinations at once whereas the other approach has to check them nonetheless.

9.3. VarGen checking 39

Components Solver Load. Prep. Check Total

Comp. 1 SMT-RAT 31.67 86.55 28.60 115.16
Z3 32.56 131.12 91.71 222.82

Comp. 2 SMT-RAT 36.16 100.95 32.50 133.45
Z3 35.67 155.77 96.23 252.00

Comp. 3 SMT-RAT 23.42 60.27 13.26 73.53
Z3 21.87 65.02 54.77 119.79

Comp. 4 SMT-RAT 6.38 12.95 1.93 14.88
Z3 5.98 12.78 9.48 22.27

Comp. 5 SMT-RAT 56.47 145.19 34.17 179.36
Z3 55.36 207.72 146.27 353.99

Comp. 6 SMT-RAT 112.71 335.83 114.72 450.55
Z3 105.22 502.42 343.01 845.43

Comp. 7 SMT-RAT 33.19 87.33 78.48 165.82
Z3 29.59 138.95 103.38 242.33

Comp. 8 SMT-RAT 47.04 130.74 38.29 169.03
Z3 46.38 226.27 126.78 353.05

Table 9.3: VarGen checking

10 Conclusion and future work

10.1 Conclusion
In this thesis we showed the applicability of SAT solving technologies to the product con�guration
problem in a manufacturing company. As the company already used their own set of rules for
constraining the features and options it was fairly straight-forward to encode them into proposi-
tional logic. Additionally we believe it will be helpful to directly write new rules in propositional
logic as it is more intuitive and also o�ers a more compact representation, thus avoiding incon-
sistencies and human errors. As a SAT solver is predestined for deciding whether a given set of
rules with additional selected variables is satis�able, the �rst task, i. e., the order checking, could be
implemented easily and showed the strength of this approach as in contrast to the currently used
implementation, we return safe answers and even perform better than the current implementation.

Considering the two remaining tasks we further improved the use of solver technologies by
extending our own solver SMT-RAT to accommodate for the given problems but at the same time
retaining the general purpose character of the solver. The second problem of realizability checking
could be solved by generating lemmas capturing the reasons for speci�c variable assignments.
Using lemmas not only helps identifying those variables which never can be satis�ed but also
those which are always satis�ed. Furthermore by giving a reason for each variable assignment this
facilitates an engineer to identify inconsistencies and possible problems in the set of rules.

The last task of variance generation could be solved by using All-SAT where all possible solutions
are searched. Here we highly bene�ted from being able to implement All-SAT into SMT-RAT
instead of triggering it from outside as done with Z3. The evaluation shows that our approach
drastically improves the performance of the solving process.

Both extensions, lemma generation and All-SAT, now can be found in SMT-RAT. Furthermore,
we ported SMT-RAT to Windows and integrated it into the existing implementation of the com-
pany enabling the user to choose between using Z3 or SMT-RAT. Thus, our implementation could
be used productively in the company.

10.2 Future work
In the future the All-SAT computation could be improved further. If during the solving all clauses
are already satis�ed but not all variables are assigned, these unassigned variables can take any
value. Thus, all extensions of this partial assignment are satisfying assignments meaning that all
combinations of unassigned relevant variables are solutions. Hence, we can discard checking them.

Next it might be interesting to develop heuristics for the variable decision in our speci�c setting.
For example it could be bene�cial to �rst choose relevant variables during the solving to guide
the solver in �rst satisfying those. On the other hand this could prove counterproductive as the
structure of the rules could favor other variable assignments.

This leads us to the next challenge. As we consider a speci�c setting here it might be worth
extensively analyzing the set of given rules. For example at the moment all rules are implications
which could be exploitable. Furthermore we often have the encoding of “exactly-one” which is
translated into propositional logic by possible exponential blowup. Implementing our own han-
dling of such an “exactly-one” constraint could drastically improve the solving performance. For
example if one of the variables is already satis�ed in such a construct, we instantly know that all
other variables cannot be satis�ed anymore, implying several new variable assignments.

Another interesting point in our setting is the collection of rules in PCCs. All our tasks begin
by loading a speci�c PCC and usually discarding the previously loaded PCC. But those PCCs are
not always independent of each other. In some cases multiple PCCs share similar rules meaning
we could only discard parts of the rules and keep other parts which we need in the next PCC as
well. Identifying those rules o�ers a huge bene�t not only for decreasing the preparation time

42 Chapter 10. Conclusion and future work

but also for the engineers as it allows for new insights about the di�erent PCCs. This could lead
to a reduced amount of PCCs which are clearly distinguished from each other. Furthermore the
maintenance of the rules would become easier as each change would only need to occur in one
rule and must not be carried out through similar rules in di�erent PCCs.

Knowing more about the PCCs also allows to explicitly encode inherent knowledge into the
rules. At the moment after a realizability check we gain lemmas stating several variable assign-
ments. But after this check this knowledge is lost. Instead it would be better to permanently store
this additional knowledge as it might help improve the solving performance. On the other hand
after changing rules these lemmas need to be considered again as they might not be valid anymore
and might need to be removed.

In the scope of this thesis we only considered SAT solving techniques. However, in the future it
might be useful to also consider more expressive logics as explained in Section 3.3 on page 9. As
SMT-RAT is an SMT solver, making this transition is not complicated and we gain the advantage of
encoding rules more intuitively and being able to solve other problems. For example the e�ectivity
dates are currently encoded as additional variables which have to be set explicitly in a preprocessing
step. Using SMT we can encode these dates as intervals and do not need to apply preprocessing
anymore. Furthermore we then could search for speci�c dates where certain constraints apply. For
example we assert a certain option and are now interested in the weeks when this option can be
chosen.

Lastly, during our meetings with the company we encountered a lot of other tasks which could
be solved using a SMT solver, e. g., scheduling or placing objects in three dimensional space.

Bibliography

[Ake78] S. B. Akers. “Binary Decision Diagrams”. IEEE Trans. Comput. 27.6 (1978), pages 509–
516 (cited on page 1).

[Bar+11] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. “CVC4”. Proc. of CAV. Volume 6806. LNCS. Springer, 2011, pages 171–177
(cited on page 1).

[Bel+14] A. Belov, D. Diepold, M. J. Heule, and M. Järvisalo. “SAT COMPETITION 2014”. 2014.
url: https://helda.helsinki.fi/handle/10138/135571 (visited on
11/25/2015) (cited on page 1).

[Bie+99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic Model Checking without BDDs”.
Proc. of TACAS. Volume 1579. LNCS. Springer, 1999, pages 193–207 (cited on page 1).

[Bry86] R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. IEEE Trans.
Comput. 35.8 (1986), pages 677–691 (cited on page 1).

[BST10] C. Barrett, A. Stump, and C. Tinelli. “The Satis�ability Modulo Theories Library (SMT-
LIB)”. www.SMT-LIB.org. 2010 (cited on pages 21, 35).

[Cim+13] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. “The MathSAT5 SMT Solver”.
Proc. of TACAS. Volume 7795. LNCS. Springer, 2013, pages 93–107 (cited on page 1).

[Coo71] S. A. Cook. “The Complexity of Theorem-proving Procedures”. Proc. of STOC. ACM Press,
1971, pages 151–158 (cited on page 1).

[Cor+12] F. Corzilius, U. Loup, S. Junges, and E. Ábrahám. “SMT-RAT: An SMT-Compliant Non-
linear Real Arithmetic Toolbox (Tool Presentation)”. Proc. of SAT. Volume 7317. LNCS.
Springer, 2012, pages 442–448 (cited on page 35).

[Cor+15a] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. “SMT-RAT - Satis-
�ability-Modulo-Theories Real Algebra Toolbox”. 2015. url: https://github.
com/smtrat/smtrat (visited on 11/25/2015) (cited on page 35).

[Cor+15b] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and E. Ábrahám. “SMT-RAT: An Open
Source C++ Toolbox for Strategic and Parallel SMT Solving”. Proc. of SAT. Volume 9340.
LNCS. Springer, 2015, pages 360–368 (cited on pages 1, 35).

[Dan63] G. Danzig. “Linear programming and extensions”. 1963 (cited on page 10).
[DDM06a] B. Dutertre and L. De Moura. “A fast linear-arithmetic solver for DPLL (T)”. Proc. of

CAV. Volume 4144. LNCS. Springer. 2006, pages 81–94 (cited on page 10).
[DDM06b] B. Dutertre and L. De Moura. “Integrating simplex with DPLL(T)”. Technical report.

CSL, SRI International, 2006 (cited on page 10).
[Deh+15] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, and

E. Ábrahám. “PROPhESY: A PRObabilistic ParamEter SYnthesis Tool”. Proc. of CAV. Vol-
ume 9206. LNCS. Springer, 2015, pages 214–231 (cited on page 1).

[DLL62] M. Davis, G. Logemann, and D. Loveland. “A Machine Program for Theorem-proving”.
Communications of the ACM 5.7 (1962), pages 394–397 (cited on pages 1, 13, 14).

[DMB08] L. De Moura and N. Bjørner. “Z3: An e�cient SMT solver”. Proc. of TACAS. Volume 4963.
LNCS. Springer, 2008, pages 337–340 (cited on pages 1, 35).

[DP60] M. Davis and H. Putnam. “A Computing Procedure for Quanti�cation Theory”. Journal
of the ACM 7.3 (1960), pages 201–215 (cited on page 1).

[Dut14] B. Dutertre. “Yices 2.2”. Proc. of CAV. Volume 8559. LNCS. Springer, 2014, pages 737–
744 (cited on page 1).

https://helda.helsinki.fi/handle/10138/135571
https://github.com/smtrat/smtrat
https://github.com/smtrat/smtrat

44 Bibliography

[ES03] N. Eén and N. Sörensson. “An Extensible SAT-solver”. Proc. of SAT. Volume 2919. LNCS.
Springer, 2003, pages 502–518 (cited on pages 1, 35).

[Fal+11] A. Falkner, A. Haselböck, G. Schenner, and H. Schreiner. “Modeling and Solving Tech-
nical Product Con�guration Problems”. Arti�cial Intelligence for Engineering Design,
Analysis and Manufacturing 25.2 (2011), pages 115–129 (cited on page 2).

[Fuh+07] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. “SAT
Solving for Termination Analysis with Polynomial Interpretations”. Proc. of SAT. Vol-
ume 4501. LNCS. Springer, 2007, pages 340–354 (cited on page 1).

[GH15] B. Gladman and W. Hart. “MPIR - Multiple Precision Integers and Rationals”. 2015. url:
http://www.mpir.org/ (visited on 11/25/2015) (cited on page 36).

[GN07] E. Goldberg and Y. Novikov. “BerkMin: A fast and robust Sat-solver”. Discrete Applied
Mathematics 155.12 (2007). Proc. of SAT, pages 1549 –1561 (cited on page 1).

[Gra15] T. Granlund. “GMP - The GNU Multiple Precision Arithmetic Library”. 2015. url:
https://gmplib.org/ (visited on 11/25/2015) (cited on page 36).

[GSY04] O. Grumberg, A. Schuster, and A. Yadgar. “Memory E�cient All-Solutions SAT Solver
and Its Application for Reachability Analysis”. Proc. of FMCAD. Volume 3312. LNCS.
Springer, 2004, pages 275–289 (cited on page 2).

[KS08] D. Kroening and O. Strichman. “Decision Procedures: An Algorithmic Point of View”.
1st edition. Springer, 2008 (cited on page 14).

[KS92] H. Kautz and B. Selman. “Planning as Satis�ability”. Proc. of ECAI. John Wiley & Sons,
Inc., 1992, pages 359–363 (cited on page 1).

[Lee59] C. Y. Lee. “Representation of Switching Circuits by Binary-Decision Programs”. Bell Sys-
tem Technical Journal 38.4 (1959), pages 985–999 (cited on page 1).

[Lev73] L. A. Levin. “Universal sequential search problems”. Problemy Peredachi Informatsii 9.3
(1973), pages 115–116 (cited on page 1).

[MA04] E. R. van der Meer and H. R. Andersen. “BDD-based recursive and conditional modular
interactive product con�guration”. Proc. CSPIA. 2004, pages 112–126 (cited on page 2).

[Mos+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. “Cha�: Engineer-
ing an E�cient SAT Solver”. Proc. of DAC. ACM Press, 2001, pages 530–535 (cited on
pages 1, 17).

[MS99] J. a. P. Marques-Silva. “The Impact of Branching Heuristics in Propositional Satis�ability
Algorithms”. Proc. of EPIA. Volume 1695. LNCS. Springer, 1999, pages 62–74 (cited on
page 17).

[MSS96] J. a. P. Marques-Silva and K. A. Sakallah. “GRASP - A New Search Algorithm for Sat-
is�ability”. Proc. of ICCAD. IEEE Computer Society, 1996, pages 220–227 (cited on
page 1).

[NOT05] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. “Abstract DPLL and Abstract DPLLModulo
Theories”. Proc. of LPAR. Volume 3452. LNCS. Springer, 2005, pages 36–50 (cited on
page 9).

[Rob65] J. A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”. Journal
of the ACM 12.1 (1965), pages 23–41 (cited on pages 1, 14).

[SKK00] C. Sinz, A. Kaiser, and W. Küchlin. “SAT-Based Consistency Checking of Automotive
Electronic Product Data”. Proc. of ECAI. IOS Press, 2000, pages 74–78 (cited on page 2).

[SKK01] C. Sinz, A. Kaiser, and W. Küchlin. “Detection of Inconsistencies in Complex Product
Con�guration Data Using Extended Propositional SAT-Checking”. Proc. of FLAIRS. AAAI
Press, 2001, pages 645–649 (cited on page 2).

[SLM92] B. Selman, H. Levesque, and D. Mitchell. “A NewMethod for Solving Hard Satis�ability
Problems”. Proc. of AAAI. AAAI Press, 1992, pages 440–446 (cited on page 1).

[Tse68] G. S. Tseitin. “On the complexity of proof in prepositional calculus”. Zapiski Nauchnykh
Seminarov POMI 8 (1968), pages 234–259 (cited on page 4).

http://www.mpir.org/
https://gmplib.org/

Bibliography 45

[Tuc+07] C. Tucker, D. Shu�elton, R. Jhala, and S. Lerner. “OPIUM: Optimal Package Install/
Uninstall Manager”. Proc. of ICSE. IEEE Computer Society, 2007, pages 178–188 (cited
on page 1).

[Yu+14] Y. Yu, P. Subramanyan, N. Tsiskaridze, and S. Malik. “All-SAT Using Minimal Blocking
Clauses”. Proc. of VLSI Design. IEEE Computer Society. 2014, pages 86–91 (cited on
page 2).

[ZM03] L. Zhang and S. Malik. “Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications”. Proc. of DATE. IEEE Com-
puter Society. 2003, pages 10880–10885 (cited on page 27).

[Mic15] Microsoft Research. “Z3 Theorem Prover”. 2015. url: https://github.com/
Z3Prover/z3 (visited on 11/25/2015) (cited on page 35).

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

	Abstract
	Preface
	Contents
	1 Introduction
	1.1 History of satisfiability solving
	1.2 Special problem cases

	2 Propositional logic
	2.1 Syntax and semantics
	2.2 Conjunctive normal form
	2.3 Tseitin's encoding

	3 Problem statement
	3.1 Application field: A manufacturing company
	3.2 SAT encoding
	3.3 Prospect: Satisfiability modulo theories
	3.4 Objectives
	3.4.1 Order checking
	3.4.2 Realizability checking
	3.4.3 VarGen checking

	4 SAT solving
	4.1 Enumeration
	4.2 Resolution
	4.3 DPLL
	4.3.1 Boolean constraint propagation
	4.3.2 Enumeration
	4.3.3 Conflict analysis
	4.3.4 Complete example

	5 Incremental SAT solving
	5.1 Interfaces
	5.2 Order checking

	6 Lemma generation
	6.1 Naive algorithm
	6.2 Improved algorithm
	6.3 Final algorithm
	6.3.1 Complete example

	7 All-SAT
	7.1 Naive algorithm
	7.2 All-SAT
	7.2.1 Final algorithm
	7.2.2 Complete example

	8 Implementation
	8.1 Architecture
	8.2 SMT-RAT

	9 Evaluation
	9.1 Order checking
	9.2 PCC checking
	9.3 VarGen checking

	10 Conclusion and future work
	10.1 Conclusion
	10.2 Future work

	Bibliography

